ArticlePDF Available

Effect of Growth regulators Match and Nomolt on average of total protein and enzyme AST in insect german cockroach Blattella germanica

Authors:

Abstract

تأثير منظمي النمو Match و Nomolt درس عمى البروتينات الكمية وأنزيم)Aspartate transaminase (AST للأطوار المختمفة لمصرصر الألماني B. germanica وقد أظيرت نتائج د ارسة تأثير منظمي النمو Match و Nomolt عمى البروتينات الكمية للأطوار المختمفة معنوية الفروقات (0.05<p) بين منظمي النمو وكذلك مع مجموعة السيطرة إذ تبين أن معدل تأثير منظمي النمو عمى بروتينات الأطوار الحورية المبكرة لمحشرة كان أعمى من تأثير المنظمين عمى بروتينات الأطوار المتأخرة والحشرة الكاممة . في حين أظيرت نتائج د ارسة تأثير منظمي النمو Match و Nomolt عمى فعالية أنزيم )Aspartate transaminase (AST للأطوار المختمفة أن منظمي النمو ليا تأثير واضح عمى نشاط الأنزيم وأدى إلى أختلاف فعالية الأنزيم ، إذ إن ىذا التأثير كان معنويًا وكان متوسط تأثير منظم النمو Match ىو 0.70±3.21 ومتوسط تأثير منظم النمو Nomolt ىو 0.40±3.76 وأظيرت النتائج فروقات معنوية بين متوسطي فعالية الأنزيم عمى الأطوار المختمفة لمحشرة وكذلك بين كل من متوسطي الأنزيم في المعاممة بالمنظمين وبين مجموعة السيطرة إذ كان متوسط فعالية الأنزيم في مجموعة السيطرة ىو 0.55±4.71 .


ISSN: 1991-8941
MatchNomoltAST
(L.) (Dictyoptera : Blattellidae) Blattella germanica





MatchNomoltAspartate transaminase (AST)
B. germanicaMatchNomolt
p<0.05

MatchNomoltAspartate transaminase (AST)


Match3.21±0.70Nomolt3.76±0.40

4.71±0.55
MatchNomoltAST(L)Blattella germanica

   Blattella germanica (L.)
     
  
        
      

    1      
       

2
        


3


4




5
MatchNomolt
  







6

(Match® 50 EC) Lufenuron
Lufenuron
150010005005 
50505
321
24
7
Nomolt 15 SC) Tiflubenzuron

Tiflubenzuron1000500250
55050
5432
24
7

 652012
      
MatchNomolt
20
20
20

1000
3

10


2
2834˚
45 55
AST / GOT
8


9

1 Match
وNomolt








10













11
1500
Match
1.542.45
250Nomolt
10.24.98
1






12


1MatchNomolt
B. germanica


ppm
mg/l



Match
1500
2.45
±1.54
3.00
±1.12
3.84
±2.10
1000
2.86
±1.47
2.54
±0.56
4.20
±0.86
500
3.50
±1.35
4.74
±1.90
4.55
±0.24
Nomolt
1000
3.02
±1.28
3.54
±1.14
4.20
±1.25
500
4.50
±1.98
4.05
±0.50
4.08
±1.90
250
4.60
±1.30
4.98
±1.02
4.86
±1.30
Control
-
4.12
±0.62
5.22
±1.22
4.80
±1.64
LSD = 1.59
2Match
3.52Nomolt4.20
4.71
2MatchNomolt








 13



14
Match

mg\l


Match
3.10
3.20
4.26

Nomolt
3.59
4.21
4.81
Control
4.71



Nomolt
15


16
17Nomolt







Aspartate transaminase (AST)


AST
3
AST500250
MatchNomolt4.20
4.30
MatchNomolt3.22
3.80


 4 MatchNomolt


Match
3.21Nomolt3.76
t


4.71






18
19




20AST
ApplaudMimicAdmiral
Match1000ppm
100ppmMatch
21Match
AST

3MatchNomoltASTB.
germanica

ppm
AST IU


Match
1500
3.80 ±1.12
3.22 ±2.10
1000
2.68 ±0.86
3.30 ±0.96
500
4.10 ±2.50
4.20 ±1.65

Nomolt
1000
3.40 ±1.98
3.80 ±0.82
500
3.50 ±0.55
4.26 ±1.20
250
4.22 ±1.30
4.30 ±1.50
Control
5.22 ±2.26
4.80 ±1.64


4ASTMatchNomolt

1- Gelber , E. L. ; Seltzer , L. H. and
Bouzoukis , J. K. (1993) . Sensitization
an exposure to indoor allergens as risk
factors for asthma among patients
presenting to hospitals.Am Rev Respir
Dis . 573 : 147-151 .
2- Call , R. S. ; Smith , T. F. ; Morris , E. ;
Chapman , M. D. and PlattsMills , T.
A. . (1992) . Risk factors for asthma in
inner city children JPediatr121 : 862
866 .
3- Scharf , M. and Bennett , G. (1995) .
Cockroach resistance IPM : a common
sense approach . Pest Contr 63 : 3841 .
4- Silverman , J. and Ross , M. H. (1994) .
Behavioral resistance of fieldcollected
German cockroaches (Blattodea :
Blattellidae) to baits containing glucose
. Environ Entomol 23 : 425430 .
5- Pai H. H. ; Chen , W. C. and Peng , C. F.
(2004) . Cockroaches as potential
vectors of nosocomial infections. Infect
Control Hosp Epidemiol . 25(11) : 979-
84 .
6- Ghasemi , A. ; Sendi , J. J. and Ghadamyari
, M. (2010) . Physiological and
biochemical effect of pyriproxifen on
Indian meal moth Plodia interpunctella
(Hubner) (Lepidoptera : Pyralidae) .
Journal of plant protection Research ,
Vol , 50 , No.4.
7- Mogregor , M. E. and Karl , J. K. (1979) .
Activity of insect growth regulators .
Hydroprene on wheat and corn
against . several stored grain insect
. J. Econ .Entom. 68 (5).
8- Bergmeyer , H. ; Horder , V. and Rej , M. R.
(1985) . Approved vecommendation on
Ifcc methods for the measure mellt of
catalytic concentration of enzyme .
Part2 ifcc method for amino trans ferase
, J. clin chem . 67 : 244-250 .
9- Kaplan , L. A. and Pesce , A. J. (1989) .
Clinical chemistry : Theory , analysis ,
and correlation. St. Louis : Mosby .
Journal of American Science . 78 : 54
59 .
10- Atta , B. ; M. D. Gogi ; M. J. Arif ; F.
Mustafa ; M. F. Raza ; M. J. Hussain ;
M. A. Farooq ; M. J. Nisar and M. Iqbal
. (2015) . Toxicity of some insect
growth regulators (IGRS) Against
different life stages of Dusky Cotton
Bugs Oxycarenus hyalinipennis Costa
(Hemiptera : Lygaeidae : Oxycareninae)
. Bulgarian Journal of Agricultural
Science . 21 (No.2) . 367 371.
11- Saffa , M. H. ; Rasha , A. A. ; A. M.
Mosallam ; E. F. El-Khayat and Maha ,
M. S. (2013) . Toxicological ,
Biological and Biochemical Effects of
Certain Insecticides on Bactrocera
zonata (Saunders) (Diptera :
Tephritidae) . American Eurasian
Journal of Toxicological Sciences . 5(3)
: 55 65 .
12- Assar , A. A. ; Abo-El-Mahasen , M. M. ;
Hearba , N. M. and Rady , A. A. (2012)
. Biochemical effects of cyromazine on
Culex pipiens Larvae (Diptera :
Culicidae) . Journal of American
Science . 8(5) : 443 450 .
13- Fathpour , A. ; Noori , A. and Zeinal , B.
(2007) . Effects of a juvenoid
Pyriproxyfen on reproductive organs
development and reproduction in
German cockroach (Dictyoptera :
Blattellidae ) . Iranian Journal of
Science & Technology , Transaction A ,
Vol. 31 , No : A1 .
14- Saffa , M. H. ; Rasha , A. A. ; A. M.
Mosallam ; E. F. El-Khayat and Maha ,
M. S. (2013) . Toxicological ,
Biological and Biochemical Effects of
Certain Insecticides on Bactrocera
zonata (Saunders) (Diptera :
Tephritidae) . American Eurasian
Journal of Toxicological Sciences . 5
(3) : 55 65 .

ASTIU


Match
3.09
2.95
3.60

Nomolt
3.48
3.74
4.07
Control
4.71


15- Mokhlef , A. A. ; Mariy , F. M. ; Emam ,
A. K. and Ali , G. M. (2012) . Effect of
teflubenzuron on ultrastructure and
components of the integument in
Schistocerca gregaria (Forskal) 5th
instar nymphs . Annals of Agricultural
Science . 57(1) : 1 6 .
16- Perrott , R. C. and Miller , D. M. (2004) .
German Cockroach . Virginia
Cooperative Extension Publication .
Number 847 : 444 289 .
17- Shell , A. (1991) . Teflubenzuron : new
chitin synthesis inhibitor Informatore
Fitopatologico . 41 (10) : 29 32 .
18- Dhadialla , T. S. ; Retnakaran , A. and
Smagghe , G. (2005) . Insect growth
and development disrupting insecticides
. in : Gilber t, L.I. , Kostas , I. and Gill ,
S. [Eds.] Comprehensive Insect
Molecular Science . Vol. 6. Pergamon
Press , New York , NY. pp. 55-116 .
19- Najat , A. K. and Faten , F. A. (2011) .
Combined effect of three insect growth
regulators on the digestive enzymatic
profiles of Callosobruchus maculatus
(Coleoptera : Bruchidae) . Journal of
the Egyptian Society of Parasitology .
Vol. 41 , No. 3 : 757 766 .
20- Assar , A. A. ; Abo-El-Mahasen , M. M. ;
Khalil , M. E. and Mahmoud , S. H.
(2010) . Biochemical effects of some
insect growth regulators on the house
fly , Musca domestica (Diptera :
Muscidae) . Egypt . Acad. J. biolog.
Sci. 2(2) : 33 44 .
21- Yahia , Y. M. ; Lamiaa , H. Y. and Adel ,
A. E. (2011) . Toxicological and
Biochemical effects of some
insecticides on Peach fly Bactrocera
zonata (Diptera : Tephritidae) . Plant
Protect. Sci. Vol. 47 , No.3 : 121 130 .
Effect of Growth regulators Match and Nomolt on average of total protein and enzyme
AST in insect german cockroach Blattella germanica
Hanadi A. ALdaraji Burhan M. Mohammed Ezeddin A. ALbayyar
dean_coll.science@uoanbar.edu.iqE.mail:
Abstract :
The effect of Match and Nomolt has been studied on total proteins and Aspartate transaminase enzyme
(AST) of the different phases for German cockroaches B. germanica , (p<0.05) results showed significant
effect of Match and Nomolt on different phases between the treating groups , as well as with control
treatment . It was found that the effect of insect (IGR) growth regulator hormones on proteins of the early
phases of the nymph was higher than the impact of the late phase and adult . The effect of Match and
Nomolt on the effectivity of Aspartate transaminase (AST) in different phases was also significant (p<0.05)
, and the average was 3.21 ± 0.70 . However , the average was 3.76 ± 0.40 in groups treated by Nomolt ,
and showed significant differences (p<0.05) between the enzyme activity in different stages of the insect , as
well as between each of the enzyme treating groups and control treatment . The enzyme average activity
was 4.71 ± 0.55 in control group .
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The peach fruit fly, Bactrocera zonata (Saunders, Diptera: Tephritidae), has been a serious pest in the last decade attacking a wide range of fruits in Egypt. The toxicity of Malathion, Diazinon, Methoxyfenozide and Lufenuron to adult males and females of B. zonata was studied under laboratory conditions. The results showed that Diazinon was the most toxic among the tested compounds followed by Malathion, Lufenuron and Methoxyfenozide. LC 50 values for adult males and females were 0.20 ppm, 0.09 ppm and 0.02 ppm (for males), 0.91 ppm, 0.14 ppm and 0,01 ppm (for females), respectively. The results showed that the level of glutamic oxaloacetic transaminase (GOT) of treated adult males and females in 24 h, 48 h, and 72 h post treatment increased compared to untreated adults. The highest activities of GOT in treated adult males in 24 h, 48 h, and 72 h were 92.11μM, 101.99μM and 112.21μM pyruvate released × 10 3/min/g FW (fresh weight), respectively, for Methoxyfenozide LC 10, and in treated adult females after 24 h, 48 h, and 72 h they were 84.24μM, 94.33μM, and 111.12μM pyruvate released × 10 3/min/g FW, respectively, for Diazinon LC 25. The activities of acetylcholine esterase of treated adults decreased compared to untreated adults. The highest activities of acid phosphatase in adult males after 24 h and 48 h were 249.43 μg and 270.52 μg AchI hydrolysed/min/g FW, respectively, for Methoxyfenozide LC 25. The highest activities of alkaline phosphatase in adult males were 139.04 μg, 175.67 μg, and 199.29 μg phenol × 10/min/g FW for Malathion LC 10 and in adult females they were 123.31 μg, 162.10 μg and 199.59 μg phenol.10 3/min/g FW, respectively, for Lufenuron LC 25 in 24 h, 48 h, and 72 h post treatment.
Article
Full-text available
Different concentrations of five Insect Growth Regulators (IGRs) including Runner® 240SC (Methoxyfenozide), Silent® 5EC (Lufenuron), Capture® 20SC (Trifl umuron), Priority® 10.8EC (Pyriproxyfen) and Match® 50EC (Lufenuron) were tested against dusky cotton bug, Oxycarenus hyalinipennis. The experiment was conducted under laboratory conditions with three replications of each concentration. Pre-determined numbers of O. hyalinipennis were released on filter papers treated with nine different concentrations of each IGR to determine their LC50 values. The results revealed that Silent® for the 1st, 2nd, 4th, 5th instars and for male insects after 72 hours, and Match® for the 3rd and 5th instars after 24 and 72 hours, respectively caused severe mortality at their lowest LC50 values. On the basis of these findings, it is concluded that Silent® and Match® are highly toxic and effective against various life stages of O. hyalinipennis and hence can be recommended for the control of O. hyalinipennis in integrated pest management (IPM) program. However, all the tested chemicals need to reestablish their respective field recommended doses, in case any of them can constitute an essential part in the pest management program of the cotton pest complex. © 2015, National Centre for Agrarian Sciences. All Rights reserved.
Article
Full-text available
The German cockroach, Blattella germanica, is one of the most common pest species, and is a carrier of many pathogen and allergen factors in humans. Thus, regarding public health, the control of this insect is quite important. Dietary use of hormone analogues, especially juvenoids which disrupt reproductive organ development, is a relatively new method to control cockroaches. In this study, the effect of dietary juvenoid pyriproxyfen was investigated on these insects. The control groups received a regular diet with no juvenoid and each of the treatment groups received 10, 30, 50, 100, or 300 ppm of pyriproxyfen in their diets, respectively. For each dose, 15 fifth-instar nymphs were used and the experiment was replicated three times. Each of the experimental repeats had a separate control group. The treatment period was 14 days, then the insects were fed with a regular diet until they emerged into an adult. At this stage, the treated adults were kept with an untreated opposite sex until the formation of the first egg capsule. Use of pyriproxyfen was found to be effective in inducing abnormalities in wing formation such as divergent, curly wing and giant nymphs. Furthermore, dietary use of this juvenoid caused the sterility of the insects due to incomplete development of the internal reproductive organs. Various morphologic abnormalities like deformation and degeneration were observed in the ovaries and accessory glands of sterile insects. Histological investigation of testis and ovaries in infertile insects indicated a degeneration of ovarian follicle cells, defective vitellogenesis, hypertrophy of testis walls, spermatogenesis disorder and a decrease in the numbers of spermatocyts and spermatozoa. The external genitalia of the sterile insects in both sexes were not significantly altered compared with the controls.
Article
Insect growth regulators (IGRs) are insecticides that mimic insect produced hormones by regulating developmental process. They have little or no mammalian toxicity, and are considered reduced-risk insecticides that are often exempt from tolerance requirements of regulatory agencies. IGRs, especially, chlorfluazuron, hydroprene and hexaflumuron (benzoylphenylurea) are currently studied because of possibility of using in stored products protection. Many of IGRs compounds used in insect pests control are known to affect digestive enzymes. Chlorfluazuron, hydroprene and hexaflumuronwere tested topically at doses of 0.25%, 0.5% &1% for chlorfluazuron and hydroprene and 0.5, 1& 2µg/ml of hex-aflumuron to investigate its effects on the activities of the digestive enzymes prote-ase, amylase and lipase in Callosobruchus maculatus larvae, which were affected by IGRs individually and in combination. When combined, the effect was more sever at low concentration. There were statistically significant differences (P≤ 0.05) in enzyme activities in combined and individual treatments. Combination three IGRs caused a twofold decrease in enzyme activity even at reduced concentration. Clear dose-response relationships were established with respect to enzyme activity. A synergistic effect of IGRs was found by combination of low doses. These effects are most pronounced in early instars.
Article
The current work was carried out to evaluate the biochemical effects of five insect growth regulators (IGRs); applaud (buprofezin), consult (hexaflumuron) and match (lufenuron) as chitin synthesis inhibitors (CSIs); mimic (tebufenozide) as ecdysone agonist (EA) and admiral (pyriproxyfen) as juvenile hormone analogue (JHA) against the housefly M. domestica. The IGRs were applied by feeding 1 st instar larvae on diets mixed with these IGRs at 100 and1000 ppm for three days to determine the effects of these IGRs on the glucose, protein and the amino acid content as well as the phosphatase and transaminase enzymes. The obtained results indicated that all the tested IGRs except applaud increased the glucose content in the homogenate of 3 rd larval instar of M.domestica. The total protein content and total concentration of amino acids increased with applaud, admiral and mimic, while decreased with match and consult. In addition, the tested IGRs significantly increased the activity of acid and alkaline phosphatase .Mimic exhibited a severe reduction in the activity of AcP. Admiral, mimic and applaud induced a significant stimulatory effect on total AST activity, while match induced inhibitory effect at 1000 ppm. Consult had no effect on the total activity of AST. With respect to the total ALT activity, applaud and admiral induced a significant stimulatory effect, in contrast, match and consult elicited inhibitory effect on the total ALT activity. Key words: Insect growth regulators (IGRs), Acid phosphatase (AcP), Alkaline phosphatase (AlP), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT).
Article
German cockroaches, Blattella germanica (L.), collected from a number of field locations, ranging from Florida to South Korea, displayed an avoidance behavior to a bait formulation. Cockroaches collected from locations that had a history of treatment with this formulation demonstrated bait avoidance, whereas laboratory and field strains with no prior exposure ingested and were susceptible to the toxic bait. Thus, behavioral resistance had evolved in these insects. Selection experiments showed that several susceptible strains were potentially capable of developing behavioral resistance. Strains that avoided ingesting bait also displayed an aversion to glucose, which is a component of the bait that is typically phagostimulatory. Substitution of fructose for glucose in toxic baits Significantly improved bait efficacy.
Article
Physiological and Biochemical Effect of Pyriproxyfen on Indian Meal Moth Plodia Interpunctella (Hübner) (Lepidoptera: Pyralidae) Insect growth regulators generally have a selective effect on the target insects and have practically no apparent side effect on non-target organisms especially vertebrates. Hence, insect growth regulators could be a suitable choice to control pests in stored products. Ten-day-old larvae of Indian meal moth Plodia interpunctella (Hübner) were expressed to the juvenile hormone analogue pyriproxyfen in order to have an effect on growth, metamorphosis, reproduction, lipid and protein contents of ovaries. The larvae were treated by 0.02, 0.04, 0.08, 0.16, and 0.3 ppm of JHA in an artificial diet where controls received acetone alone. The results indicated significant differences in duration of growth, mean longevity of hatched adults, percentage of emerged normal adults, abnormal pupae, hatched larvae and mean oviposition ratein addition to the lipid and protein of ovaries compared to the controls. An inhibition concentration of fifty (IF 50 ) for prevention of emerging adults was recorded 0.134 ppm. Pyriproxyfen caused significant defects in the legs and wings of some adults and sever morphological changes in the ovaries of emerged adults. The results showed that pyriproxyfen may be applied as an insecticide to decrease the damage caused by Indian meal moth on stored products. Pyriproxyfen can be used with low side effects to humans.
Article
Inner city children have the highest prevalence and the highest mortality rates for asthma in the United States. The purpose of this study was to evaluate sensitization and exposure to common indoor allergens among children aged 3 years to 15 years seen for treatment of asthma at Grady Memorial Hospital, Atlanta, Ga. Eighty children in this study were enrolled in the emergency department and 64 in hospital clinics. Dust from 57 homes, assayed for three indoor allergens (dust mite, cat, and cockroach), revealed similar exposure for asthma and control groups. Sixty-nine percent of the children with asthma had IgE antibodies to dust mite, cockroach, or cat; only 27% of the control subjects were similarly sensitized (p < 0.001). Of 35 children with asthma 21 had both sensitization and significant exposure to the relevant allergen; this was true for only 3 of 22 control subjects (odds ratio, 9.5; p < 0.001). Neither sensitization nor exposure to cat allergen was common in this population. The results show that black children in inner city Atlanta are exposed to high levels of mite and cockroach allergens and that a high proportion of the children with asthma are sensitized to these allergens; the combination of sensitization and exposure is a major risk factor for asthma in this population.