Chapter

Topical Application of Virus-Derived Immunomodulating Proteins and Peptides to Promote Wound Healing in Mouse Models

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Immune modulators play critical roles in the progression of wounds to normal or conversely delayed healing, through the regulation of normal tissue regrowth, scarring, inflammation, and growth factor expression. Many immune modulator recombinants are under active preclinical study or in clinical trial to promote improved acute or chronic wound healing and to reduce scarring. Viruses have evolved highly efficient immune modulators for the evasion of host-defensive immune responses that target and kill invasive viruses. Recent studies have proven that some of these virus-derived immune modulators can be used to promote wound healing with significantly improved speed and reduced scarring in rodent models. Mouse full-thickness excisional wound model is one of the most commonly used animal models used to study wound healing for its similarity to humans in the healing phases and associated cellular and molecular mechanisms. This chapter introduces this mouse dermal wound healing model in detail for application in studying viral immune modulators as new treatments to promote wound healing. Details of hydrogel, protein construction, and topical application methods for these therapeutic proteins are provided in this chapter.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Numerous treatments have been developed to promote wound healing based on current understandings of the healing process. Hemorrhaging, clotting, and associated inflammation regulate early wound healing. We investigated treatment with a virus-derived immune modulating serine protease inhibitor (SERPIN), Serp-1, which inhibits thrombolytic proteases and inflammation, in a mouse excisional wound model. Saline or recombinant Serp-1 were applied directly to wounds as single doses of 1 μg or 2 µg or as two 1 µg boluses. A chitosan-collagen hydrogel was also tested for Serp-1 delivery. Wound size was measured daily for 15 days and scarring assessed by Masson’s trichrome, Herovici’s staining, and immune cell dynamics and angiogenesis by immunohistochemistry. Serp-1 treatment significantly accelerated wound healing, but was blocked by urokinase-type plasminogen activator (uPAR) antibody. Repeated dosing at a lower concentration was more effective than single high-dose serpin. A single application of Serp-1-loaded chitosan-collagen hydrogel was as effective as repeated aqueous Serp-1 dosing. Serp-1 treatment of wounds increased arginase-1-expressing M2-polarized macrophage counts and periwound angiogenesis in the wound bed. Collagen staining also demonstrated that Serp-1 improves collagen maturation and organization at the wound site. Serp-1 has potential as a safe and effective immune modulating treatment that targets thrombolytic proteases, accelerating healing and reducing scar in deep cutaneous wounds.
Article
Full-text available
Bandaging of limb wounds in horses leads to formation of exuberant granulation tissue (EGT) that retards healing due to protracted inflammation, aberrant vascularisation and delayed epithelialisation. EGT is not observed if wounds are left undressed or when wounds are on the body. A previous study showed that short-term administration of proteins derived from orf virus dampened inflammation and promoted epithelialisation of open wounds in horses. Here, we investigated the impact of orf virus interleukin-10 and vascular endothelial growth factor-E on the development and resolution of EGT. Excisional wounds were created on the forelimb of four horses, and bandages were maintained until full healing to induce EGT formation. Matching body wounds were created to ensure EGT was limited to the limb, and to differentiate the effects of the viral proteins on normal healing and on EGT formation. Viral proteins or the hydrogel vehicle control were administered topically to site-matched wounds at day 1, with repeat administration at day 8. Wound healing and EGT formation were monitored macroscopically. Wound margin samples were harvested at 2, 7 and 14 days, and at full healing, with histology used to observe epithelialisation, immunofluorescence used to detect inflammatory cells, angiogenesis and cell death, and qPCR to measure expression of genes regulating inflammation and angiogenesis. Limb wounds developed EGT, and exhibited slower healing than body wounds. Viral protein treatment did not accelerate healing at either location nor limit EGT formation in limb wounds. Treatment of limb wounds did however increase epithelialisation and angiogenesis, without dampening inflammatory cell infiltration or gene expression. The healed wounds also had less occlusion and death of blood vessels and fewer epidermal rete ridges following viral protein treatment. These findings indicate that the viral protein treatment does not suppress wound inflammation or EGT formation, but does promote vascular and epidermal repair and EGT resolution.
Article
Full-text available
A number of studies have measured collagen fibers and collagen deposition in wound healing process with advances imaging techniques. However, these are performed by complicated methods and need specific tools. In search of the easier ways in routine histopathological laboratory, collagen measurement and staining pattern of wound healing process were observed in wounded skin of Sprague Dawley’s rat by using two different stains which are standard haematoxylin and eosin (H&E) and modified Masson’s trichrome staining (MT). The comparison between these staining in wounded tissues was made to evaluate the advantages and disadvantages of both staining in wound healing study for 21 days postwounding. Tissues which stained with MT staining was then evaluated its collagen re-organization and density by using polarized light microscope with the aid of image analyzer software. Results showed that tissues stained with standard H&E could not be used to measure and differentiate the collagen deposition which is contradictory to MT staining. Wounded tissue stained with MT staining has showed a clear view of collagen fibers deposition and re-organisation compared to H&E staining. This finding could validate the using of modified MT staining which leads to accurate histopathological analysis and observation in wound healing study.
Article
Full-text available
Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
Article
Full-text available
Wound repair is a complex biologic process which becomes abnormal in numerous disease states. Although in vitro models have been important in identifying critical repair pathways in specific cell populations, in vivo models are necessary to obtain a more comprehensive and pertinent understanding of human wound healing. The laboratory mouse has long been the most common animal research tool and numerous transgenic strains and models have been developed to help researchers study the molecular pathways involved in wound repair and regeneration. This paper aims to highlight common surgical mouse models of cutaneous disease and to provide investigators with a better understanding of the benefits and limitations of these models for translational applications.
Article
Despite the great progress in translational research concerning skin wound healing in the last few decades, no animal model fully predicts all clinical outcomes. The mouse is the most commonly used model, as it is easy to maintain and standardize, and is economically accessible. However, differences between murine and human skin repair, such as the contraction promoted by panniculus carnosus and the role of specific niches of skin stem cells, make it difficult to bridge the gap between preclinical and clinical studies. Therefore, this review highlights the particularities of each species concerning skin morphophysiology, immunology, and genetics, which is essential to properly interpret findings and translate them to medicine.
Article
In vivo wound healing experiments remain the most predictive models for studying human wound healing, allowing an accurate representation of the complete wound healing environment including various cell types, environmental cues, and paracrine interactions. Small animals are economical, easy to maintain, and allow researchers to take advantage of the numerous transgenic strains that have been developed to investigate the specific mechanisms involved in wound healing and regeneration. Here we describe three reproducible murine wound healing models that recapitulate the human wound healing process.
Article
Bioprosthetic devices, constructed from a variety of materials, are routinely implanted in a variety of anatomical locations. Essential to their success is the formation of a non-destructive interface with the host tissue and appropriate tissue remodelling. Traditionally, the main method of assessing the host-material interface has been qualitative histological evaluation, using pattern recognition and comparative assessment to identify changes in the normal tissue architecture that are characteristic of scar tissue. In the present study, the recently developed technique of multispectral imaging was used to revisit a little-described histological stain, Herovici's polychrome, which is capable of distinguishing between types I and III collagen. Combined, these techniques allowed quantification of collagen content and distribution of collagen types within a tissue sample. Samples of rat tail and human scar tissue were used to optimize the staining, while comparison with immunolabelled samples was used to develop a reproducible quantification system, based on the specific colour profiles for types I and III collagen. Finally the remodelling of rat abdominal wall defects repaired with crosslinked or non-crosslinked extracellular matrix scaffolds derived from porcine urinary bladder was assessed with this technique. Compared to standard histological assessment, the combination of multispectral imaging and Herovici's polychrome staining presents a quick, simple, reliable technique that can provide accurate quantification of tissue remodelling and specifically identify the expression and distribution of types I and III collagen. Copyright © 2011 John Wiley & Sons, Ltd.
Article
A staining technique differentiating two colorimetric types of connective fibers had been proposed by Herovici previously to the identification of collagen types. This technique has been applied to skin, lung and liver specimens and the results have been compared with immunotyping and literature data on collagen types I, III and IV. The conclusions are focused on the ability of the technique to identify at a first approach collagen types I and III, which are known to be of crucial importance in mechanical tissular properties.
Article
Many viruses have learned to evade or subvert the host antiviral immune responses by encoding and expressing immunomodulatory proteins that protect the virus from attack by elements of the innate and acquired immune systems. Some of these viral anti-immune regulators are expressed as secreted proteins that engage specific host immune targets in the extracellular environment, where they exhibit potent anti-immune properties. We review here viral immunomodulatory proteins that have been tested as anti-inflammatory reagents in animal models of disease caused by excessive inflammation or hyperactivated immune pathways. The potential for such viral molecules for the development of novel drugs to treat immune-based or inflammatory disorders is discussed.
Surgical approaches to create murine models of human wound healing
  • V W Wong
  • M Sorkin
  • J P Glotzbach
  • VW Wong