Emotion greatly affects learning. Affective states, such as motivation, interest and attention, have been identified to cause changes in brain and body activity. Heart Rate (HR), Electro-Dermal Activity (EDA), and Electroencephalography (EEG) reflect physiological expressions of the human body that change according to emotional changes. In reverse, changes of bio-signal recordings can be linked to emotional changes. Virtual/Mixed Reality (V/MR) applications can be used in medical education to enhance learning. This work is a proof of application study of wearable, bio-sensor based affect detection in a learning processes, that includes the Microsoft HoloLens V/MR platform. Wearable sensors for HR, EDA and EEG signals recordings were used during two educational scenarios run by a medical doctor. The first was a conventional scenario-based Virtual Patient case for the participant’s bio-signal baselines canonization. The second was a V/MR exploratory educational neuroanatomy resource. After pre-processing and averaging, the HR and EDA recordings displayed a considerable increase during the V/MR case against the baseline. The alpha rhythm, of the EEG, had a borderline degrease and the theta over beta ration a borderline increase. These results indicate an increased attention/concentration state. They also demonstrate that the usage of bio-sensors assist in the detection the emotional state and could provide real-time, affective learning analytics using V/MR in medical education.