Available via license: CC BY 4.0
Content may be subject to copyright.
1
Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.
ModellingtheimpactofMAUPonenvironmental
driversforSchistosomajaponicumprevalence
CURRENTSTATUS:ACC EPTED
AndreaAraujoNavas
UniversiteitTwenteFaculteitGeo-InformatieWetenschappenenAardobservatie
a.l.araujonavas@utwente.nlCorrespondingAuthor
FrankOsei
UniversiteitTwenteFaculteitGeo-InformatieWetenschappenenAardobservatie
RicardoJ.SoaresMagalhães
UniversityofQueensland
LydiaR.Leonardo
UniversityofthePhilippinesDiliman
AlfredStein
UniversiteitTwenteFaculteitGeo-InformatieWetenschappenenAardobservatie
DOI:
10.21203/rs.2.20917/v1
SUBJECTAREAS
Parasitology
KEYWORDS
Schistosomiasismodelling,modifiablearealunitproblem,uncertainty,Bayesian
statistics,convolutionmodel
2
Abstract
Background:Themodifiablearealunitproblem(MAUP)ariseswhenthesupportsizeofaspatial
variableaffectstherelationshipbetweenprevalenceandenvironmentalriskfactors.Itseffecton
Schistosomiasismodellingstudiescouldleadtounreliableparameterestimates.Thepresentresearch
aimstoquantifyMAUPeffectsonenvironmentaldriversofSchistosomajaponicuminfectionby(i)
bringingallcovariatestothesamespatialsupport,(ii)estimatingindividual-levelregression
parametersat30m,90m,250m,500m,and1kmspatialsupports,and(iii)quantifyingthe
differencesbetweenparameterestimatesusingfivemodels.
Methods:WemodelledtheprevalenceofSchistosomajaponicumusingsub-provinceshealth
outcomedataandpixel-levelenvironmentaldata.Weestimatedandcomparedregression
coefficientsfromconvolutionmodelsusingBayesianstatistics.
Results:Increasingthespatialsupportto500mgraduallyincreasedtheparameterestimatesand
theirassociateduncertainties.Abruptchangesintheparameterestimatesoccurat1kmspatial
support,resultinginlossofsignificanceofalmostallthecovariates.Nosignificantdifferenceswere
foundbetweenthepredictedvaluesandtheiruncertaintiesfromthefivemodels.Weprovide
suggestionstodefineanappropriatespatialdatastructureformodellingthatgivesmorereliable
parameterestimatesandaclearrelationshipbetweenriskfactorsandthedisease.
Conclusions:InclusionofquantifiedMAUPeffectswasimportantinthisstudyonschistosomiasis.
Thiswillsupporthelminthcontrolprogramsbyprovidingreliableparameterestimatesatthesame
spatialsupport,andsuggestingtheuseofanadequatespatialdatastructure,togeneratereliable
mapsthatcouldguideefficientmassdrugadministrationcampaigns.
FullText
Duetotechnicallimitations,full-textHTMLconversionofthismanuscriptcouldnotbecompleted.
However,themanuscriptcanbedownloadedandaccessedasaPDF.
Figures
3
Figure1
StudyArea:TheMindanaoregioninThePhilippines.Bluedotsaretheaggregatedsurvey
dataatbarangay-level.
4
Figure2
Environmentalriskfactorsextractionatpixel-levelfromcitieswithinbarangays
5
Figure3
Posteriorestimatesandtheircredibleintervals:a)Normalizeddifferencevegetationindex;
b)Normalizeddifferencewaterindex;c)Landsurfacetemperaturedayd)Landsurface
temperaturenight;e)Elevation;f)Nearestdistancetowaterbodies.Abbreviations:SSA,
Spatialsupportofanalysis
6
Figure4
Densityplotsfortheriskfactorsregressioncoefficients:a)Normalizeddifferencevegetation
index;b)Normalizeddifferencewaterindex;c)Landsurfacetemperaturedayd)Land
surfacetemperaturenight;e)Elevation;f)Nearestdistancetowaterbodies
7
Figure5
Residualplotforthefiveincreasingspatialsupportsofanalysis.Thexaxisrepresentsthe
fittedprevalencevaluesforthefivespatialsupportsofanalysis.Theyaxisrepresentsthe
residualscalculatedbythedifferencebetweentheobservedandpredictedprevalence
values.
8
Figure6
Proportionofsimulatedprevalencedatathatfittheobservedmaximumprevalencevalue.
a)SSA=30m,b)SSA=90m,c)SSA=250m,d)SSA=500m,e)SSA=1km.Abbreviations:SSA,
Spatialsupportofanalysis.
9
Figure7
Proportionofsimulatedprevalencedatathatfittheobservedminimumprevalencevalue.a)
SSA=30m,b)SSA=90m,c)SSA=250m,d)SSA=500m,e)SSA=1km.Abbreviations:SSA,
Spatialsupportofanalysis.
10
Figure8
Proportionofsimulatedprevalencedatathatfittheobservedmeanprevalencevalue.a)
SSA=30m,b)SSA=90m,c)SSA=250m,d)SSA=500m,e)SSA=1km.Abbreviations:SSA,
Spatialsupportofanalysis.
SupplementaryFiles
Thisisalistofsupplementaryfilesassociatedwiththispreprint.Clicktodownload.
Additionalfile3.tiff
Additionalfile1.txt
Additionalfile2.txt