Technical ReportPDF Available

Abstract

The INSIDE project is a joint project of the Institute for Solar Energy Research in Hamelin (ISFH) and Leibniz University Hannover, Institute of Environmental Planning (IUP) and Institute of Solid State Physics (FKP). The project explored options to increase the acceptance of solar parcs in Lower Saxony and thus enable the strong expansion of solar energy in Lower Saxony that will be necessary in the future, in agreement with local stakeholders.
A preview of the PDF is not available
... Solarenergie ist neben der Windkraft die zweite nachhaltige Energiequelle, welche in einem systemrelevanten Umfang zur Verfügung steht und eine ausreichend effiziente Treibhausgas-Reduzierung bietet (Badelt et al. 2020). Der Anteil der Photovoltaik (PV) an der Bruttostromerzeugung betrug 2020 in Niedersachsen erst rund 7 % (MU Nds. ...
... B. Bredemeier et al. 2014) sowie mit mensch-und naturverträglich nutzbaren Flächenpotenzialen für erneuerbare Energien (z. B. Walter et al. 2018;Thiele et al. 2021;Badelt et al. 2020). Die Arbeiten stellen das datenbasierte, wissenschaftliche Fundament von ‚Vision:En 2040' dar. ...
... • und die Stromertragsberechnung je Stadt/Gemeinde aus INSIDE (Badelt et al. 2020) genutzt. ...
Book
Full-text available
Der Ausbau der erneuerbaren Energien, insbesondere der Windenergie, stagniert aktuell in Deutschland. Obwohl die Energiewende insgesamt von der Bevölkerung gewünscht ist, werden konkrete Projekte vor Ort von Teilen der Bevölkerung nicht akzeptiert. Im Projekt "Lokaler Energiewendedialog", gefördert durch das Niedersächsische Ministerium für Umwelt, Energie, Bauen und Klimaschutz, entwickelten das Konsortium aus dem Institut für Umweltplanung der Leibniz Universität Hannover (IUP), der Klimaschutzagentur Region Hannover gGmbH (KSA) und der IP SYSCON GmbH ein digitales Dialog-Tool und Veranstaltungskonzept: ‚Vision:En 2040‘. Hiermit sollen Städte und Gemeinden unterstützt werden, den Ausbau erneuerbarer Energien partizipativ umzusetzen. In moderierten Veranstaltungen simulieren Teilnehmende mithilfe des Tools einen Ausbau erneuerbarer Energien in ihrer Gemeinde. Wind- und Solarenergieanlagen werden auf digitalen Karten verortet und ihre potenziellen Stromerträge summiert und visualisiert. Der so berechnete Gesamtstromertrag wird einem Zielstromertrag der Gemeinde im Jahr 2040 gegenübergestellt. Auf Grundlage der Simulationsergebnisse diskutieren die Anwesenden den Beitrag ihrer Gemeinde zur Energiewende. Die Befragungsergebnisse zeigen, dass das Dialog-Tool das Potenzial besitzt, die Handlungs- und die Einstellungsebene der Akzeptanz gegenüber der Energiewende vor Ort zu beeinflussen. Die Teilnehmenden konnten ihr Wissen erweitern und empfanden das Dialog-Tool als hilfreich, um die Standorteignung aber auch persönliche Einstellungen zu diskutieren. Der nun veröffentlichte Schlussbericht stellt Projektdesign, Veranstaltungskonzept und Evaluationsergebnisse aus der Pilotphase in der Region Hannover vor.
... Da die für den Klimaschutz notwendige Energiemenge nicht allein durch Windenergie zu erreichen ist (Walter et al., 2018), kommt als zweiter Baustein in den Energiestrategien der einzelnen politischen Ebenen die Solarenergie dazu. Solarenergie ist neben der Windkraft die einzige nachhaltige Energiequelle, welche in einem systemrelevanten Umfang zur Verfügung steht und eine ausreichend effiziente THG-Reduzierungsbilanz pro Flächeneinheit bietet (Badelt et al., 2020). ...
Chapter
Die in Deutschland mensch- und naturverträglich nutzbare Fläche reicht bilanziell für eine Versorgung mit erneuerbaren Energien aus. Unklar ist, wie die Verantwortung für den Prozess von der Bundesebene auf die lokale Ebene heruntergebrochen werden kann. Mit Hilfe bundesweiter Szenarien können die Leitplanken für die Energiewende räumlich spezifiziert werden. der Beitrag zeigt, wie den unteren Ebenen Spielräume für lokale Lösungen aufgezeigt und gleichzeitig die nationalen Ziele erreicht werden können.
Article
Full-text available
Solar photovoltaic (PV) is a key technology for any renewable energy system. As subsidy-free PV becomes more and more economically feasible, region-specific planning tools that define areas suitable for ground-mounted PV are needed. While many top-down studies have assessed suitable areas at a national scale, an accurate scalable bottom-up assessment of regional ground-mounted PV potentials in high spatial and temporal resolution that goes further than a mere identification of appropriate land areas is missing. This work introduces such a method based on digital landscape models that consider terrain slope, orientation, location-specific irradiation, and land use type, and combines this geoinformatical information with a PV yield model that allows to assess hourly PV generation potential on suitable areas. The method is validated with three existing ground-mounted PV plants in Germany, where a comparison of real and simulated annual electricity yields shows average deviations of 5%. Subsequently, ground-mounted PV potentials in three German counties with varying settlement structures as well as topographic and weather patterns are assessed and a comparison of yearly and hourly simulated generation potentials with regional electricity demand is performed. While the yearly analysis demonstrates the substantial overall potentials of local ground mounted-PV in all regions, with demand coverages ranging from 80% to hypothetically more than 40 times of current electricity demand according to current regulations, the hourly autarky ratio, defined as the share of hours of a year where ground-mounted PV can satisfy demand, ranges from 25% to 40%, without consideration of storage or demand side management. A subsequent investigation of the ability to export excess electricity generation from ground-mounted PV shows that the two regions with highest ground-mounted PV potentials have less-developed grid infrastructures, thus restricting excess electricity generation export potentials.
Article
Die Energiewende genießt in Deutschland sehr hohe Zustimmung in der Bevölkerung. Allerdings sind bei diesem Transformationsprozess auch andere Belange wie der Schutz der biologischen Vielfalt und die Interessen der Anwohnerinnen und Anwohner zu berücksichtigen. Die vorliegende Studie zeigt mit Szenarien Wege zur Lösung dieser Konflikte. Dazu wurde ein GIS-Modell entwickelt, das die Empfindlichkeiten von Mensch und Natur berücksichtigt und flächenkonkret sowie summativ für Deutschland Potenziale für erneuerbare Energien berechnet und einem für 2050 projizierten Bedarf gegenüberstellt. Das Modell dient der Entscheidungsunterstützung: Sowohl der Energiebedarf als auch die eingegebenen Daten können als Variablen behandelt werden. Die Projektionen zeigen, dass der Strombedarf von 1 500 Terawattstunden(TWh)/a im Jahr 2050 bei einer intelligenten Verteilung von On-Shore-Windenergieanlagen und einer sehr ambitionierten Nutzung von Dachflächen mit Photovoltaik gedeckt werden kann. Das Modell liefert die Grundlage für ein Werkzeug, das einer wissensbasierten Lenkung der Energiewende dient und in Zukunft bereitgestellt werden kann. https://bfn.bsz-bw.de/frontdoor/deliver/index/docId/1085/file/NuL2021-11-02.pdf
Article
Full-text available
The number of ground-mounted solar parks is increasing across the world in response to energy decarbonisation. Solar parks offer an opportunity to deliver ecosystem co-benefits but there is also a risk that their development and operation may be detrimental to ecosystems. Consequently, we created the Solar Park Impacts on Ecosystem Services (SPIES) decision-support tool (DST) to provide evidence-based insight on the impacts of different solar park management practices on ecosystem services. The SPIES DST is underpinned by 704 pieces of evidence from 457 peer-reviewed academic journal articles that assess the impacts of land management on ecosystem services, collated through a systematic review. Application to two operational solar parks evidences the commercial relevance of the SPIES DST and its potential to enable those responsible for designing and managing solar parks to maximise the ecosystem co-benefits and minimise detrimental effects. Further, evaluation using data from nine solar parks across the south of England demonstrates the validity of the DST outcomes. With the increasing land take for renewable energy infrastructure, DSTs, such as SPIES, that promote the co-delivery of other ecosystem benefits can help to ensure that the energy transition does not swap climate change for local scale ecosystem degradation, and potentially prompts improvements in ecosystem health.
Conference Paper
Full-text available
We evaluate three design solutions for BIPV modules: colored encapsulants, ceramic printed glass covers and spectral-selective photonic Morpho structures, regarding their electrical performance, their optical appearance and their cost. We built single-cell samples on which we perform IV measurements at STC and normal-hemispheric reflectance measurements. We derive color coordinates in CIE L*a*b* space out of the reflectance spectra to quantify color and intensity. Colored encapsulants as well as ceramic prints show low color saturation and high power loss relative to a conventional module (-6 to-31%). The spectrally selective Morpho structure shows strongest color saturation, enhanced brightness and best electrical performance (-3 to-7%). We research module component prices and perform a manufacturing cost analysis for glass-glass modules with the respective decoration and find that decoration of BIPV modules increases the specific module cost, caused by less power output and higher material cost. We find the manufacturing cost of decorated BIPV modules (74-163 €/m²) is within the range of classic cladding materials, such as bricks (60-100 €/m²) or wood (50-180 €/m²) but provide additional benefits regarding power generation.
Article
Full-text available
Power demands are set to increase by two-fold within the current century and a high fraction of that demand should be met by carbon free sources. Among the renewable energies, solar energy is among the fastest growing; therefore, a comprehensive and accurate design methodology for solar systems and how they interact with the local environment is vital. This paper addresses the environmental effects of solar panels on an unirrigated pasture that often experiences water stress. Changes to the microclimatology, soil moisture, water usage, and biomass productivity due to the presence of solar panels were quantified. The goal of this study was to show that the impacts of these factors should be considered in designing the solar farms to take advantage of potential net gains in agricultural and power production. Microclimatological stations were placed in the Rabbit Hills agrivoltaic solar arrays, located in Oregon State campus, two years after the solar array was installed. Soil moisture was quantified using neutron probe readings. Significant differences in mean air temperature, relative humidity, wind speed, wind direction, and soil moisture were observed. Areas under PV solar panels maintained higher soil moisture throughout the period of observation. A significant increase in late season biomass was also observed for areas under the PV panels (90% more biomass), and areas under PV panels were significantly more water efficient (328% more efficient).
Article
Full-text available
Photovoltaic (PV) solar energy installations are growing all over the world as a promising renewable alternative to generate electricity. However, many studies have highlighted some drawbacks associated with the installation and operation of conventional solar energy power plants. Thus, floating photovoltaic (FPV) systems have been emerging as a new concept in solar energy to lessen negative environmental impacts caused by allocation of conventional PV facilities. This paper is an overview of the potential negative and positive environmental impacts caused by photovoltaic systems with particular interest on large-scale conventional and floating photovoltaic. This study addresses and compares the impacts at all phases of project implementation, which covers planning, construction, and operation and decommissioning, focusing on ambient located in the tropics. The overall impacts associated with project allocation such as deforestation (for the project implementation and site accessing), bird mortality, erosion, runoff, and change in microclimate are expected to have higher magnitudes for the implementation of conventional PV facilities. The results highlight advantages of FPV over conventional PV during the operational and decommissioning phases as well. Though, further studies are required to assess both qualitative and quantitative aspects of installations in similar areas.
Article
Full-text available
The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.
Article
Full-text available
While the interactions between wind turbines and birds have been studied comprehensively in recent years, large scale assessments on likely effects of the current development status of the wind energy sector on sensitive species are often missing. To mitigate wind farm related risks for birds, the Working Group of German State Bird Conservancies published species-specific minimum distances of wind turbines to breeding sites that should be kept free from turbines. Using these recommendations the overlap between the breeding distribution and areas of wind farm related risks was estimated as well as the proportions of bird populations potentially influenced by the current state of wind energy production. The assessment was carried out based on the distribution and abundance information of the recently published second Atlas of German Breeding Birds, land use information of the Corine Land Cover data base and location information for operational onshore wind turbines on German territory. The results indicate a considerable overlap between the breeding season habitat and areas of wind farm related risks for various sensitive species. Especially the group of open landscape species regularly face potential disturbance of 9 to 13 % of their breeding season habitat. For individual species, often with only regional distribution in Germany, even considerable higher potential habitat disturbance figures are found with values up to 55 %. For most species, values for percentage habitat disturbance and estimates on the proportion of the national population to be influenced by wind turbines were relatively similar.
Article
The installation of tilting-angle solar panels above agricultural plots provides renewable energy and means of action to dampen some of the effects and hazards of climate change. When the panels are properly operated, their drop shadow reduces water consumption by the plants, as a consequence of alternating shade and sun bands with a short-term impact on the stomatal conductance and a global decrease of gas exchanges. This urged the development of a new model for crop growth and water budget, adapted here from existing literature to handle such transient conditions, characterized by short-term (infra-day) fluctuations. The main difficulty was to combine short-term fluctuations in the climatic forcings (radiation interception and rain redistribution by the panels) and long-term agronomic evaluation, hence the coexistence of several calculation time steps in model structure. All field experiments were conducted on purpose in the agrivoltaic plot of Lavalette (Montpellier, France). Specific adaptations consisted in describing the stomatal behavior of the plants for fluctuating solar radiations and varied water status, aiming at improving both the piloting of the solar panels and water management, i.e. the choice of irrigation amounts. Model simulations have been able to reproduce the expected benefits from agrivoltaic installations, for example showing that it is possible to improve land use efficiency and water productivity at once, by reducing irrigation amounts by 20%, when tolerating a decrease of 10% in yield or, alternatively, a slight extension of the cropping cycle. Agrivoltaism appears a solution for the future when facing climate change and the food and energy challenges, typically in the rural areas and the developing countries and especially if the procedure presented here proves relevant for other crops and contexts.
Article
This paper reviews the main research results related to PERC+ silicon solar cells. Compared to today's industry typical passivated emitter and rear cell (PERC) silicon solar cells with full-area rear aluminum layer, PERC+ solar cells apply an aluminum finger grid on the rear side and hence are able to absorb diffuse light from the rear side in addition to the direct sunlight which is absorbed from the front side. This bifaciality increases the energy yield of silicon solar modules by up to 25%. Since its first publication in 2015, the PERC+ cell concept has been rapidly adopted by several solar cell manufacturers due to the very similar process technology of bifacial PERC+ cells and main stream monofacial PERC cells. We summarize technological challenges, published PERC+ conversion efficiencies and PERC+ module technologies. First energy yield data of PERC+ field installations demonstrate the high energy yield potential of PERC+ solar cells.