Development of Mobile Application for Computing SBC of Soil

To read the full-text of this research, you can request a copy directly from the authors.


This paper focuses on the development of an android-based mobile application by the name ‘Ground IQ’ for foundation works in the field of civil engineering. The first stage involves manual calculation of safe bearing capacity of soil based on codal provisions of IS-6403 [1] and equations developed by Terzaghi [2]. Its value is compared with that which is obtained as a result from the application developed. In the second stage, the computed SBC is used to design footing or foundation on the site from where the soil sample is collected. The design can be then compared with that obtained from the application developed and checked for accuracy. The Integrated Development Environment (IDE) or the platform used for the development of this application is Android Studio which supports Java programming language for coding.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
The soil mechanic laboratory results help in accurate soil foundation design and enhancement failure mitigation. The mixing soil design has been used in many geotechnical engineering for soil improvement. In this paper, several types of soil foundations have been made from mixed soil. The bearing capacity of soil foundations by using mixed soil parameters and change footing dimensions have been calculated. 180 footings, placed on 15 soil foundation types have been designed. It is assumed the underground water has not effect to bearing capacity of soil foundation. The results of numerical analysis and mixed soils technique have been combined. The numerical analysis has supported mixed soil design, and introduced an appropriate result for soil foundation design. The effects of mixed soil on depth and width of footing have been compared. The mixed soil design influenced numerical analysis result, and economically, soil foundation design helps to select the appropriate dimensions of footings. The result of numerical analysis supports geotechnical and structural engineering codes, predicts structural stability with different age, natural hazard and prevention as well as it is useful in understanding safe bearing capacity of soil foundation behavior.
Synopsis In the first part of the article a theory of bearing capacity is developed, on the basis of plastic theory, by extending the previous analysis for surface footings to shallow and deep foundations in a uniform cohesive material with fntemal friction. The theoretical results are represented by bearing capacity factors in terms of the mechanical properties of the soil, and the physical characteristics of the foundation. The base resistance of foundations in purely cohesive material is found to increase only slightly with foundation depth; for deep foundations the skin friction is, therefore, large compared with the base resistance. In cohesionless material, however, the base resistance increases rapidly with foundation depth and depends to a considerable extent on the earth pressure coefficient on the shaft; for deep foundations the base resistance is the predominant feature and the shin friction is relatively small. In the second part of the article the main results of laboratory and field loading tests on buried and driven foundations are analysed and compared with the theoretical estimates. The observed base resistance of foundations in clay is in good agreement with the estimates; for deep foundations in soft clay the actual base resistance is somewhat less than estimated, on account of local sheer failure, and an empirical compressibility factor is introduced by which the shearing strength is reduced. The skin friction is found to depend largely on the method of installing the foundation. The observed bearing capacity of shallow foundations in sand is in reasonable agreement with the theory; for deep foundations, however, the actual base resistance is considerably less than estimated on account of local shear failure, and anempirical compressibility factor is introduced as before. Since the earth pressure coefficient on the shaft can at present only be deduced from tho shin friction of penetrating tests, it is frequently more convenient to estimate the bearing capacity of deep foundations in cohesionless soil from an extrapolation of the results of cone penetration tests. Dans la première par-tie de l‘article on expose une théorie sur la capacité de portage, basée sur la théorie de la plasticité, par extension de l'analyse préalable des empattements de surface aux fondations faibles et profondes dans une matiére cohésive uniforme avec friction inteme. Les résultats théoriques sont repésentéb par les facteurs de capacité de portage en fonction des propriétés méaniques du sol et des caractériques physiques de la fondation. La réstance de base des fondations dans un sol vraiment cohésif ne s'accrott que faiblement avec la profondeur des fondations; pourles fondations profondes le frottement superflciel est donc grand par comparaison avec la résistance de base. Cependant, dans des matiéres sans cohésion, la résistance de base s'accrott rapidement avec la profondeur de fondation et déend pour une grande mesure du coefficient de pression de la terre sur la souche; pour les fondations profondes la résistance de base est un facteur de premiére importance et le frottement superiiciel n'a que peu d'importance. Dans la deuxième partie de l'article, on peut voir l'analyse des principaux réhats d'essais de charge en laboratoire et sur le terrain, sur fondations enterrées et enfoncées, et la comparaison avec les prévisions thémiques. La résistance de base observée des fondations dans l'argile Concorde bien avec les évaluations; pour les fondations profondes dans l'argile molle, la résistance de base réelle est quelque peu moindre que celle estimée en raison du man ue de résistance locale au-cisaillement, et on introduit un facteur empirique de compressibilité par lequel la résistance au cisaillement est ré;duite. On trouve que le frottement superficiel dépend beaucoup sur la méthode d'installation des fondations. La capacité de portage observée pour les fondations peu profondes dans le sable concorde raisonnablement avec la théorie; pour les fondations profondes, cependant, la résistance de base réelle est bien moindre que celle estimée en raison du manque de résistance locale au cisaillement et un facteur empirique de compressibilité est introduit comme ci-dessus. Comme le coefficient de pression de la terre sur la souche ne peut à l'heure actuelle étre déluit que d'aprés le frottement superficiel des essais de pénétration. il est souvent lus commode d'estimer la capacité de portage des fondations profondes en terrain sans cohésion d'aprés une extrapolation des résultats des essais de pé;né;tration au cône.
Fundamental conceptionsAssumptions involved in the theories of consolidationDifferential equation of the process of consolidation of horizontal beds of ideal clayThermodynamic analogue to the process of consolidationExcess hydrostatic pressures during consolidationSettlement due to consolidationApproximate methods of solving consolidation problemsConsolidation during and after gradual load applicationEffect of gas content of the clay on the rate of consolidationTwo- and three-dimensional processes of consolidation
The development of an android app for geotechnical engineers
  • M U Umer