ArticlePDF Available

Effect of Copper on some serum Biochemical variables in male Albino Rats

Authors:
 
ISSN: 1991-8941
ناذرﺟﻟا روﻛذ لﺻﻣ ﻲﻓ ﺔﯾﺋﺎﯾﻣﯾﻛوﯾﺎﺑﻟا تارﯾﻐﺗﻣﻟا ضﻌﺑ ىوﺗﺳﻣ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄﺗ
قازرﻟادﺑﻋ ﻪﻟﻵادﺑﻋ يدﺎﻧﻫ
رﺎﺑﻧﻷا ﺔﻌﻣﺎﺟ- ﺔﻓرﺻﻟا موﻠﻌﻠﻟ ﺔﯾﺑرﺗﻟا ﺔﯾﻠﻛ
:مﻼﺗﺳﻻا ﺦﯾرﺎﺗ١٤/٨/٢٠١٠ :لوﺑﻘﻟا ﺦﯾرﺎﺗ٩/٢/٢٠١١
: ﺔﺻﻼﺧﻟا
سﺎﺣﻧﻟا رﯾﺛﺎﺗ رﺎﺑﺗﺧأ ما ضﻌﺑ ﻰﻠﻋﺻﻣﻟ ﺔﯾﺋﺎﯾﻣﯾﻛوﯾﺎﺑﻟا سﯾﯾﺎﻘﻣﻟناذرﺟﻟا ل لﺛﻣ ﺔﯾﺳﯾﺋرﻟا تﺎﻣﯾزﻧﻷا ضﻌﺑ تﻠﻣﺷ ﻲﺗﻟاو مﯾزﻧأ
يدﻋﺎﻘﻟا زﯾﺗﺎﻔﺳوﻔﻟا(ALP) و مﯾزﻧأ ﻲﺿﻣﺎﺣﻟا زﯾﺗﺎﻔﺳوﻔﻟا(ACP) و مﯾزﻧأزﯾرﯾﻔﺳﻧارﺗوﻧﯾﻣأ تﯾﺗرﺎﺑﺳأ(AST) و مﯾزﻧأ نﯾﻧﻻأ
زﯾرﯾﻔﺳﻧارﺗوﻧﯾﻣأ(ALT) زﯾﻧﯾﺟوردﯾﻫ يد تﯾﺗﻛﻻ مﯾزﻧأو(LDH) وأ مﯾزﻧ زوﻛوﻠﻛ6 زﯾﻧﯾﺟوردﯾﻫ يد تﯾﻔﺳوﻓ(G6PDH) ،
ﺎﯾﻗ ﻰﻟإ ﺔﻓﺎﺿﻷﺎﺑلﻣاوﻌﻟا ﻩذﻫ رﯾدﻘﺗ مﺗ . ﺔﯾﻠﻛﻟا نﯾﺗورﺑﻟا ﺔﯾﻣﻛ سﺎﺑﻟاناذرﺟﻟا روﻛذ ﺔﻋوﻣﺟﻣ نﻣ لﻛﻟ ﺔﯾﺋﺎﯾﻣﯾﻛوﯾ ﺔﺟﻟﺎﻌﻣﻟاو ﺔطﺑﺎﺿﻟا
ﺞﺋﺎﺗﻧﻟا ترﻬظأوﺎﻣﯾزﻧﻷا لﻛﻟ ﻲﻣﯾزﻧﻷا طﺎﺷﻧﻟا ﻲﻓو ﺔﯾﻠﻛﻟا نﯾﺗورﺑﻟا ﺔﯾﻣﻛ ﻲﻓ ﺔﯾوﻧﻌﻣ تارﯾﻐﺗ ثﯾﺣ ، ﺔطﺑﺎﺿﻟا ﺔﻋوﻣﺟﻣﻟﺎﺑ ً
ﺔﻧرﺎﻘت
بﺋاذﻟا نﯾﺗورﺑﻟا ﺔﯾﻣﻛ ﻲﻓ ًﺎﯾوﻧﻌﻣ ً
ﺎﺿﺎﻔﺧﻧأ ظﺣوﻟ(P<0.05) دادزأ سﺎﺣﻧﻟا زﯾﻛرﺗ دادزأ ﺎﻣﻠﻛ ثﯾﺣ ، ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣ
ًﺎﯾوﻧﻌﻣ ً
ﺎﺿﺎﻔﺧﻧأ ً
ﺎﺿﯾأ ظﺣوﻟو . ﺔﯾﻠﻛﻟا نﯾﺗورﺑﻟا ﺔﯾﻣﻛ ضﺎﻔﺧﻧأ(P<0.05) يدﻋﺎﻘﻟا زﯾﺗﺎﻔﺳوﻔﻟا مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻲﻓ(ALP) ﻊﯾﻣﺟ ﻲﻓو
. ةرطﯾﺳﻟا ﺔﻋوﻣﺟﺑ ً
ﺔﻧرﺎﻘﻣ ناذرﺟﻟا روﻛذ ﺎﻬﺑ ﺔﻠﻣﺎﻌﻣﻟا زﯾﻛارﺗﻟا ﻲﺿﻣﺎﺣﻟا زﯾﺗﺎﻔﺳوﻔﻟا مﯾزﻧأ ﺎﻣأو(ACP) ًﺎﻋﺎﻔﺗرأ سﺎﺣﻧﻟا بﺑﺳ دﻘﻓ
ً
ﺎﯾوﻧﻌﻣ(P<0.05) ﺔﻠﻗﺎﻧﻟا تﺎﻣﯾزﻧﻷا ﻲﻓو . ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣ ﺔﻔﻠﺗﺧﻣﻟا سﺎﺣﻧﻟا زﯾﻛارﺗ ﻊﯾﻣﺟ ﻲﻓو مﯾزﻧﻷا اذﻫ ﺔﯾﻟﺎﻌﻲﻓ
نﯾﻣﻸﻟرﺎﺑﺳأ زﯾرﯾﻔﺳﻧارﺗوﻧﯾﻣأ ت(AST) زﯾرﯾﻔﺳﻧارﺗوﻧﯾﻣأ نﯾﻧﻻأو(ALT) ً
ﺎﯾوﻧﻌﻣ ًﺎﻋﺎﻔﺗرأ ظﺣوﻟ ثﯾﺣ ،(P<0.05) ﺔﯾﻟﺎﻌﻓ ﻲﻓ
مﯾزﻧأ(AST) ً
ﺎﯾوﻧﻌﻣ ً
ﺎﺿﺎﻔﺧﻧأ ظﺣوﻟ نﯾﺣ ﻲﻓ ةرطﯾﺳﻟا ﺔﻋوﻣﺟﺑ ً
ﺔﻧرﺎﻘﻣ(P<0.05) مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ىوﺗﺳﻣﺑ(ALT) ﺔﻋوﻣﺟﺑ ً
ﺔﻧرﺎﻘ
. ةرطﯾﺳﻟادﯾﻫ يد تﯾﺗﻛمﯾزﻧأ ﻲﻓو زﯾﻧﯾﺟور(LDH) ً
ﺎﯾوﻧﻌﻣ ً
ﺎﺿﺎﻔﺧﻧأ ظﺣوﻟ دﻘﻓ(P<0.05) ﺔﻋوﻣﺟﻣً
ﺔﻧرﺎﻘﻣ مﯾزﻧﻷا ﺔﯾﻟﺎﻌﻔﺑ
زوﻛوﻠﻛ مﯾزﻧأ ﻲﻓو . سﺎﺣﻧﻟا رﺻﻧﻌﻟ ﺔﺛﻼﺛﻟا تﻼﻣﺎﻌﻣﻟا ﺟﯾﺗﻧ ةرطﯾﺳﻟا6 زﯾﻧﯾﺟوردﯾﻫ يد تﯾﻔﺳوﻓ(G6PDH) ظﺣوﻟ دﻘﻓ
ً
ﺎﯾوﻧﻌﻣ ًﺎﻋﺎﻔﺗرأ(P<0.05)ﻟا زﯾﻛارﺗﻟ ضرﻌﺗﻟا ﺔﺟﯾﺗﻧ مﯾزﻧﻷا ﺔﯾﻟﺎﻌﻓ ﻲ. ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣ ﺔﻔﻠﺗﺧﻣﻟا سﺎﺣﻧ
ﮫﯿﺣﺎﺘﻔﻣ تﺎﻤﻠﻛ: سﺎﺤﻨﻟا ، تﺎﻤﯾﺰﻧا ، تﺎﻨﯿﺗوﺮﺑ ،ﻞﺼﻣ،ناذﺮﺠﻟا رﻮﻛذ
: ﺔﻣدﻘﻣﻟا
رﺛﻛﻷاو رﺑﻛﻷا ءزﺟﻟا ﺔﻠﯾﻘﺛﻟا ندﺎﻌﻣﻟا لﻛﺷﺗ
ثوﻠﺗ دﻌﯾو ، ﺔﯾﺋﯾﺑﻟا ﺔﻣوظﻧﻣﻟﺎﺑ لﺧﺗ ﻲﺗﻟا تﺎﺛوﻠﻣﻟا نﻣ ً
ارﺎﺷﺗﻧأ
ﻬﺗ ﺔﻠﯾﻘﺛﻟا ندﺎﻌﻣﻟﺎﺑ ﺔﺋﯾﺑﻟانﺎﺳﻧﻷا ﺔﺣﺻﻟ ً
ارﯾﺑﻛ ً
ادﯾد ناوﯾﺣﻟاو
ً
ﺎﻌﻣ تﺎﺑﻧﻟاو(1) نﻣ ﺎﻫرﯾﻏ نﻋ ﺔﻔﻠﺗﺧﻣ ﺔﻠﯾﻘﺛﻟا ندﺎﻌﻣﻟاو .
ﺎﯾﻼﺧ ﻲﻓ ﺔﯾﻣﻛارﺗﻟا ﺔﻔﺻﻟا ﻪﻟ ﺎﻬﺑﻠﻏأ نأ ﻲﻓ ﺔﺋﯾﺑﻟا تﺎﺛوﻠﻣ
ﻲﻓ ﻲﺳﯾﺋرﻟا بﺑﺳﻟا وﻫ اذﻫو ﺔﻔﻠﺗﺧﻣﻟا ﺎﻬﻋاوﻧﺄﺑ ﺔﯾﺣﻟا تﺎﻧﺋﺎﻛﻟا
ﺎﻫوﻣﻧ ﻰﻠﻋ ﺎﻫرﯾﺛﺄﺗ كﻟذﻛو ﺎﻬﺗروطﺧ(2).
ﻌﯾـﺣﻧﻟا دنﻣ سﺎ ةردﺎﻧﻟا رﺻﺎﻧﻌﻟاTrace elements
ﻟوأ نﻣ وﻫو و ﺔﻔﺷﺗﻛﻣﻟا ندﺎﻌﻣﻟا ﺔﻟوﻬﺳﻟ ً
ادﺟ فوﻟﺄﻣ رﺻﻧﻋ
ﻪﻧﯾدﻌﺗ(3). و تﺎﻧﯾﺗورﺑﻟا نﻣ دﯾدﻌﻟا بﯾﻛرﺗ ﻲﻓ سﺎﺣﻧﻟا لﺧدﯾ
و ﺔﯾﻔﯾظوﻟاو ﺔﯾﺑﯾﻛرﺗﻟا تارﻣﯾﻟوﺑ نﻋ ةرﺎﺑﻋ ﻲﻫ تﺎﻧﯾﺗورﺑﻟا
(Polymers)ﺔﯾﻧﯾﻣﻷا ضﺎﻣﺣﻷا نﻣ فﻟﺄﺗﺗ ةرﯾﺑﻛ ﺔﯾﺋﯾزﺟ-L -α ، ﺔﯾدﯾﺗﺑﯾﺑﻟا رﺻاوﻷا رﺑﻋ ﺎﻬﺿﻌﺑ ﻊﻣ ﺔطﺑﺗرﻣﻟا
نﻣ رﺛﻛأ ﻰﻠﻋ ﻲﻧﯾﺗورﺑ ءيزﺟ رﻐﺻأ يوﺗﺣﯾو40 نﻣ ةدﺣو
ﺔﯾﻧﯾﻣﻷا ضﺎﻣﺣﻷا ﻩذﻫ(4) و ،سﺎﺣﻧﻟا نﻣ رﯾﺑﻛ ددﻌﻟ مﻬﻣ
مﯾزﻧﺄﻛ تﺎﻣﯾزﻧﻷاDiamine oxidase و
Cytochrome C oxidase وSuperoxide
dismutase وTyrosinaseﻪﻧﺄﻓ كﻟذﺑوﻫﺎﺳﯾ ﻲﻓ م
تﺎﯾﻠﻣﻌﻟاﻠﻟ ﺔﻣﻬﻣﻟا ﺔﯾﺿﯾﻷا ﺔﻗﺎطﻟا رﯾرﺣﺗ ﺎﻬﻣﻫأو مﺳﺟ
تﺎﯾﻣﻛﺑ ﻩدﺟاوﺗ نﺄﻓ كﻟذﻟ ، لازﺗﺧﻷاو ةدﺳﻛﻷا تﻼﻋﺎﻔﺗو
مﺳﺟﻟا ﺔﻋﺎﻧﻣﻟ يرورﺿ رﺑﺗﻌﯾ ﺔﺑﺳﺎﻧﻣ(3). ردﻘﺗو
ﻎﻠﺑﺗ ﺔﻧﺳﻟا نودﺎﻣ لﺎﻔطﻸﻟ سﺎﺣﻧﻟا نﻣ ﺔﯾﻣوﯾﻟا تﺎﺟﺎﯾﺗﺣﻷا
ﻲﻟاوﺣ200 نﺳ نودﺎﻣ لﺎﻔطﻸﻟو ً
ﺎﯾﻣوﯾ مارﻏورﻛﯾﻣ13 ﺔﻧﺳ
ﯾﺑﺎﻣ ن400 و700 ﻲﻟاوﺣ نﯾﻐﻟﺎﺑﻠﻟو ً
ﺎﯾﻣوﯾ مارﻏورﻛﯾﻣ900
إ تﺎﻌﺿرﻣﻟاو لﻣاوﺣﻟا جﺎﺗﺣﺗو ً
ﺎﯾﻣوﯾ مارﻏورﻛﯾﻣ تﺎﯾﻣﻛ ﻰﻟ
ﻪﻧﻣ ً
ﻼﯾﻠﻗ ﻰﻠﻋأ(5).
 
وﻲﻓ مﻬﻣ رود سﺎﺣﻧﻠﻟ ، ﺔﯾوﯾﺣﻟا ﺔﻣظﻧﻷاإ ﻻأ دﺎﯾدزأ ن
ﺔﺟﺎﺣﻟا دودﺣ نﻋ سﺎﺣﻧﻟا ﺎﻬﻧﻣو (ﺔﯾﺳﺎﺳﻷا) ندﺎﻌﻣﻟا زﯾﻛارﺗ
يدؤﯾ ﺎﻬﺿﺎﻔﺧﻧأ وأ ﺎﻬﯾﻟألﺻﺗ دﻗ ﺔﯾﺟﻠﺳﻓ تﺎﺑارطﺿأ ﻰﻟإ ﻰﻟإ
ﻲﺣﻟا نﺋﺎﻛﻟا توﻣ دﺣ(6). و نﻣ ةرﯾﺑﻛ تﺎﯾﻣﻛﻟ ضرﻌﺗﻟا نأ
ﻧأ ﻲﻓ ﻪﻣﻛارﺗ ﻰﻟإ يدؤﯾ ةرﻣﺗﺳﻣ ةروﺻﺑو سﺎﺣﻧﻟا مﺳﺟﻟا ﺔﺟﺳ
ﺔﻣﺎﺳ تارﯾﺛﺄﺗ روﻬظ ﻲﻟﺎﺗﻟﺎﺑو ظﺣوﻟ دﻗو مﺳﺟﻟا ةزﻬﺟأ ﻰﻠﻋ
، برﺎﺟﺗﻟا تﺎﻧاوﯾﺣ ﻲﻓ كﻟذ تﺎﻋرﺟﻟ ﺔﺿرﻌﻣﻟا ناذرﺟﻟا ﻲﻔ
ﻟ سﺎﺣﻧﻟا نﻣ ﺔﯾﻟﺎﻋ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ رﯾﺛﺄﺗ سﺎﺣﻧﻠﻟ نأ ﺎﻬﯾﻓ ظﺣو
ﻲﻣﯾزﻧأ ﺎﻬﻧﻣو تﺎﻣﯾزﻧﻷا نﻣ ددﻋGOT وGPT ثﯾﺣ ،
سﺎﺣﻧﻠﻟ ضرﻌﺗﻟا دﻧﻋ نﯾﻣﯾزﻧﻷا نﯾذﻫ ﺔﯾﻟﺎﻌﻓ تدادزأ(7).
ثدﺣﺗ ﻲﺗﻟا تارﯾﻐﺗﻟا ﺔﻓرﻌﻣ ﻰﻟإ ﺔﯾﻟﺎﺣﻟا ﺔﺳاردﻟا فدﻬﺗ
ﯾﺗورﺑﻟا ﺔﯾﻟﺎﻌﻓ ﻲﻓناذرﺟﻟا روﻛذ ﻲﻓ تﺎﻣﯾزﻧﻷا نﻣ ددﻋو تﺎﻧ
ﺎﻬﺿرﻌﺗ دﻧﻋ. سﺎﺣﻧﻟا نﻣ ﺔﯾﻟﺎﻋ تﺎﻋرﺟﻟ
: لﻣﻌﻟا قﺋارطو داوﻣﻟا
ـ مادﺧـﺗﺳأ م24ـﺟﻟا روﻛذ نـضﯾـﺑﻟا ناذرAlbino male ratsﻣﻌﺑـ ر100 حوارﺗﯾ نزوـﺑو موـﯾ(280 – 220)ـﻓ تﻌﺿوو مـﻗأ ﻲـﺧ صﺎﻔـﺟﻟﺎﺑ ﺔﺻﺎـ ناذر ﺔـﺟردـﺑو
) ةرارﺣ2324مº() ﺔﯾﻌﯾﺑط ﺔﯾﺋوﺿ ةرودﺑو10 تﺎﻋﺎﺳ
ءوﺿو14ﻣﻛ تﺎﻧاوﯾﺣﻟا تﯾطﻋأو (مﻼظ ﺔﻋﺎ ﺔﯾﻓﺎﻛ تﺎﯾ نﻣ
رﻣﺗﺳﻣ وـﺣﻧ ﻰﻠﻋ ءﺎﻣﻟاو ءاذـﻐﻟاad libitum. تﻣﺳﻗ
ﻊﯾﻣﺎﺟﻣ ﻊﺑرأ ﻰﻟأ تﺎﻧاوﯾﺣﻟا)6(ﺔﻋوﻣﺟﻣ لﻛﻟ تﺎﻧاوﯾﺣ
رطﻘﻣﻟا ءﺎﻣﻟا (ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣ) ﻰﻟوﻷا ﺔﻋوﻣﺟﻣﻟا تﯾطﻋأ
ﺔﻋرﺟﺑ(5)ﯾﻠﻣﻟاو ، رﺗﻠـﺛﻟا ﺔﻋوﻣﺟﻣـﻘﻓ ﺔﯾﻧﺎـﺣﻧﻟا تﯾطﻋأ دـ سﺎ
ﺔﻋرﺟﺑ(25) مﻐﻠﻣ/ مﻐﻛ ءﺎﻣ قﯾرط نﻋ مﺳﺟﻟا نزو نﻣ
ﻰﻟإ ﺔﻋرﺟﻟا تﻠﻣﻛأو برﺷﻟا(5)رﺗﻠﯾﻠﻣ رطﻘﻣﻟا ءﺎﻣﻟا نﻣ
ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣ ﻊﻣ مﺟﺣﻟا دﯾﺣوﺗﻟ(8) ، تﯾطﻋأ ﺎﻣﻧﯾﺑ
ﺔﻋرﺟﺑ سﺎﺣﻧﻟا ﺔﺛﻟﺎﺛﻟا ﺔﻋوﻣﺟﻣﻟا(50) مﻐﻠﻣ/ نزو نﻣ مﻐﻛ
ﻰﻟإ ً
ﺎﺿﯾأ ﺔﻋرﺟﻟا تﻠﻣﻛأو برﺷﻟا ءﺎﻣ قﯾرط نﻋ مﺳﺟﻟا(5)
نﻣ رﺗﻠﯾﻠﻣﺎﻣﻟارطﻘﻣﻟا ء(8) ، دﻘﻓ ﺔﻌﺑارﻟا ﺔﻋوﻣﺟﻣﻟا ﺎﻣأ
ﺔﻋرﺟﺑ سﺎﺣﻧﻟا تﯾطﻋأ(100) مﻐﻠﻣ/ مﺳﺟﻟا نزو نﻣ مﻐﻛ
ﻰﻟإ ﺔﻋرﺟﻟا تﻠﻣﻛأو برﺷﻟا ءﺎﻣ قﯾرط نﻋ(5) نﻣ رﺗﻠﯾﻠﻣ
رطﻘﻣﻟا ءﺎﻣﻟا(8). مادﺧﺗﺳﺄﺑ مﻔﻟا قﯾرط نﻋ ﺔﻠﻣﺎﻌﻣﻟا تﻣﺗو
ﺔﯾﺑوﺑﻧﻷا ﺔﯾذﻐﺗﻟاGavage needle ةدﻣﻟو30 ً
ﺎﻣوﯾ دﻌﺑو
ءﺎﻬﺗﻧأ ﺔﯾواز نﻣ ناذرﺟﻟا نﻣ مدﻟا تﺎﻧﯾﻋ ﻊﻣﺟ مﺗ ﺔﻠﻣﺎﻌﻣﻟا ةرﺗﻓ
ﺔﯾرﻌﺷﻟا ﺔﺑوﺑﻧﻷا ﺔطﺳاوﺑ نﯾﻌﻟاCapillary tube دﻌﺑ
نﯾﻌﻟا رﺟﺣﻣ بﯾﺟ ﻲﻓ ﺎﻬﺳرﻏ(9) ، زﺎﻬﺟ مادﺧﺗﺳأ مﺗو
) يزﻛرﻣﻟا درطﻟا(Centrifugeلﺻﻣ لﺻﻔﻟ ﺔﻋرﺳﺑ مدﻟا
3000 ةرود/ ةدﻣﻟو ﺔﻘﯾﻗد10 ﻊﺿوﯾ ﺎﻫدﻌﺑو قﺋﺎﻗد
صﻠﺧﺗﺳﻣﻟاﺎﻧأ ﻲﻓ ﻲﻓ ظﻔﺣﯾو بﯾﺑ20 -م ضرﻐﻟ رﯾدﻘﺗ
لﺻﻣ ﻲﻓ ﺔﯾﻟﺎﺗﻟا تﺎﺳﺎﯾﻘﻟا: مدﻟا-
: نﯾﺗورﺑﻠﻟ ﻲﻠﻛﻟا ىوﺗﺣﻣﻟا رﯾدﻘﺗ-
قﯾرط نﻋ لﺻﻣﻟا ﻲﻓ ﻲﻠﻛﻟا نﯾﺗورﺑﻟا ىوﺗﺣﻣ رﯾدﻘﺗ مﺗ
ﻲﺋوﺿﻟا فﺎﯾطﻣﻟا زﺎﻬﺟSpectrophotometer
ﺔﻛرﺷ جﺎﺗﻧأ نﻣ ةزﻫﺎﺟﻟا فﺷاوﻛﻟا مادﺧﺗﺳﺄﺑوLINEAR - Spainﺑ ﺔﻘﯾرطﻟ ً
ﺎﻌﺑﺗ تﯾروﯾﺎmethod)(Biuret تأرﻗو
ﻲﺟوﻣ لوط ﻰﻠﻋ ﺔﯾﺻﺎﺻﺗﻣﻷا540 رﺗﯾﻣوﻧﺎﻧ(10).
: تﺎﻣﯾزﻧﻷا ىوﺗﺳﻣ رﯾدﻘﺗ-
دﻘﺗ مﺗلﺻﻣ ﻲﻓ تﺎﻣﯾزﻧﻷا ضﻌﺑ ىوﺗﺳﻣ رﯾ رﺑﻋ مدﻟا
ﻲﺋوﺿﻟا فﺎﯾطﻣﻟا زﺎﻬﺟSpectrophotometer
: ﻲﻫ تﺎﻣﯾزﻧﻷاو ، ةزﻫﺎﺟﻟا فﺷاوﻛﻟا مادﺧﺗﺳﺄﺑ-،
Alkaline phosphatase (ALP) ﺔﻛرﺷ نﻣFrance BIOLABO - ﻲﺟوﻣ لوط ﻰﻠﻋ ﺔﯾﺻﺎﺻﺗﻣﻷا تأرﻗو
510 رﺗﯾﻣوﻧﺎﻧ.،Acid phosphatase (ACP)نﻣ
ﺔﻛرﺷLINEAR – Spain لوط ﻰﻠﻋ ﺔﯾﺻﺎﺻﺗﻣﻷا تأرﻗو
ﻲﺟوﻣ405. رﺗﯾﻣوﻧﺎﻧLactate Dehydrogenase (LDH)نﻣ ﺔﻛرﺷSpainLINEAR - تأرﻗو
ﻲﺟوﻣ لوط ﻰﻠﻋ ﺔﯾﺻﺎﺻﺗﻣﻷا340ﻧﺎﻧ. رﺗﯾﻣو(AST) Aspartate Aminotransferaseنﻣ ﺔﻛرﺷ
BIOMERIEUX - France ﻰﻠﻋ ﺔﯾﺻﺎﺻﺗﻣﻷا تأرﻗو
ﻲﺟوﻣ لوط505. رﺗﯾﻣوﻧﺎﻧAlanine Aminotransferase (ALT)نﻣ ﺔﻛرﺷ
BIOMERIEUX – France ﻰﻠﻋ ﺔﯾﺻﺎﺻﺗﻣﻷا تأرﻗو
ﻲﺟوﻣ لوط505. رﺗﯾﻣوﻧﺎﻧGlucose – 6 –
Phosphate – Dehydrogenase (G6PDH)نﻣ
ﺔﻛرﺷBIOLABO – France وﻠﻋ ﺔﯾﺻﺎﺻﺗﻣﻷا تأرﻗ
ﻲﺟوﻣ لوط340. رﺗﯾﻣوﻧﺎﻧ نﻋ ﺔﯾﺋﺎﺻﺣﻷا لﯾﻟﺎﺣﺗﻟا تﯾرﺟأ
نﯾﺎﺑﺗﻟا لﯾﻠﺣﺗ قﯾرطAnalysis of Variance ترﺑﺗﺧأو
ﺔﻔﻠﺗﺧﻣﻟا سﺎﺣﻧﻟا زﯾﻛارﺗ ﺔﯾوﻧﻌﻣـ لﺎﻣﺗﺣأ ىوﺗﺳﻣ دﻧP < (0.05)(11).
: ﺞﺋﺎﺗﻧﻟا
سﺎﺣﻧﻟا رﯾﺛﺄﺗ ﻰﻠﻋ ﺔﯾﻣﻛاتﺎﻧﯾﺗورﺑﻟﺔﯾﻠﻛﻟا:
ورﺑﻟا ىوﺗﺣﻣ ردﻗلوﺻﻣ ﻲﻓ بﺋاذﻟا ﻲﻠﻛﻟا نﯾﺗروﻛذ
ناذرﺟﻟا) دﻌﺑ30ضﯾرﻌﺗﻟا نﻣ ً
ﺎﻣوﯾ ( زﯾﻛارﺗ نأ ظﺣوﻟ دﻗو
ﺣﻧﻟاناذرﺟﻟا ﺎﻬﺑ ﺔﻠﻣﺎﻌﻣﻟا ﺔﻔﻠﺗﺧﻣﻟا سﺎ يوﻧﻌﻣ ضﺎﻔﺧﻧأ تﺑﺑﺳ
لﺎﻣﺗﺣأ ىوﺗﺳﻣ دﻧﻋP<0.05نﯾﺎﺑﺗﻟا لﯾﻠﺣﺗ ﻲﻓ ً
ﺔﻧرﺎﻘﻣ
ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑﻣﻛ ضﻔﺧﻧﺗ ثﯾﺣ ، ﺎﻣﻠﻛ ﻲﻠﻛﻟا نﯾﺗورﺑﻟا ﺔﯾ
ﺔﯾﻠﻛﻟا تﺎﻧﯾﺗورﺑﻟا ﺔﯾﻣﻛ طﺳوﺗﻣ ﻎﻠﺑ ذأ ، سﺎﺣﻧﻟا زﯾﻛرﺗ دادزأ
ةرطﯾﺳﻟا تﺎﻧاوﯾﺣ ىدﻟ26.53مﻏ/100 تﺎﻧاوﯾﺣﻟاو رﺗﻠﻠﻣ
زﯾﻛارﺗﺑ ﺔﻠﻣﺎﻌﻣﻟاسﺎﺣﻧﻟا25 و50 و100مﻐﻠﻣ/ نﻣ مﻐﻛ
مﺳﺟﻟا نزو ﺎﻬﯾﻓ ﺔﯾﻠﻛﻟا تﺎﻧﯾﺗورﺑﻟا ﺔﯾﻣﻛ طﺳوﺗﻣ نﺎﻛ24.28
و22.48 و21.28مﻏ/100 ﻲﻓ ﺎﻣﻛ ﻲﻟاوﺗﻟا ﻰﻠﻋ رﺗﻠﻠﻣ
مﻗر لودﺟ(1).
 
) مﻗر لودﺟ1 ﺔﯾﻠﻛﻟا نﯾﺗورﺑﻟا ﺔﯾﻣﻛ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄﺗ (
TOTAL PROTEIN (G/100ML)
Mean±SDConcentration of Cu
+2
(mg/kg) 26.53±2.14Control 24.28±1.5625 22.48±1.8050 21.28±1.14100
سﺎﺣﻧﻟا رﯾﺛﺄﺗ مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋALP:
ﺞﺋﺎﺗﻧﻟا ترﻬظأ مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ رﯾﺛﺄﺗ ﻪﻟ ﺔﻔﻠﺗﺧﻣ زﯾﻛارﺗﺑو سﺎﺣﻧﻠﻟ ضرﻌﺗﻟا نأALP دﻧﻋ يوﻧﻌﻣ ضﺎﻔﺧﻧأ سﺎﺣﻧﻟا بﺑﺳ ثﯾﺣ ،
لﺎﻣﺗﺣأ ىوﺗﺳﻣP<0.05) دﻌﺑ30 ضﯾرﻌﺗﻟا نﻣ ً
ﺎﻣوﯾ (ﻣﺟ ﻲﻓوناذرﺟﻟا روﻛذ ﺎﻬﺑ ﺔﻠﻣﺎﻌﻣﻟا زﯾﻛارﺗﻟا ﻊﯾةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣ ،
ﺔﯾﻟﺎﻌﻓ طﺳوﺗﻣ ﻎﻠﺑ ثﯾﺣﯾﺳﻟا تﺎﻧاوﯾﺣ ﻲﻓ مﯾزﻧﻷا ةرط7.052 K.A.U/100ml ﻰﻟوﻷا ﺔﻠﻣﺎﻌﻣﻟاو6.943 K.A.U/100ml ﺔﻠﻣﺎﻌﻣﻟاو
ﺔﯾﻧﺎﺛﻟا6.478 K.A.U/100ml ﺔﺛﻟﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟاو5.795 K.A.U/100ml ﻲﻓ ﺎﻣﻛلودﺟمﻗر(2).
) مﻗر لودﺟ2 مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄﺗ (ALP
ALP (K.A.U/dl)Enzymes Mean±SDConcentration of Cu+2 (mg/kg) 7.052±0.284Control 6.943±0.21925 6.478±0.28650 5.795±0.273100
مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄACP:
ﻔﻠﺗﺧﻣﻟا سﺎﺣﻧﻟا زﯾﻛارﺗﻟ نأ ﺞﺋﺎﺗﻧﻟا تﻧﯾﺑ مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ رﯾﺛﺄﺗ ACP ﺔﯾﻟﺎﻣﺗﺣأ ىوﺗﺳﻣ دﻧﻋ يوﻧﻌﻣ عﺎﻔﺗرأ ظﺣوﻟ ثﯾﺣ ،
P<0.05دﻌﺑ مﯾزﻧﻷا ﺔﯾﻟﺎﻌﻔﻟ)30
ً
ﺎﻣوﯾ (ﺔﻔﻠﺗﺧﻣﻟا سﺎﺣﻧﻟا زﯾﻛارﺗﻟ ضﯾرﻌﺗﻟا نﻣةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣﺑ ذأ ،ـ مﯾزﻧﻷا ﺔﯾﻟﺎﻌﻓ طﺳوﺗﻣ ﻎﻠ
ـ ةرطﯾﺳﻟا تﺎﻧاوﯾﺣ ىد4.262ةدﺣو/ ﻰﻟوﻷا ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻟ5.182ةدﺣو/ ﺔﯾﻧﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻟ5.824ةدﺣو/ ﻲﻓو رﺗﻟ
ﺔﺛﻟﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟا6.308ةدﺣو/ ﻲﻓ ﺎﻣﻛ رﺗﻟلودﺟمﻗر(3).
) مﻗر لودﺟ3 مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄﺗ (ACP
ACP (U/L)Enzymes Mean±SDConcentration of Cu
+2
(mg/kg) 4.262±0.194Control 5.182±0.19625 5.824±0.23350 6.308±0.195100
سﺎﺣﻧﻟا رﯾﺛﺄﺗ مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋAST:
ﺧﻣ زﯾﻛارﺗﺑ سﺎﺣﻧﻟا رﺻﻧﻋ رﯾﺛﺄﺗ ﺔﺳاردﻟناذرﺟﻠﻟ ﺔﯾﻔﯾظوﻟا بﻧاوﺟﻟا ﻲﻓ ﺔﻔﻠﺗ مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ رﯾدﻘﺗ مﺗAST ﺞﺋﺎﺗﻧ ترﻬظأ ثﯾﺣ ،
لﺎﻣﺗﺣأ ىوﺗﺳﻣ دﻧﻋ ً
ﺎﯾوﻧﻌﻣ ً
ﺎﻋﺎﻔﺗرأ كﺎﻧﻫ نﺎﺑ ﺔﺳاردﻟاP<0.05) دﻌ30 ضﯾرﻌﺗﻟا نﻣ ً
ﺎﻣوﯾ ( ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣ ﻎﻠﺑ ثﯾﺣ ،
مﯾزﻧﻷا ﺔﯾﻟﺎﻌﻓ طﺳوﺗﻣ ةرطﯾﺳﻟا تﺎﻧاوﯾﺣ 3.902ةدﺣو/ ﻟوﻷا ﺔﻠﻣﺎﻌﻣﻟا ﻓو رﺗﻠﻠﻣ4.728ةدﺣو/ ﺔﯾﻧﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻠﻠﻣ
5.135ةدﺣو/ ﺔﺛﻟﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻠﻠﻣ6.143ةدﺣو/ﻲﻓ ﺎﻣﻛ رﺗﻠﻠﻣ لودﺟ مﻗر(4).
) مﻗر لودﺟ4 مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄﺗ (AST
AST (U/ml)Enzymes Mean±SDConcentration of Cu
+2
(mg/kg)
 
3.902±0.166Control 4.728±0.17125 5.135±0.29950 6.143±0.294100
مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄﺗALT:
ﺣﻧﻟا رﺻﻧﻋ رﯾﺛﺄﺗ سردأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ ﺔﻔﻠﺗﺧﻣ زﯾﻛارﺗﺑ سﺎمﯾزﻧALTﻧأ ﺔﺳاردﻟا ﺞﺋﺎﺗﻧ تﻧﯾﺑ دﻗوﺔﯾﻟﺎﻌﻓ ىوﺗﺳﻣﺑ ً
ﺎﯾوﻧﻌﻣ ً
ﺎﺿﺎﻔﺧﻹا مﯾزﻧ
ﺗﺣأ ىوﺗﺳﻣ دﻧﻋـ لﺎﻣP<0.05) دﻌﺑ30 ضﯾرﻌﺗﻟا نﻣ ً
ﺎﻣوﯾ ( ، ةرطﯾﺳﻟا جذﺎﻣﻧﺑ ً
ﺔﻧرﺎﻘﻣمﯾزﻧﻹا ﺔﯾﻟﺎﻌﻓ طﺳوﺗﻣ ﻎﻠﺑ ذإ تﺎﻧاوﯾﺣ ىدﻟ
ةرطﯾﺳﻟا5.730ةدﺣو/ﻟوﻷا ﺔﻠﻣﺎﻌﻣﻟا دﻧﻋو رﺗﻠﻠﻣ4.687ةدﺣو/ ﺔﯾﻧﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻠﻠﻣ4.262ةدﺣو/ ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻠﻠﻣ
ﺔﺛﻟﺎﺛﻟا3.550ةدﺣو/ مﻗر لودﺟ ﻲﻓ ﺎﻣﻛ رﺗﻠﻠﻣ(5).
) مﻗر لودﺟ5 مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛاﺄﺗ (ALT
ALT (U/ml)Enzymes Mean±SDConcentration of Cu
+2
(mg/kg) 5.730±0.171Control 4.687±0.20525 4.262±0.14650 3.550±0.122100
مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄﺗLDH:
مﯾزﻧإ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ رﯾﺛﺄﺗ سﺎﺣﻧﻟا رﺻﻧﻌﻟ نإLDH رﻌﺗ دﻧﻋناذرﺟﻟا ض لﯾﻠﺣﺗﻟا ﺞﺋﺎﺗﻧ ترﻬظأ دﻘﻓ ، ﻪﻧﻣ ﺔﻔﻠﺗﺧﻣ زﯾﻛارﺗﻟ
لﺎﻣﺗﺣأ ىوﺗﺳﻣ دﻧﻋ مﯾزﻧﻷا ﺔﯾﻟﺎﻌﻔﺑ ً
ﺎﯾوﻧﻌﻣ ً
ﺎﺿﺎﻔﺧﻧأ دوﺟو ﻲﺋﺎﺻﺣﻷاP<0.05) دﻌﺑ30 ضﯾرﻌﺗﻟا نﻣ ً
ﺎﻣوﯾ ( ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣ
ﺔﺛﻼﺛﻟا تﻼﻣﺎﻌﻣﻟا ﺔﺟﯾﺗﻧ ، رﺻﻧﻌﻟا اذﻬﻟ ةرطﯾﺳﻟا تﺎﻧاوﯾﺣ ﻲﻓ مﯾزﻧﻹا ﺔﯾﻟﺎﻌﻓ طﺳوﺗﻣ ﻎﻠﺑ ثﯾﺣ6.478ةدﺣو/ ﻰﻟوﻷا ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻟ
5.795ةدﺣو/ ﺔﯾﻧﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟاو رﺗﻟ4.728ةدﺣو/ رﺗﻟﺛﻟﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟاو3.902ةدﺣو/ مﻗر لودﺟ رﺗﻟ(6).
) مﻗر لودﺟ6 مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛاﺄﺗ (LDH
LDH (U/L)Enzymes Mean±SDConcentration of Cu
+2
(mg/kg) 6.478±0.286Control 5.795±0.27325 4.728±0.17150 3.902±0.166100
مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛﺄﺗG6PDH:
مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ رﺛؤﯾ ﺔﻔﻠﺗﺧﻣ زﯾﻛارﺗﺑ سﺎﺣﻧﻠﻟ ضرﻌﺗﻟا نإ ﺔﺳاردﻟا ﺞﺋﺎﺗـﻧ تﻧﯾﺑG6PDH رﻬظأ ذإ ، ﻲﺋﺎﺻﺣﻷا لـﯾﻠﺣﺗﻟا ﺞﺋﺎـﺗﻧ ت
لﺎﻣﺗﺣأ ىوﺗﺳﻣ دﻧﻋ ً
ﺎﯾوﻧﻌﻣ ً
ﺎـﻋﺎﻔﺗرأP<0.05) دﻌﺑ30 ضﯾرﻌﺗﻟا نﻣ ً
ﺎﻣوﯾ ( ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣ مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ طﺳوﺗﻣ نﺎﻛ ثﯾﺣ ،
G6PDH ةرطﯾﺳﻟا تﺎﻧاوﯾﺣ ﻲﻓ4.121ةدﺣو/ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻟ ﻰﻟوﻷا5.324ةدﺣو/ ﺔﯾﻧﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو رﺗﻟ6.028دﺣوة/ رﺗﻟ
ﺔﺛﻟﺎﺛﻟا ﺔﻠﻣﺎﻌﻣﻟا ﻲﻓو6.943ةدﺣو/ مﻗر لودﺟ ﻲﻓ ﺎﻣﻛ رﺗﻟ(7).
) مﻗر لودﺟ7 مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ ﻰﻠﻋ سﺎﺣﻧﻟا رﯾﺛاﺄﺗ (G6PDH
G6PDH (U/L)Enzymes Mean±SDConcentration of Cu
+2
(mg/kg) 4.121±0.158Control 5.324±0.18525 6.028±0.20750 6.943±0.219100
ﻗﺎﻧﻣﻟا: ﺔﺷ
تﺎﻧﯾﺗورﺑﻟا قﯾﻠﺧﺗ ﺔﯾﻠﻣﻋ ﻰﻠﻋ رﯾﺛﺄﺗ سﺎﺣﻧﻠﻟ نأ دﺟو
نﯾﻧوﯾﺎﺛوﻟﺎﺗﯾﻣﻟا نﯾﺗورﺑﻛMtﻟاوتﺎﻧﯾﺗور ضﻌﺑ ﻲﻓ) ﺔﯾﺳﻔﻧﺗﻟا
ﺔﯾﺣﻟا تﺎﻧﺋﺎﻛﻟا فﻠﺗﺧﻣ ﻲﻓ ىرﺧأ تﺎﻧﯾﺗورﺑو (تﺎﻧاوﯾﺣﻟا
ﻲﺣﻟا نﺋﺎﻛﻟا مﺳﺟ ﻲﻓ سﺎﺣﻧﻟا زﯾﻛرﺗ نﺄﻓ اذﻟ تﺎﻣﯾزﻧﻷﺎﻛ
ﺿﯾﻷا تﺎﯾﻠﻣﻌﻟا نﻣ دﯾدﻌﻟا رﯾﺳ ﻰﻠﻋ رﺛؤﯾ ﻪطﯾﺣﻣو ﺔﻣﻬﻣﻟا ﺔﯾ
 
رﺎﺛأ ﻰﻟإ دوﻘﺗ ﻩزﯾﻛرﺗ ﻲﻓ نﺎﺻﻘ وأ ةدﺎﯾز يأو مﺳﺟﻟا ﻲﻓ
ﻲﺣﻟا نﺋﺎﻛﻟا ﻲﻓ ﺔﯾﺑﻠﺳ(12). ً
ﺎﯾوﻧﻌﻣ ً
ﺎﺿﺎﻔﺧﻧأ ﺞﺋﺎﺗﻧﻟا تﻧﯾﺑ
زﯾﻛارﺗﺑ سﺎﺣﻧﻠﻟ ضرﻌﺗﻟا دﻧﻋ بﺋاذﻟا ﻲﻠﻛﻟا نﯾﺗورﺑﻟا زﯾﻛرﺗ ﻲﻓ
، ةرطﯾﺳﻟا ﺔﻋوﻣﺟﻣﺑ ً
ﺔﻧرﺎﻘﻣ ﺔﻔﻠﺗﺧﻣ لﻣﺗﺣﻣﻟا بﺑﺳﻟا نأ
ا ﻲﻠﻛﻟا نﯾﺗورﺑﻟا ﺔﯾﻣﻛ ضﺎﻔﺧﻧﻷ داوﻣ تﺎﻧﯾﺗورﺑﻟا نإ وﻫ بﺋاذﻟ
طﻐﺿﻟا تﺣﺗو ﺔﺟﺳﻧﻷا حﻼﺻإ ةدﺎﻋٕاو ءﺎﻧﺑﻟ ﺔﻣﻬﻣ ﺔﯾوﺿﻋ
ﺔﯾﺿﯾﻷا تﺎﯾﻠﻣﻌﻟا ﻲﻓ ﺔﻗﺎطﻟا زﻬﺟﺗﻟ تﺎﻧﯾﺗورﺑﻟا كﻠﻬﺗﺳﺗ
ﺔﯾوﯾﺣوﻣﯾﻛﻟا تﻼﻋﺎﻔﺗﻟاو(13). رﺻﺎﻧﻌﻟا لوﺻو نأ ﺎﻣ
ﻰﻟإ يدؤﺗ دﻗ ﺔﺟﺎﺣﻟا نﻋ ﺔﺿﺋﺎﻓ تﺎﯾﻣﻛﺑو ﺎﯾﻼﺧﻟا ﻰﻟإ ﺔﻠﯾﻘﺛﻟا
و (ﺔﯾوﻠﺧ) ﺔﯾﺿﯾأ تارﯾﻐﺗ تﺎﻧﯾﺗورﺑﻟا ﺔﯾﻣﻛ ﻲﻓ رﯾﻐﺗﻟا ﺎﻬﻧﻣ
ﺔﯾﻠﻛﻟا(14). ﻩﺎﯾﻣﻟا ﺔﻛﻣﺳ ﻲﻓ ضﺎﻔﺧﻧﻷا اذﻫ لﺛﻣ ظﺣوﻟ
ﺔﺑذﻌﻟاEsomus danricus سﺎﺣﻧﻟا ﻰﻟإ ﺎﻬﺿرﻌﺗ دﻧﻋ
(15). نﯾﺻرﺎﺧﻟا نإ ظﺣوﻟ كﺎﻣﺳﻷا ﻰﻠﻋ ىرﺧأ ﺔﺳارد ﻲﻓو
ﺔﻛﻣﺳﻟا ﻲﻓ ﺔﯾﻠﻛﻟا نﯾﺗورﺑﻟا ﺔﯾﻣﻛ نﻣ ضﻔﺧ
Heteroclarias sp.(16).ﻣﻛـوﻟ ﺎـ نأ ظ ضرﻌ
ﺟﻟاـﺧﯾ صﺎﺻرﻠﻟ ناذرـﻣﻛ نﻣ ضﻔـ ﺔﯾﻠﻛﻟا نﯾﺗورﺑﻟا ﺔﯾ(17).
مﻬﻣ رود ﺎﻬﻟ ﻲﺗﻟا تﺎﻣﯾزﻧﻷا نﻣ يدﻋﺎﻘﻟا زﯾﺗﺎﻔﺳوﻔﻟا مﯾزﻧأ
تﺎﻧﯾﺗورﺑﻟا قﯾﻠﺧﺗو نﯾﺟوﻛﯾﻼﻛﻟا ضﯾأو لﺎﻌﻔﻟا لﻘﻧﻟا ﻲﻓ
ﺎﯾﻼﺧﻠﻟ ﺔﯾزارﻓﻹا ﺔﯾﻟﺎﻌﻔﻟا ﻲﻓو تﺎﻣﯾزﻧﻷا ضﻌﺑو(18).
أ ﻲﻓ بﺑﺳ سﺎﺣﻧﻠﻟ نارﺋﻔﻟا ضرﻌﺗ نأ ظﺣوﻟ ﺔﯾﻟﺎﻌﻓ ضﺎﻔﺧﻧ
مﯾزﻧأALP لﻼﺣأ ﻰﻟإ دوﻌﯾ ﺎﻣﺑر ضﺎﻔﺧﻧﻷا اذﻫ بﺑﺳ نأ .
ﺔﯾﻟﺎﻌﻔﻠﻟ ﺔﻣﻬﻣﻟا تﺎﻧوﯾﻵا لﺣﻣ سﺎﺣﻧﻟا(19). نأ ﺎﻣﻛ
ﻊﻣ ﺎﻬﻠﺧادﺗ نﻣ ﺞﺗﻧﺗ ﺎﻣﺑر ﺔﻠﯾﻘﺛﻟا ندﺎﻌﻣﻠﻟ ﺔﻣﺎﺳﻟا تارﯾﺛﺄﺗﻟا
مﺳﺟﻟا ﻲﻓ ﺔﯾوﯾﺣﻟا تﺎﯾﻟﺎﻌﻔﻟا لﺧدﺗ ﺎﻣدﻧﻌﻓ ، تﺎﻣﯾزﻧﻷا لﺛﻣ
ناوﯾﺣﻟا مﺳﺟ ﺔﻠﯾﻘﺛﻟا ندﺎﻌﻣﻟاﯾﺑﯾﻛرﺗﻟا تادﺣوﻟا ﻊﻣ لﻋﺎﻔﺗ
تﺎﻣﯾزﻧأ ﻲﻓ تارﯾﻐﺗﻟا نﻣ دﯾدﻌﻟا رﻬظﺗو ﺎﯾﻼﺧﻟا ﻲﻓ ﺔﯾﻣﯾزﻧﻷاو
ﺔﻔﻠﺗﺧﻣﻟا مﺳﺟﻟا(20). ﻲﻓ ضﺎﻔﺧﻧﻷا اذﻫ لﺛﻣ ظﺣوﻟ
لﻛﯾﻧﻟاو تﻠﺑوﻛﻟا ﻰﻟإ ﺎﻬﺿرﻌﺗ دﻧﻋ ناذرﺟﻟا(21). ﻲﻓو
ﺔﻛﻣﺳLabeo rohita ﺦﯾﻧرزﻟا ﻰﻟإ ﺎﻬﺿرﻌﺗ دﻧﻋ(22).
ﻲﻣﯾزﻧأGOT وGPTﺑ تﯾﻣﺳ نﯾﻣﻸﻟ ﺔﻠﻗﺎﻧﻟا تﺎﻣﯾزﻧﻷﺎ
Transaminase نﯾﻣﻷا ﺔﻋوﻣﺟﻣ لﺎﻘﺗﻧأ ﻰﻠﻋ دﻋﺎﺳﺗ ﺎﻬﻧﻷ
NH2 ﻊﻗوﻣ ﻰﻟإ ﺔﯾﻧﯾﻣﻷا ضﻣاوﺣﻟا نﻣα- keto
ﺔﯾﻧوﺗﯾﻛﻟا ضﻣاوﺣﻠﻟﯾ كﻟذﺑو ﻰﻟإ ﺔﯾﻧﯾﻣﻷا ضﻣاوﺣﻟا لوﺣ
ﺔﯾﺳﯾﺋرﻟا فﺋﺎظوﻟا نﻣ لوﺣﺗﻟا اذﻫ رﺑﺗﻌﯾو ﺔﯾﻧوﺗﯾﻛﺎﻔﻟأ ضﻣاوﺣ
تﺎﯾﻠﻣﻋ نﻣﺿ ﺔﯾﺣﻟا تﺎﻧﺋﺎﻛﻟا مﺎﺳﺟأ لﺧاد تﺎﻣﯾزﻧﻷا ﻩذﻬﻟ
ﺔﯾﻧﯾﺗورﺑﻟا داوﻣﻟا ضﯾأ(23). ﻲﻣﯾزﻧأوGOT وGPT نﻣ
نأ ثﯾﺣ سﺎﺣﻧﻟا رﺻﻧﻌﺑ ً
ارﺛﺄﺗ ترﻬظأ ﻲﺗﻟا تﺎﻣﯾزﻧﻷا
سﺎﺣﻧﻠﻟ ﻰﻠﻋ ﻪﯾﻣﺳ تارﯾﺛﺄﺗ ﻲﻫو ﻲﺣﻟا نﺋﺎﻛﻟا ءﺎﺿﻋأ فﻠﺗﺧﻣ
ﻩذﻫ ﺎﻬﻧﻣو ً
ﺎﯾوﯾﺣ ﺔﻣﻬﻣﻟا تﺎﺑﻛرﻣﻟا نﻣ دﯾدﻌﻟا ﻊﻣ ﻪﻠﻋﺎﻔﺗ جﺎﺗﻧ
تﺎﻣﯾزﻧﻷا(24). يوﻧﻌﻣ عﺎﻔﺗرأ ﺔﺳاردﻟا ﻩذﻫ ﻲﻓ ظﺣوﻟ
مﯾزﻧإ ﺔﯾﻟﺎﻌﻔﺑGOTﯾدزﻷا نإ ، سﺎﺣﻧﻟا ﻰﻟإ ضرﻌﺗﻟا دﻧﻋ دﺎ
مﯾزﻧﻷا ﺔﯾﻟﺎﻌﻓ ﻲﻓ ظﺣﻼﻣﻟانوﻛﯾ دﻗﻪﺑﺑﺳ مﯾزﻧﻷا قﯾﻠﺧﺗ ةدﺎﯾز
لﺟأ نﻣ ﺔﺟﺳﻧﻷا نﻣ مطﺣﺗﺎﻣ حﻼﺻأ ةدﺎﻋأ(25). ظﺣوﻟ
ﺔﺿرﻌﻣﻟا ناذرﺟﻟا ﻲﻓ عﺎﻔﺗرﻷا اذﻫ لﺛﻣ صﺎﺻرﻠﻟ(26).
ﺔﻛﻣﺳﻟا ﻲﻓوOreochromis niloticus ﺔﺿرﻌﻣﻟا
سﺎﺣﻧﻠﻟ(27). ً
ﺎﺿﯾأ سﺎﺣﻧﻠﻟ ﺔﺿرﻌﻣﻟا ناذرﺟﻟا ﻲﻓو(7).
مﯾزﻧأ ﺎﻣأGPT اذﻫ ﺔﯾﻟﺎﻌﻓ يوﻧﻌﻣ ضﺎﻔﺧﻧأ ظوﻟ دﻘﻓ
دوﻌﯾ ﺎﻣﺑر ، مﯾزﻧﻷاذﻫ بﺑﺳتارﯾﺛﺄﺗﻟا ﻰﻟإ ضﺎﻔﺧﻧﻷا ا ﻲﺗﻟا
ﻲﻓ ضﺎﻔﺧﻧأ ﻰﻟإ يدؤﺗ ﻲﺗﻟاو ﺔﺟﺳﻧﻷا ﻲﻓ سﺎﺣﻧﻟا ﺎﻬﺑﺑﺳﯾ
مﯾزﻧﻷا قﯾﻠﺧﺗ(28). ناذرﺟﻟا ﻲﻓ ضﺎﻔﺧﻧﻷا اذﻫ لﺛﻣ ظﺣوﻟ
نﯾﺻرﺎﺧﻟا ﻰﻟإ ﺎﻬﺿرﻌﺗ دﻧﻋ(29). دﺑﻛ ﻲﻓ ً
ﺎﺿﯾأ ظﺣوﻟو
يوﺧرﻟا ناوﯾﺣﻟا تﻼﺿﻋوOnchidium struma دﻧﻋ
سﺎﺣﻧﻠﻟ ﻪﺿرﻌﺗ(30).
ﻲﺿﻣﺎﺣﻟا زﯾﺗﺎﻔﺳوﻔﻟا مﯾزﻧأACP ﺔﻣﻬﻣﻟا تﺎﻣﯾزﻧﻷا نﻣ
طﯾﺷﻧﺗ وأ طﯾﺑﺛﺗ لﻼﺧ نﻣ سﺎﺣﻧﻟﺎﺑ ثوﻠﺗﻟا ثودﺣﻟ ةرﺷؤﻣﻟا
مﺎﺳﺟﻷا ﻲﻓ مﯾزﻧﻷا دوﺟو زﻛرﺗﯾو تﺎﺛوﻠﻣﻠﻟ ً
ﺔﺑﺎﺟﺗﺳأ ﻪﺗﯾﻟﺎﻌﻓ
ﺔﯾﻠﺧﻟا ﻲﻓ ﺔﻟﺎﺣﻟا(31). ﺔﯾﻟﺎﻌﻓ عﺎﻔﺗرأ ﺔﺳاردﻟا ﻩذﻫ ﻲﻓ ظﺣوﻟ
مﯾزﻧأACPﺧﻣﻟا سﺎﺣﻧﻟا زﯾﻛارﺗﻟ ضرﻌﺗﻟا دﻧﻋ ً
ﺔﻧرﺎﻘﻣ ﺔﻔﻠﺗ
دﻧﻋ ناذرﺟﻟا ﻲﻓ عﺎﻔﺗرﻷا اذﻫ لﺛﻣ ظﺣوﻟ . ةرطﯾﺳﻟا تﺎﻧاوﯾﺣﺑ
نﯾﺻرﺎﺧﻟا نﻣ ﺔﻠﺗﺎﻗ تﺣﺗ عرﺟﻟ ﺎﻬﺿرﻌﺗ(32). ﻲﻓو
ءﺎﻣﻟا نﺎطرﺳSpiralothelphusa hydrodroma
سﺎﺣﻧﻠﻟ ضرﻌﻣﻟا(18). ﻲﻓ ةدﺎﯾزﻟا ثودﺣ لﺎﻣﺗﺣأ نأ
مﯾزﻧأ ﺔﺑﺎﺟﺗﺳأ بﺑﺳﺑ ﺎﻣﺑر مﯾزﻧﻷا ﺔﯾﻟﺎﻌﻓACP تارﯾﻐﺗﻠﻟ
ﺣﻟا سﺎﺣﻧﻟا ﻪطﻠﺳﯾ يذﻟا طﻐﺿﻟا ﺔﺟﯾﺗﻧ ضﯾﻷا ﻲﻓ ﺔﻠﺻﺎ
(18).
مﯾزﻧأLDH ﺔﻟزﺗﺧﻣﻟا ةدﺳﻛؤﻣﻟا تﺎﻣﯾزﻧﻷا نﻣ دﻌﯾ
Oxidoreductase تﯾﺗﻛﻼﻟا دﺳﻛؤﯾ ثﯾﺣLactate ﻰﻟإ
تﯾﻓورﯾﺑPyruvate لﻋﺎﻔﺗ) تﯾﺗﻛﻻ ﻰﻟإ رﯾﺧﻷا لزﺗﺧﯾ وأ
مﯾزﻧأ نأو ، (ﻲﺳﻛﻋLDH ﺔﯾﻣزﻼﺑوﺗﯾﺎﺳﻟا تﺎﻣﯾزﻧﻷا نﻣ
ﯾﺑ ﺔﻣﻬﻣﻟا سﺑرﻛ ةرودو رﻛﺳﻟا لﻠﺣﺗ نKrebs cycle كﻟذﻟو
دﯾدﻌﻠﻟ رﺷؤﻣﻛ مدﺧﺗﺳﯾ ﺎﻣﻛ ، يوﻠﺧﻟا ضﯾﻷا ﻲﻓ يرورﺿ وﻬ
ءازﺟأ مظﻌﻣ ﻲﻓ مﯾزﻧﻷا اذﻫ دﺟوﯾو ﺔﯾﺿرﻣﻟا تﻻﺎﺣﻟا نﻣ
رﺧﻷ وﺿﻋ نﻣ ﻩدوﺟو بﺳﻧ توﺎﻔﺗﺗ نﻛﻟو مﺳﺟﻟا(33).
ﺿﺎﻔﺧﻧأ سﺎﺣﻧﻟا بﺑﺳ
ً
مﯾزﻧأ ﺔﯾﻟﺎﻌﻔﺑLDH ضرﻌﺗﻟا دﻧﻋ
ﻠﺗﺧﻣﻟا ﻩزﯾﻛارﺗﻟ دﻧﻋ ناذرﺟﻟا ﻲﻓ ضﺎﻔﺧﻧﻷا اذﻫ لﺛﻣ ظوﻟ . ﺔﻔ
تﻠﺑوﻛﻟاو لﻛﯾﻧﻟا يرﺻﻧﻋ ﻰﻟأ ﺎﻬﺿرﻌﺗ(21). ﺔﻛﻣﺳ ﻲﻓو
Prochilodus lineatus سﺎﺣﻧﻟا ﻰﻟأ ﺎﻬﺿرﻌﺗ دﻧﻋ
(34). ﺔﺟﯾﺗﻧ ﺎﯾردﻧوﻛوﺗﯾﺎﻣﻟا مطﺣﺗ كﻟذ بﺑﺳ نوﻛﯾ ﺎﻣﺑر
ردﻧوﻛوﺗﯾﺎﻣﻟا ءﺎﺷﻏ فﺋﺎظو رﯾﻐﺗ وأ سﺎﺣﻧﻟا ﺔﯾﻣﺳ كﻟذﻟ
مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ تطﺑﺛLDH(34).
مﯾزﻧأG6PDH حﺎﺗﻔﻣ ﻪﻧوﻛ ضﯾﻷا تﺎﻣﯾزﻧأ مﻫأ دﺣأ و
زوﺗﻧﺑﻟا ةرودﻟPentose phosphate زوﺑﯾارﻟا رﻛﺳ ﺞﺗﻧﯾﻟ
ﺔﯾووﻧﻟا ضﺎﻣﺣﻷا قﯾﻠﺧﺗﻟ مزﻼﻟا تﺎﻔﺳوﻔﻟا ﻲﺳﺎﻣﺧRNA و
DNA ﺞﺗﻧﯾو ﺎﻣﻛNADPH ﺔﯾﻟازﺗﺧﻷا تﻼﻋﺎﻔﺗﻠﻟ مزﻼﻟا
 
ؤﯾ ﻪﯾﻓ ﻲﻔﯾظو لﻠﺧ يأو ﺔﯾﻠﺧﻟا ضﯾﻷ يرورﺿ وﻬﻓ كﻟذﻟ رﺛ
ضﯾﻷا ﻰﻠﻋ ً
ﺎﺑﻠﺳ(35). مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ عﺎﻔﺗرأ ﺞﺋﺎﺗﻧﻟا نﻣ نﯾﺑﺗ
G6PDH . ﺔﻔﻠﺗﺧﻣﻟا ﻩزﯾﻛارﺗﺑ سﺎﺣﻧﻠﻟ ضرﻌﺗﻟا دﻧﻋ نﻣ
ذﺧأ ضﺎﻔﺧﻧأ ﻰﻟأ ىدأ سﺎﺣﻧﻠﻟ ناوﯾﺣﻟا ضرﻌﺗ نأ لﻣﺗﺣﻣﻟا
مﯾزﻧأ ﺔﯾﻟﺎﻌﻓ تدادزأ ﻲﻟﺎﺗﻟﺎﺑو ﺎﯾﻼﺧﻟا ﻲﻓ نﯾﺟﺳﻛوﻷا
G6PDH(36). ﺔﻛﻣﺳ ﻲﻓ عﺎﻔﺗرﻷا اذﻫ لﺛﻣ ظﺣوﻟ
Perca flavescens سﺎﺣﻧﻟا ﻰﻟأ ﺎﻬﺿرﻌﺗ دﻧﻋ(37).
نﯾﺻرﺎﺧﻟا ﻰﻟأ ﺎﻬﺿرﻌﺗ دﻧﻋ بﺟﺎﻧﺳﻟا ﻲﻓو(38).
:ردﺎﺻﻣﻟا
1. Wenneberg , A. (1994) . Neurotoxic effects
selected metals . Scand. J. Work
Environ. Health , 20 : 65 – 71 . 2. ﺢﻟﺎــــــﺻ مﯾﻫارــــــﺑأ ، زﺎــــــﺗﻌﻣﻟاو مﯾﻫارــــــﺑأ دــــــﻣﺣﻣ ، نــــــﺳﺣﻟا .
(1995) ﺔــﺋﯾﺑﻟا تﺎــﺛوﻠﻣ . ﺎﻫردﺎــﺻﻣ ، ﺎﻫرارــﺿأ
ﻲــﺟﯾرﺧﻟا راد ، ﺔــﯾﻧﺎﺛﻟا ﺔــﻌﺑطﻟا . ﺎــﻬﺗﺣﻓﺎﻛﻣ قرــطو
ﻊﯾزوﺗﻟاو رﺷﻧﻠﻟ-. ضﺎـﯾرﻟا
3. Reilly , C. (2004) . The nutritional trace
metals . Blackwell publishing .
Australia . 82 – 130 . 4آ . . دـــﻣﺣأ ﺔـــﻟوﺧ ، ﺢﯾـــﻠﻓ ل(1986) ءﺎـــﯾﻣﯾﻛﻟا ﻰـــﻟأ لﺧدـــﻣ .
، ﻲـــﻣﻠﻌﻟا ثـــﺣﺑﻟاو ﻲﻟﺎـــﻌﻟا مﯾـــﻠﻌﺗﻟا ةرازو . ﺔـــﯾﺗﺎﯾﺣﻟا
. لﺻوﻣﻟا ﺔﻌﻣﺎﺟ
5. Sandstead , H. H. (1982) . Copper
bioavailability and requirements .
Am. J. Clin. Nutr. 35 : 809 – 814 .
6. Prasad , M. N. ; Sajwan , K. S. & Naidu , R.
V. (2006) . Trace elements in the
environment . Taylor & Francis .
USA . 1 – 689 .
7. Atta , A. H. ; Fathy , S. ; Gohar , M. ; Reem
Jan , R. ; Kamel , G. ; Mouneir , S.
M. & Nasr , S. M. (2009) .
Prolonged administration of high
doses of copper nicotinate to rats :
Effect on biochemical and cellular
constituents of blood and on copper
level in serum , liver and muscle .
International Journal of Medicine
and Medical Sciences . 1 : 178 –
183 . 8ــﺳﺣ قدﺎــﺻ ، مﯾــﻛﺣﻟاو لــﻣﺎﻛ لــﺳﺎﺑ ، ﻲﻟﻻدــﻟا . . ن(1987)
. لـﺻوﻣﻟا ﺔـﻌﻣﺎﺟ ، تﺎـﺑﺎﻐﻟاو ﺔـﻋارزﻟا ﺔـﯾﻠﻛ . ﺔﯾذﻏﻷا لﯾﻠﺣﺗ .
357.
9. Riley , V. (1960) . Adaptation of orbital
sinus bleeding technique to rapid
serial blood studies . Proc. Soc.
Exp. Biol. Med. 104 : 751 – 754 .
10. Kaplan , L. & Pesce , A. (1989) . Clinical
chemistry . Theory , analysis and
correlation . Second edition .
Mosby Company . United State of
America .
11. Indrayan , A. (2008) . Medical biostatics .
(2nd ed.) Chapman and Hall/CRC .
Publisher . Delhi .
12. Solomon , E. I. ; Penfield , K. W. &
Wilcox , D. E. (1983) . Copper ,
Molybdenum and Vanadium in
Biological system , Active site in
copper proteins an electronic
structure overview . Springer-
Verlag Berlin Heidelberg .
Germany . 5 – 144 .
13. Yerragi , S. G. ; Koli , V. A. & Yerag , S.
(2000) . Effect of pesticides
malathion on protein metabolism of
the marine crab Uca marionis . J .
Ecotoxicol . Environ . Monit . 10 :
59 – 62 .
14. Soto , M. ; Marigomez , I. & Cancio , I.
(2004) . Biological aspects of metal
accumulation and storage .
University of Basque . Basque . 644
.
15. Vutukuru , S. S. ; Suma , C. ; Madhavi , K.
; Juveria , J. ; Pauleena , J. S. ; Rao
, J. V. & Anjaneyulu , Y. (2005) .
Studies on the Development of
Potential Biomarkers for Rapid
Assessment of Copper Toxicity to
Freshwater Fish using Esomus
danricus as Model . Int. J. Environ.
Res. Public Health . 2 : 63 – 73 .
16. Kori-Siakpere , O. & Ubogu , E. O. (2008)
. Sublethal haematological effects
of zinc on the freshwater fish ,
Heteroclarias sp. (Osteichthyes :
clariidae) . African Journal of
Biotechnology . 7 : 2068 – 2073 .
17. Moussa , S. A. & Bashandy , S. A. (2008) .
Biophysical and biochemical
changes in the blood of rats
exposed to lead toxicity . Romanian
J. Biophys. 18 : 123 – 133 .
18. SenthilKumar , P. ; Samyappan , K. ;
Jayakumar , S. & Deecaraman , M.
(2007b) . Effect of Heavy Metal
Zinc on the Neurosecretory Cells of
a Freshwater Field Crab ,
Spiralothelphusa hydrodroma .
Journal of Applied Sciences
Research . 3 : 1609 – 1614 .
19. SenthilKumar , P. ; Samyappan , K. ;
Jayakumar , S. & Deecaraman , M.
(2007a) . Effect of Heavy Metal
Copper on the Nutritive Value in a
Freshwater Field Crab ,
Spiralothelphusa hydrodroma .
Research Journal of Agriculture and
Biological Sciences . 3 : 775 – 781 .
 
20. Zelikoff , J. T. & Thomas , P. T. (1998)
.Immunotoxicology of
environmental and occupational
metals . Taylor & Francis . USA ,
UK . 6 – 375 .
21. Kechird , Z. ; Dahdouh , F. ; Djabar , R.
M. & Bouzerna , N. (2006) .
Combind effect of water
contamination with cobalt and
nickel on metabolism of albino
(wistar) rats . Iran . J. Environ.
Health . Sci. Eng. 3 : 65 – 69 .
22. Humtsoe , N. ; Davoodi , R. ; Kulkarni , B.
G. & Chavan , B. (2007) . Effect of
arsenic on the enzymes of the Rhou
carp , Labeo rhita (Hamilton ,
1822) . The Raffles Bulletin of
Zoology . 14 : 17 – 19. 23 . يزـــﻣر دـــﻣﺣﻣ ، يرـــﻣﻌﻟا .(1986) ﺔﯾرﯾرـــﺳﻟا ءﺎـــﯾﻣﯾﻛﻟا .
تﻼﯾـــﻠﺣﺗﻟا مـــﺳﻗ . ﻲـــﻧﻔﻟا ﻲـــﺑطﻟا دـــﻬﻌﻣﻟا . ﻲـــﻠﻣﻌﻟا
. ﺔﯾﻧﻔﻟا دﻫﺎﻌﻣﻟا ﺔﺋﯾﻫ . ﺔﯾﺿرﻣﻟا
24. Schlenk , D. & Benson , W. H. (2001) .
Target organ toxicity in marine and
freshwater Tleosts . Taylor and
Francis . USA. 1 – 205 .
25. SeongGill , K. & JuChan , K. (2006) .
Effect of dietary copper exposure
on accumulation , growth and
hematological parameters of the
juvenile rockfish , Sebastes
schlegeli . Marine Environmental
Research . 26 : 599 – 608 .
26. Priti , C. ; Bhagyashree , P. & Aruna , K.
(2005) . Lead nitrate induced
unallied expression of liver and
kidney functions in male albino rats
. J. Environ. Bio. 26 : 421 – 424 .
27. Al-Nagaawy , A. M. (2008) .
Accumulation and elimination of
copper and lead from Oreochromis
niloticus fingerlings and
consequaent influence on their
tissue redues and some biochemical
parameters . 8th International
Symposium on Tilapia in
Aquaculture . Central Laboatory for
Aquaculture Research , Abbassa ,
Agriculture Research Center . 431 –
445 .
28. Abou EL-Naga , E. H. ; EL-Moselhy , K.
M. & Hamed , M. A. (2005) .
Toxicity of cadmium and copper
and their effect on some
biochemical parameters of marine
fish Mugil seheli . Egyptain Journal
of Aquatic Research . 31 : 60 – 71 .
29. Piao , F. ; Yokoyama , K. ; Ma , N. &
Yamauchi , T. (2003) . Subacute
toxic effects of zinc on various
tissues and organs of rats .
Toxicology Litters . 145 : 28 – 35 .
30. Li , X. ; Hou , X. ; Mao , O. ; Zhao , Y. ;
Cheng , Y. & Wang , O. (2009) .
Toxic effects of copper on
antioxidative and metabolic
enzymes of the marine gastroped ,
Onchidium struma . Arch. Environ.
Contam. Toxicol . 56 : 776 – 784 .
31. Nicolau , A. ; Mota , M. & Lima , M.
(2004) . Effect of different toxic
compounds on ATP content and
acid phosphatase activity in axenic
cultures of Tetrahymena pyriformis
. Ecotoxicology and Environmental
Safety . 57 : 129 – 135 .
32. Venkataraman , P. ; Sridhar , M. ;
Dhanammal , S. ; Vijayababu , M.
R. ; Srinivasan , N. & Arunakaran ,
J. (2004) . Antioxidant role of zinc
in PCB (Aroclor 1254) exposed
ventral prostate of albino rats .
Nutritiona Biochemistry . 15 : 608
– 613 .
33. Tietz , N. W. (1987) . Fundamentals of
clinical chemistry , (3th ed.) . W. B.
Saunders Company . 379 – 413 .
34. Carvalho , C. S. & Fernandes , M. N.
(2008) . Effect of copper on liver
key enzymes of anaerobic glucose
metabolism from freshwater
tropical fish Prochilodus lineatus .
Comparative Biochemistry and
Physiology , Part A . 151 : 437
442 .
35. Kuo , W. Y. & Tang , T. K. (1999) .
Overexpression of glucose-6-
phosphate dehydrogenase (G6PD)
in NIH313 cells enhance cell
proliferation . Acta Zoological
Taiwanica . 10 : 15 – 23 .
36. Smith , R. W. ; Blaney , S. C. ; Dowling ,
K. ; Sturm , A. ; Jonsson , M. ;
Dominic F. & Houlihan , D. F.
(2001) . Protein synthesis costs
could account for the tissue-specific
effects of sub-lethal copper on
protein synthesis in rainbowtrout
(Oncorhynchus mykiss) . Aquatic
Toxicology . 53 : 265 – 277 .
37. Levesque , H. M. ; Moon , T. W. ;
Campbell , G. C. & Hontela , A.
(2002) . Seasonal variation in
carbohydrate and lipid metabolism
of yellow perch (Perca flavescens)
chronically exposed to metals in the
field . Aquatic Toxicology . 60 :
257 – 267 .
38. Brocardo , P. S. ; Pandolfo , P. ; Takahashi
, R. N. Rodrigues , A. L. S. & Dafre
 
, A. L. (2005) . Antioxidant
defenses and lipid peroxidation in
the cerebral cortex and
hippocampus following acute
exposure to malathion and/or zinc
chloride . Toxicology . 207 : 283 –
291 .
EFFECT OF COPPER ON SOME SERUM BIOCHEMICAL VARIABLES IN
MALE ALBINO RATS.
HANADI A. ABDUL-RAZZAQ ALDARAJI
E.mail : hanadi_aldaraji@yahoo.com
ABSTRACT :The effect of copper on some serum biochemical measurements was tested in rats
including some of the key enzymes such as Alkaline phosphatase (ALP) and Acid phosphatase (ACP)
and Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT) and Lactate
Dehydrogenase (LDH) and Glucose - 6 - phosphate Dehydrogenase (G6PDH), in addition to measuring
of total protein . These biochemical measurements tested for each group of male rats , treatment and
control results showed significant changes in enzymatic activity and total protein compared to the
control group , where it was observed a significant decrease in the amount of total protein (P<0.05)
compared with a control , where the greater concentration of copper increased with low amount of total
protein . It was also observed a significant decrease (P<0.05) in the effectiveness of the enzyme
Alkaline phosphatase (ALP) concentrations in all treatment of male rats compared with control group.
The enzyme Acid phosphatase (ACP) was the cause of copper increased significantly (P<0.05) in the
effectiveness of this enzyme in all the different concentrations of copper as compared to control . In the
enzymes of the Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT) , where it was
noted that increased significantly (P<0.05) in the effectiveness of the enzyme (AST) compared to
control and decrease significantly (P<0.05) the level of effectiveness of the enzyme (ALT) compared to
control . In the enzyme Lactate dehydrogenase (LDH) has been observed a significant decrease
(P<0.05) as compared to the enzyme effectively control the three transactions as a result of a copper .
In the enzyme Glucose – 6 - phosphate Dehydrogenase (G6PDH) , it was noted that increased
significantly (P<0.05) in the effectiveness of the enzyme as a result of exposure to different
concentrations of copper as compared to control .
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The present work,is devoted,to study,the lead (Pb) toxicity in experimental,Wistar male rats exposed to 2% lead acetate in drinking water and hence to evaluate the risk on human workers who were environmentally and occupationally exposed to similar toxicity. A total of thirty two Wistar male rats were equally divided into four groups, A, B, C, and D. Group A served as control group. Group B was exposed to 2% lead acetate in drinking water for one month.Groups C and D were exposed to the same,condition as Group B for two months,and three months,respectively. Dielectric dispersion of hemoglobin (Hb) at frequency range of 20–3×10,Hz, hemoglobin absorption spectra, plasma alanine transaminase (ALT), aspirate transaminase (AST), alkaline phosphatase (ALP), total protein, and cholesterol levels were carried out for all groups. The results indicated that exposure of animals to lead results in an increase in ALT, AST, ALP, and cholesterol levels in the plasma of one, two and three months respectively indicating some damage in the liver cell membrane. On the other hand, plasma total protein decreases significantly in the rats treated with lead. The dielectric results indicated that the studied hemoglobin of the lead treated groups has a dielectric dispersion in the frequency range used. The increase in the electrical conductivity and relaxation time for hemoglobin as compared to control could be attributed to the increased free radicals, reactive oxygen species, and peroxide radicals which results from lead toxicity, therefore there is an increase in the surface charge density of hemoglobin macromolecule. It was concluded that oral exposure of lead causes alterations in liver functions and biophysical parameters of hemoglobin. Key words: Lead toxicity, dielectric dispersion, electrical conductivity, hemoglobin, ALT,
Article
Full-text available
The goals of this study were to evaluate the acute and sublethal toxicity of copper (Cu(2+)) on the marine gastropod, Onchidium struma, and to examine the utility of enzymatic parameters as indicators of Cu(2+) exposure. In a semistatic renewal test, the 96-hour median lethal concentration of Cu(2+) for O. struma, 74.80 mg/L, was higher than that for other intertidal species. The activities of the antioxidative enzymes, Cu/Zn superoxide dismutase (Cu/Zn-SOD) and catalase (CAT), and those of the metabolic enzymes-acid phosphatase (ACP), alkaline phosphatase (AKP), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) -in both hepatopancreas and muscle were determined after a 1-week exposure to Cu(2+) (range 1.35 to 4.20 mg/L). The activities of both Cu/Zn-SOD and CAT were higher in hepatopancreas than muscle. In addition, there was a negative correlation between Cu(2+) concentration and Cu/Zn-SOD activity in hepatopancreas, whereas a positive correlation was observed for CAT activity. Concentration-dependent changes in ACP and AKP activity showed a similar trend in hepatopancreas, increasing then decreasing and, finally, a slight increase. In contrast, ACP activity was positively correlated with Cu(2+) across the concentration range tested. In both hepatopancreas and muscle, both GOT and GPT were activated by lower concentrations of Cu(2+) and inhibited at higher concentrations.
Article
Full-text available
Living in an environment that has been altered considerably by anthropogenic activities, fish are often exposed to a multitude of stressors including heavy metals. Copper ions are quite toxic to fish when concentrations are increased in environmental exposures often resulting in physiological, histological, biochemical and enzymatic alterations in fish, which have a great potential to serve as biomarkers. Esomus danricus was chosen as model in the present study and the metabolic rate, gill morphology, total glycogen, total protein, superoxide dismutase and catalase were critically evaluated. The 96h LC50 value was found to be 5.5mg/L (Cu as 1.402 mg/L). Fish groups were separately exposed to lethal (5.5 mg/L) and sub lethal concentrations (0.55 mg/L) of copper sulphate over a period of 96h to examine the subtle effects caused at various functional levels. Controls were also maintained simultaneously. Significant decrease in the metabolic rate (p<0.001) of the fish was observed in both the concentrations studied. Studies employing Automated Video Tracking System revealed gross changes in the architecture of gill morphology like loss, fusion, clubbing of secondary gill lamellae, and detachment of gill rakers following softening of gill shaft in fish under lethal exposures indicating reduced respiratory surface area. Biochemical profiles like total glycogen and total protein in gills and muscle of fish exposed to 5.5 mg/L showed appreciable decrease (p<0.05 to 0.001) from control. Significant inhibition of superoxide dismutase (60.83%), catalase (71.57%) from control was observed in fish exposed to 5.5 mg/L at the end of 96h exposure only. Interestingly, in fish exposed to 0.55 mg/L enzyme activity is not affected except for catalase. Toxic responses evaluated at various functional levels are more pronounced in fish exposed to 5.5 mg/L and these can serve as potential biomarkers for rapid assessment of acute copper toxicity in environmental biomonitoring.
Article
Laboratory study was undertaken to evaluate some haematological changes resulting from the exposure of a freshwater fish, Heteroclarias sp. to sublethal concentrations (5.0 and 10.0 mg L-1) of zinc in water for a period of fifteen (15) days. Three groups of ten fish were subjected to serial dilutions of the stock solution of zinc of 0 (control), 5.0 and 10.0 mg L -1 in three large plastic bowls of 60 litres capacity by the semistatic (renewal) method. At the end of the 15 days exposure period, blood samples were taken from the control and experimental fish. Blood was assayed for selected haematological parameters (haematocrit, haemoglobin, red blood cell counts, white blood cell counts, differential white blood cell counts, erythrocyte sedimentation rate, total plasma protein and plasma glucose concentration). The derived haematological indices of mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were calculated. Sublethal concentrations (5.0 and 10.0 mg L-1) of zinc caused a dose dependent decrease in haemoglobin values, coupled with a decrease in haematocrit values and red blood cell counts are obvious indication of anemia of the norm chronic type. The total white blood cell counts and the differential white blood cell counts were decreased except for the lymphocytes in which there was a slight increase. Plasma level of protein and glucose were also lower in the exposed fish when compared to the control. The haematological indices MCHC, MCH and MCV were also lowered. In conclusion, the changes observed indicate that haematological parameters can be used as an indicator of zinc related stress in fish on exposed to elevated zinc levels.
Article
Glucose-6-phosphate dehydrogenase (G6PD) functions to catalyze the first step in the pen- tose phosphate pathway. The major physiological function of G6PD is to provide NADPH, which is required for reductive biosynthesis and for detoxification of free radicals and perox- ides in mature red blood cells. We previously showed that overexpression of human G6PD in NIH3T3 cells may alter the cellular redox status by enhancing intracellular NADPH and GSH levels (Kuo and Tang, 1998a). In this report, we provide evidence that an increase in G6PD activity is important for cell proliferation. To investigate the role of G6PD in cell growth, we stably transfected human G6PD cDNA into NIH 3T3 cells. Two G6PD-overex- pressing clones which had a 6-fold (H6) and a 16-fold (H7) increase, respectively, in their intracellular G6PD activity were compared with control cells transfected with a vector alone. Overexpression of G6PD promoted cell growth at both low (0.5%) and high (10%) serum conditions. When treated with dihydroepiandrosterone (DHEA), a potent G6PD inhibitor, stimulated cell growth in G6PD-overexpressing cells was significantly suppressed. Further- more, cells expressing high levels of human G6PD were able to grow to a higher cell density and proliferated in a low serum concentration, which are characteristicws of transformed phenotypes. These results show that G6PD activity is important not only in modulating intracellular redox status, but also in regulating cell proliferation.
Article
This study investigates protein synthesis, following exposure to sub-lethal Cu, in rainbow trout in vivo and in vitro. The investigation has two aims: to determine if perturbations in protein synthesis, compared with other physiological changes, are a biomarker of Cu pollution and to evaluate the most productive role of cellular models in ecotoxicology. Protein synthesis rates were measured by labelling with 3H-phenylalanine. In vivo this was applied by a single (i.p.) injection and in vitro by bathing the cells in 3H-phenylalanine labelled culture media. The effects in vivo were tissue specific. After 3 weeks' exposure to 0.7 microM Cu only skin protein synthesis was reduced. Gills and liver from the same fish were unaffected. This reduction in skin protein synthesis appears to be more sensitive than some other biomarkers reported in the literature. However, Cu concentrations greater by orders of magnitude were required to reproduce this reduction in protein synthesis in skin cell explants (200 and 400 microM). Hepatocyte protein synthesis was unaffected by 10, 20 and 40 microM Cu and a separate investigation has also shown that 25 and 75 microM Cu does not effect protein synthesis in cultured gill cells. Oxygen consumption rates were also measured in vitro by monitoring the decline in O2 partial pressure. The Cu concentrations given above resulted in a decline in O2 consumption rates in the respective cell types. By measuring protein synthesis and O2 consumption after treatment with a protein synthesis inhibitor (cycloheximide), the costs of protein synthesis were also determined. Synthesis costs in hepatocytes are close to the theoretical minimum and are only marginally affected by Cu. Gill cell synthesis costs are also minimal and are unaffected. In skin explants, the reduction in protein synthesis was accompanied by greatly increased synthesis costs. This in vitro result offers a hypothesis as to the tissue-specific effects in vivo; i.e. the energetic demand of protein synthesis may determine tissue sensitivity or susceptibility. Cell or tissue types with high protein synthesis rates are able to avoid detrimental increases in the synthesis cost when exposed to Cu. In tissues with a low protein synthesis rate any further reduction is more likely to incur a potentially damaging increase in protein synthesis costs. Thus, whilst in vitro models may have little practical use in environmental monitoring, they may be best used as a mechanistic tool in understanding susceptibility or tolerance to sub-lethal Cu.
Article
The effects of heavy metals on growth, intermediary metabolism and enzyme activities were investigated in yellow perch (Perca flavescens), sampled in summer and fall from lakes situated along a contamination gradient of Cd, Zn and Cu in the mining region of Rouyn-Noranda, Québec. An exposure-dependent decrease in condition factor was observed in both seasons. Liver glycogen and triglyceride reserves were higher in summer than in fall in fish from the reference lake, while the seasonal pattern was different in fish from the contaminated lakes. Plasma free fatty acids (FFA) levels were also influenced by season and contamination. Activities of malic enzyme (ME) and glucose 6-phosphate dehydrogenase (G6PDH) in the liver were higher in the summer than in the fall in reference lakes whereas no seasonal variations were detected in fish from contaminated lakes. Activities of pyruvate kinase (PyK), aspartate transaminase (AST), phosphoenolpyruvate carboxykinase (PEPCK) and malate dehydrogenase (MDH), were higher in fish from contaminated lakes in fall but not in summer. Chronic exposure of yellow perch to sublethal levels of heavy metals impairs growth and alters the seasonal cycling of liver glycogen and triglycerides as well as the activities of metabolic enzymes.
Article
The sensitivity of protozoa, and particularly ciliated protozoa, to environmental changes suggested a study on the physiological responses arising from exposure to toxic compounds. Tetrahymena pyriformis was used as a test organism in a set of miniaturized assays. The physiological response of this ciliate was assessed in terms of adenosine-5'-triphosphate content and acid phosphatase activity after exposure of the cultures of T. pyriformis to four toxicants: copper, zinc, Triton X-100, and cycloheximide. In the range of concentrations used, stimulation and inhibition of these two parameters were observed. The correlation between the two parameters is analyzed.
Article
The ability of zinc to retard oxidative processes has been recognized for many years. Polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental toxicants. Previous study has indicated that PCBs can have deleterious effects, including oxidative stress, on various aspects of reproduction in male rats. The aim of this study was to determine the antioxidant role of zinc in PCB-exposed ventral prostate of albino rats. A group of 20 rats were treated with Aroclor 1254 (2 mg/kg body weight/day, i.p.) for 30 days. After the PCB treatment, 10 rats were treated as PCB control. The remaining 10 rats were given zinc (Zn SO(4)) (200 mg/kg body weight/day, p.o.) for 10 days. Ventral prostatic enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) were estimated in all the groups. Hydrogen peroxide (H(2)O(2)), lipid peroxidation (LPO) and ventral prostatic acid phosphatase (ACP) were also estimated. Serum hormonal profiles such as total tri-iodothyronine (T(3)), thyroxine (T(4)), thyroid stimulating hormone (TSH), testosterone, and estradiol were estimated. Ventral prostatic androgen and estrogen receptors, ventral prostatic zinc content, and serum zinc concentration were also quantified in all the groups. Antioxidant enzymes such as SOD, CAT, GPx, GST, and ACP were decreased while an increase in H(2)O(2) and LPO were observed in PCB-treated animals. Decreased serum total T(3), T(4), testosterone, estradiol and increased TSH were observed in PCB-exposed rats. Ventral prostatic androgen and estrogen receptors were also decreased significantly in PCB-exposed rats. Zinc administration restored to previous levels all parameters except ventral prostatic ACP. These results suggest that PCB induces oxidative stress in rat ventral prostate by decreasing the levels of antioxidant enzymes; the effects could be reversed by the administration of zinc. The adverse effect of PCBs (Aroclor 1254) and zinc on ventral prostate might be due to indirect action through hormonal regulation.