Article

DNA Cross-Reactivity of the CDC-Specified SARS-CoV-2 Specimen Control Leads to Potential for False Negatives and Underreporting of Viral Infection

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... Pre-pandemic specimens: To estimate specificity intrinsic to ADAP, we chose prepandemic DBS specimens randomly from newborns screened in April 2019 at the end of the influenza and respiratory virus season in California to challenge ADAP with potential cross-contamination from other coronaviruses [26][27][28]. ...
Article
Full-text available
To investigate COVID-19 surveillance among pregnant women, the California Genetic Disease Screening Program conducted a screening performance and seroprevalence evaluation of maternal SARS-CoV-2 antibodies detected in banked newborn dried blood spots (DBS). We obtained seropositive results for 2890 newborn DBS from cohorts in 2020 and 2021 using Enable Bioscience’s Antibody Detection by Agglutination-PCR (ADAP) assay for SARS-CoV-2 antibodies. To infer maternal infection, we linked 312 women with a known laboratory-confirmed COVID-19 episode with their newborn’s DBS SARS-CoV02 antibody result. Among 2890 newborns, we detected 453 (15.7%) with SARS-CoV-2 antibodies in their DBS. Monthly snapshot statewide seroprevalence among neonates was 12.2% (95% CI 10.3–14.1%, n =1156) in December 2020 and 33.3% (95% CI 29.1–37.4%, n = 26) in March 2021. The longest time recorded from COVID-19 infection to a seropositive neonatal result was 11.7 months among the 312 mothers who had an available SARS-CoV-2 PCR test result. Approximately 94% (153/163) of DBS were seropositive when a known maternal infection occurred earlier than 19 days before birth. The estimated relative sensitivity of DBS to identify prevalent maternal infection was 85.1%, specificity 98.5% and PPV 99.2% (n = 312); the sensitivity was lowest during the December 2021 surge when many infections occurred within 19 days of birth. Fifty pre-pandemic specimens (100% seronegative) and 23 twin-pair results (100% concordant) support an intrinsic specificity and PPV of ADAP approaching 100%. Maternal infection surveillance is limited by a time lag prior to delivery, especially during pandemic surges.
... Molecular tests that target a single site are not recommended for diagnosing COVID-19 as various mutations affecting test sensitivity have been reported [26][27][28][29][30][31][32][33][34][35]. Multiple targets can also discriminate non-specific reactions, background fluorescence signals, and cross-reactivity, which can cause false-positive results [36][37][38]. The targets do not necessarily have to be located in different genes. ...
Article
Full-text available
Korean Society for Laboratory Medicine and the Korea Disease Prevention and Control Agency have announced guidelines for diagnosing coronavirus disease (COVID-19) in clinical laboratories in Korea. With the ongoing pandemic, we propose an update of the previous guidelines based on new scientific data. This update includes recommendations for tests that were not included in the previous guidelines, including the rapid molecular test, antigen test, antibody test, and self-collected specimens, and a revision of the previous recommendations. This update will aid clinical laboratories in performing laboratory tests for diagnosing COVID-19.
... Yan et al. [79] (1) N: nucleocapsid protein; (2) S: spike protein; (3) M: membrane protein; (4) Veps: viral envelope proteins; (5) Diagnostic sensitivity of the method is reported; (6) Sensitivity and specificity are referred to AUC and ROC curve analyses; (7) ORF: open reading frame; (8) Percent agreement and Cohen's kappa were calculated to assess sensitivity and specificity; (9) Diagnostic performances are referred to the Machine learning model used. (10) PPA: positive percent agreement; (11) NPA: negative percent agreement; (12) DNN: deep neural network; (13) GBM: XGBoost gradient boosting machine. ...
Article
Full-text available
The urgent need to fight the COVID-19 pandemic has impressively stimulated the efforts of the international scientific community, providing an extraordinary wealth of studies. After the sequence of the virus became available in early January 2020, safe and effective vaccines were developed in a time frame much shorter than everybody expected. However, additional studies are required since viral mutations have the potential of facilitating viral transmission, thus reducing the efficacy of developed vaccines. Therefore, improving the current laboratory testing methods and developing new rapid and reliable diagnostic approaches might be useful in managing contact tracing in the fight against both the original SARS-CoV-2 strain and the new, potentially fast-spreading CoV-2 variants. Mass Spectrometry (MS)-based testing methods are being explored, with the challenging promise to overcome the many limitations arising from currently used laboratory testing assays. More specifically, MALDI-MS, since its advent in the mid 1980s, has demonstrated without any doubt the great potential to overcome many unresolved analytical challenges, becoming an effective proteomic tool in several applications, including pathogen identification. With the aim of highlighting the challenges and opportunities that derive from MALDI-based approaches for the detection of SARS-CoV-2 and its variants, we extensively examined the most promising proofs of concept for MALDI studies related to the COVID-19 outbreak.
Article
Full-text available
As the COVID-19 pandemic continues to escalate globally and acquires new mutations, accurate diagnostic technologies continue to play a vital role in controlling and understanding the epidemiology of this disease. A plethora of technologies have enabled the diagnosis of individuals, informed clinical management, aided population-wide screening to determine transmission rates and identified cases within the wider community and high-risk settings. This review explores the application of molecular diagnostics technologies in controlling the spread of COVID-19, and the key factors that affect the sensitivity and specificity of the tests used.
Article
Full-text available
Background: The recent emergence of SARS-CoV-2 lead to a current pandemic of unprecedented scale. Though diagnostic tests are fundamental to the ability to detect and respond, overwhelmed healthcare systems are already experiencing shortages of reagents associated with this test, calling for a lean immediately-applicable protocol. Methods: RNA extracts of positive samples were tested for the presence of SARS-CoV-2 using RT-qPCR, alone or in pools of different sizes (2-, 4-, 8- ,16-, 32- and 64-sample pools) with negative samples. Transport media of additional 3 positive samples were also tested when mixed with transport media of negative samples in pools of 8. Results: A single positive sample can be detected in pools of up to 32 samples, using the standard kits and protocols, with an estimated false negative rate of 10%. Detection of positive samples diluted in even up to 64 samples may also be attainable, though may require additional amplification cycles. Single positive samples can be detected when pooling either after or prior to RNA extraction. Conclusions: As it uses the standard protocols, reagents and equipment, this pooling method can be applied immediately in current clinical testing laboratories. We hope that such implementation of a pool test for COVID-19 would allow expanding current screening capacities thereby enabling the expansion of detection in the community, as well as in close organic groups, such as hospital departments, army units, or factory shifts.