Conference Paper

Innovations in Mobility and Logistics: Assistance of Complex Analytical Processes in Visual Trend Analytics

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

A variety of new technologies and ideas for businesses are arising in the domain of logistics and mobility. It can be differentiated between fundamental new approaches, e.g. central packaging stations or deliveries via drones and minor technological advancements that aim on more ecologically and economic transportation. The need for analytical systems that enable identifying new technologies, innovations, business models etc. and give also the opportunity to rate those in perspective of business relevance is growing. The users’ behavior is commonly investigated in adaptive systems, which is considering the induvial preferences of users, but neglecting often the tasks and goals of the analysis. A process-related supports could assist to solve an analytical task in a more efficient and effective way. We introduce in this paper an approach that enables non-professionals to perform visual trend analysis through an advanced process assistance based on process mining and visual adaptation. This allows generating a process model based on events, which is the baseline for process support feature calculation. These features in form of visual adaptations and the process model enable assisting non-experts in complex analytical tasks.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Conference Paper
Management of modern economic systems in the context of increasing influence of different types of risks requires significant improvement. Among such systems are logistics systems, which play an important role in the optimization of economic processes and require the use of information technology, which will facilitate faster and more accurate management decisions making. The purpose of scientific work is to develop a new approach to risk management of logistics systems, which will allow to plan more effectively, evaluate and control logistics processes by using information technology. To ensure more flexible risk management, it is possible to change the parameters and configuration of the recommended model in accordance with the conditions of its formation.
Article
Full-text available
Mobility, logistics and transportation are emerging fields of research and application. Humans’ mobility behavior plays an increasing role for societal challenges. Beside the societal challenges these areas are strongly related to technologies and innovations. Gathering information about emerging technologies plays an increasing role for the entire research in this ares. Humans’ information processing can be strongly supported by Visual Analytics that combines automatic modelling and interactive visualizations. The juxtapose orchestration of interactive visualization enables gathering more information in a shorter time. We propose in this paper an approach that goes beyond the established methods of dashboarding and enables visualizing different databases, data-sets and sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as visual dashboards to enable solving complex tasks. We illustrate our main outcome through a case study that investigates the area of mobility and illustrates how complex analytical tasks can be performed easily by combining different visual interfaces.
Article
Full-text available
Today, most enterprises are undergoing a digitization process with the fourth industrial revolution, named industry 4.0. The focus of the digital transformation lies mainly on production, therefore the terms such as “Factory of the Future” or “Smart Factory” are used similar with this concept. However, there are many reasons for considering the impact of digitalization in logistics and the importance of supply chain for industry 4.0. The key promises of this concept are enabling real-time full-transparency from suppliers to customers, small lot sizes, multiple product variants, connected processes and decentralized, autonomous management. These benefits cannot be achieved by production alone, but only along the entire supply chain. Moreover, logistics should gain a greater vision to fulfill the requirements of industry 4.0 as sustainably as possible in terms of using appropriate technologies and enhancing vertical and horizontal integration among the supply chain partners. In this respect, this study highlights the benefits of the digitization of logistics process and examines the sustainability impact of digitization in logistics. The study is pursued as a single case study within the FMCG companies and their transport service providers in Turkey and it is based on a qualitative method and on connected semi-structured interviews.
Article
Full-text available
Contemporary workflow management systems are driven by explicit process models, i.e., a completely specified workflow design is required in order to enact a given workflow process. Creating a workflow design is a complicated time-consuming process and typically, there are discrepancies between the actual workflow processes and the processes as perceived by the management. Therefore, we propose a technique for rediscovering workflow models. This technique uses workflow logs to discover the workflow process as it is actually being executed. The workflow log contains information about events taking place. We assume that these events are totally ordered and each event refers to one task being executed for a single case. This information can easily be extracted from transactional information systems (e.g., Enterprise Resource Planning systems such as SAP and Baan). The rediscovering technique proposed in this paper can deal with noise and can also be used to validate workflow processes by uncovering and measuring the discrepancies between prescriptive models and actual process executions.
Chapter
Full-text available
The policy making process requires the involvement of various stakeholders, who bring in very heterogeneous experiences and skills concerning the policymaking domain, as well as experiences of ICT solutions. Current solutions are primarily designed to provide “one-solution-fits-all” answers, which in most cases fail the needs of all stakeholders. In this chapter, the authors introduce a new approach to assist users based on their tasks. Therefore, the system observes the interaction of the user and recognizes the current phase of the policymaking process and the profile of the user to assist him more sufficiently in solving his task. For this purpose, the system automatically enables or disables supporting features such as visualization, tools, and supporting techniques.
Conference Paper
Full-text available
Nowadays daily office work consists of dealing with big numbers of data and data sources, and furthermore of working with complex computer programs. In consequence many users have problems to use such programs effective and efficient. In particular beginners have significant problems to use the programs correctly due to complex functionality and interaction options. To avoid this overload of the user, the Information Visualization community has recently developed some approaches that aim to support the users. Unfortunately, these approaches are limited to one special aspect, and sometimes they are just appropriate for one special task. Thus, in this paper we introduce a process-oriented user-supporting approach. It allows selecting adequate supporting techniques in correlation to a performed process and activity to guide the user and help him to solve his task. Furthermore, we show the benefits of designing programs and applications, which implement process definitions for the existing tasks to provide the user with better process orientation. This guides the user through difficult and complex processes.
Conference Paper
Full-text available
Nowadays there is a gap between the possibilities and the massively existing data on the one side and the user as main worker on the other side. In different scenarios e.g. search, exploration, analysis and policy-modeling a user has to deal with massive information, but for this work he usually gets a static designed system. So meanwhile data-driven work-processes are increasing in its complexity the support of the users who are working with these data is limited on basic features. Hence this paper describes a concept for a process-supporting approach, which includes relevant aspects of users' behaviors in support him to successfully finish also complex tasks. This will be achieved by a process-based guidance with an automatic tools selection for every process and activity on the one hand. And on the other hand the consideration of expert-level of a user to a single task and process. This expert-level will be classified during each task and process interaction and allow the automatically selection of optimal tools for a concrete task. In final the user gets for every task an automatically initialized user-interface with useful and required tools.
Chapter
In the domain of mobility and logistics, a variety of new technologies and business ideas are arising. Beside technologies that aim on ecologically and economic transportation, such as electric engines, there are also fundamental different approaches like central packaging stations or deliveries via drones. Yet, there is a growing need for analytical systems that enable identifying new technologies, innovations, business models etc. and give also the opportunity to rate those in perspective of business relevance. Commonly adaptive systems investigate only the users’ behavior, while a process-related supports could assist to solve an analytical task more efficient and effective. In this article an approach that enables non-experts to perform visual trend analysis through an advanced process support based on process mining is described. This allow us to calculate a process model based on events, which is the baseline for process support feature calculation. These features and the process model enable to assist non-expert users in complex analytical tasks.
Chapter
Visual Analytics provides with a combination of automated techniques and interactive visualizations huge analysis possibilities in technology and innovation management. Thereby not only the use of machine learning data mining methods plays an important role. Due to the high interaction capabilities, it provides a more user-centered approach, where users are able to manipulate the entire analysis process and get the most valuable information. Existing Visual Analytics systems for Trend Analytics and technology and innovation management do not really make use of this unique feature and almost neglect the human in the analysis process. Outcomes from research in information search, information visualization and technology management can lead to more sophisticated Visual Analytics systems that involved the human in the entire analysis process. We propose in this paper a new interaction approach for Visual Analytics in technology and innovation management with a special focus on technological trend analytics.
Conference Paper
The awareness of emerging technologies is essential for strategic decision making in enterprises. Emerging and decreasing technological trends could lead to strengthening the competitiveness and market positioning. The exploration, detection and identification of such trends can be essentially supported through information visualization, trend mining and in particular through the combination of those. Commonly, trends appear first in science and scientific documents. However, those documents do not provide sufficient information for analyzing and identifying emerging trends. It is necessary to enrich data, extract information from the integrated data, measure the gradient of trends over time and provide effective interactive visualizations. We introduce in this paper an approach for integrating, enriching, mining, analyzing, identifying and visualizing emerging trends from scientific documents. Our approach enhances the state of the art in visual trend analytics by investigating the entire analysis process and providing an approach for enabling human to explore undetected potentially emerging trends. (Best Paper Award at IV2019)
Book
This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.
Chapter
The high-level design introduced in the previous chapter gave already a short and comprehensible view on a methodological level of our conceptual model.
Conference Paper
The early awareness of new technologies and upcoming trends is essential for making strategic decisions in enterprises and research. Trends may signal that technologies or related topics might be of great interest in the future or obsolete for future directions. The identification of such trends premises analytical skills that can be supported through trend mining and visual analytics. Thus the earliest trends or signals commonly appear in science, the investigation of digital libraries in this context is inevitable. However, digital libraries do not provide sufficient information for analyzing trends. It is necessary to integrate data, extract information from the integrated data and provide effective interactive visual analysis tools. We introduce in this paper a model that investigates all stages from data integration to interactive visualization for identifying trends and analyzing the market situation through our visual trend analysis environment. Our approach improves the visual analysis of trends by investigating the entire transformation steps from raw and structured data to visual representations.