Available via license: CC BY 4.0
Content may be subject to copyright.
1
Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.
Temporalandspatialchangesinphyllosphere
microbiomeofacaciatreesgrowinginarid
environments
CURRENTSTATUS:UNDERREVIEW
AshrafAl-Ashhab
ADSSC
ashraf@adssc.orgCorrespondingAuthor
ORCiD:https://orcid.org/0000-0002-3716-2279
ShiriMeshner
adssc
RivkaAlexander-Shani
adssc
HanaDimerets
adssc
MichaelBrandwein
adssc
YaelBar-Lavan
adssc
GidonWinters
adssc
DOI:
10.21203/rs.3.rs-15477/v1
SUBJECTAREAS
Agroecology EcologicalModeling
KEYWORDS
Acaciaraddiana,Acaciatortilis,Phyllosphere,Desertplants,Microbiome,Endophytes
Epiphytes
2
Abstract
Background:Theevolutionaryrelationshipsbetweenplantsandtheirmicrobiomeareofhigh
importancetothesurvivalofplantsinextremeconditions.Changesinmicrobiomeofplantscan
affectplantdevelopment,growthandhealth.AlongthearidArava,southernIsrael,acaciatrees(
AcaciaraddianaandAcaciatortilis)areconsideredkeystonespecies.Inthisstudy,weinvestigated
theecologicaleffectsofplantspecies,microclimate(differentareaswithinthetreecanopies)and
seasonalityontheendophyticandepiphyticmicrobiomeassociatedwiththesetwotreespecies.186
leafsampleswerecollectedalongdifferentseasonsthroughouttheyearandtheirmicrobial
communitieswerestudiedusingthediversityofthe16SrDNAgenesequencedonthe150-PEIllumina
sequencingplatform.
Results:ourresultsshowedamplifyingV4regionofthe16SrDNAbetterpresentedthebacterial
communitiesofbothendandepiphytesofAcaciatreesthanV2,V3andV5regionsofthe16Sr
DNA.Whencomparingthebacterialdiversityofendoandepiphytesofthetwoacaciatrees(shannon,
choa1,PDandobservednumberofOTU’s),theepiphytesdiversityindicesshowedabouttwicehigher
diversitycomparedtoendophytes.Thebacterialcommunitycompositionscomparingbothendand
epiphyteswerealsosignificantlydifferent.Interestingly,Acaciatortilis(umbralcanopyshape)hada
higherepiphytesbacterialdiversitycomparedtoAcaciaraddiana,butwerenotstatisticallydifferent.
Howevertheendophytebacterialcommunitiesweresignificantlydifferentcomparedtothetwo
Acaciaspecies(FirmicutesdominatedAcaciaraddianaandProteobacteriadominatedtheAcacia
tortilis).Alongsidethebioticfactor,Abioticfactorssuchasairtemperatureandprecipitationalso
showedtosignificantlyeffectendoandepiphytesbacterialcommunities,whileairhumidityonly
affectedtheepiphytesbacterialcommunities.
Conclusions:Theseresultsshedlightontheuniquedesertphyllospheremicrobiomeinmitigating
stressconditionshighlightingtheimportanceofepiphyticandendophyticmicrobialcommunities
whicharedrivenbydifferentgenotypicandabioticfactors.Thispaperalsoshowsonlyafewbacteria
species(OTUS’s)todominatebothepiandendophyteshighlightingtheimportanceofclimatechange
(precipitation,Airtemperature)inaffectingaridlandecosystemswhereacaciatreesareconsidered
3
keystonespeciesinmanyaridregions.
1.Background
Theabove-groundsurfacesofplants(thephyllosphere)harboradiversevarietyofmicroorganisms,
includingbacteria.Theplantphyllospheremicrobiomehasbeenshowntoplayanimportantrolein
theadaptationoftheplanthosttodifferentenvironmentssuchastolerancetoheat,cold,drought
andsalinity[1 − 5].Manystudieshavedemonstrateddesertplantseco-physiologicaladaptationin
microbialfunctionaldiversity[2,6].Whiletheexactcorrelationofphyllospheremicrobial
communitiesandtheseuniqueadaptationsisyettobeclarified,growingfindingsindicatethateach
planttypeprovidesasuitableanduniquemicroenvironment.Plantphyllospheremicrobeswerefound
todifferamongdifferenthabitatandclimateconditionswhencomparedbetweenarid,semiaridand
temperatehabitat(8).Forinstance,recentstudyinvestigatedtheadaptationofthreeNegevdesert
plantspeciesfindingBacteroidetestodominatetheleavesofH.scopariaandwerenotabundantin
theotherspeciestheyinvestigated[7].Thesemicrobeswerealsofoundtocorrelatewithhigh
temperature,droughtsandUNradiation[8,9],regardlessoftheirgeographicaldistance[10].Inthis
context,Desertphyllospheremicrobiomeshowedtointerveneinplantgrowthandalternativewaysin
themetabolismofsomenutrientssuchas:fixingnitrogen(N)fromatmosphericsources[1,11],orby
utilizingphosphorus(P)throughsolubilizingenzymes[12,13]andbyproductionofSiderophoresto
bindiron[14,15],evenincreasingplanthealthagainstotherbacteriapathogenssuchasblight
disease[16],botrytisfungalinfection[17].
Alongsidewiththeeffectofseasonality[6,18,19]andcanopystructure[20]onplantphyllosphere
microbiome,otherstudiesshowedabiotic(climate-related)andbiotic(plantgenotype)factorsplaya
pivotalroleinstructuringthephyllospheremicrobialcommunities[21].Infact,endophytic(“insidethe
leavesofplants”)andepiphytic(“outsidetheleavesofplants”)microbialcommunitiesshowedtobe
differentinthemicrobialcommunitycomposition,wereepiphyticbacterialcommunitieswerericher
andmoreabundantcomparedtotheendophyticbacterialcommunities,moreover,abioticfactors
wereshowntohavedifferenteffectsonendophyticandepiphyticbacterialcommunities.Seasonwas
themajordriverofcommunitycompositionofepiphyteswhilewindspeed,rainfall,andtemperature
4
werethemajordriversforendophyticcomposition[22].
Thesecomplexinteractionsbetweenplantmicrobiome(bothendophyticandepiphytic)anddifferent
bioticandabioticconditionswithinaridecosystems,isofparticularinterestconsideringthecurrent
scenariosofclimatechangeanddesertification[23].Additionally,studiesonmicrobiomesinarid
plantscouldshednewlightonimportantkeymicrobialgroupsthatmightbeofpotentialuseinarid
agriculturalpractices,biotechnologyandplantadaptationstrategiestoclimatechange[24].Inthis
study,wefocusedontheNegevdesert(Fig.1A)byinvestigatingtheendophyticandepiphytic
microbiomeassociatedwiththephyllosphere(leaves)ofAcaciaraddiana(Savi)andAcaciatortilis
(Forssk)(Fig.1B).
ThesetwotreespeciesarefoundgrowinginsomeofthehottestanddriestplacesonEarth.Within
thearidAravavalleyalongtheSyrian-Africantransform(GreatRiftvalley)insouthernIsraeland
Jordan,AcaciaraddianaandAcaciatortilisarethetwomostabundantand,inmanyplaces,theonly
treespeciespresent[25].Inthesearidhabitats,acaciasarefoundmostlygrowinginthechannelsof
ephemeralriverbeds[26].BothAcaciaraddianaandA.tortilisareconsideredkeystonespeciesthat
supportthemajorityofthebiodiversitysurroundingthemandlocallyimprovesoilconditionsforother
plantspecies[26 − 30].Wehypothesizedthatvariationsinthebacterialcommunitiesofphyllosphere
wouldbeassociatednotonlywiththehostspecies(A.raddianaandA.tortilis),butalsowithsampling
season(temporalchanges),treemicroclimate(leavesgrowingonthenorthorsouthsideoftree
canopythatareexposedtodirectsunradiationvs.shadedleaves).
2.Results
Atotalof186acacialeavessamplewerecollectedforbothepiphyticandendophyticmicrobial
communities.Afterdataprocessing,eachofthefiveprimersetswereexaminedseparatelyfortheir
coverageacrossthesamplesandtheirretainedsequencenumbers(TableS4).
Resultsshowthatwhenusingthethirdprimerset,wewereabletoretainthelargestnumberof
sequencesforallthesamples13,944 ± 13,710(n = 186,min = 122)comparedtotherestofthe
primers(Table1).Thus,webasedallourfurtheranalysisofbacterialcommunitiesonthisprimerset.
5
Table1
Sequencenumberofthesplitfilesbasedonthedifferentprimersetwithsomebasicstatisticsincluding
sequencesaverage±SD,numberoffinalsamplesaftercuration(n),andtheminimumsequence
numberineachsample(min).
Firstprimerset 15,812 ± 14,109(n = 186) 4,569 ± 6,594(n = 175,min =
102)
Secondprimerset 1,540 ± 3,631(n = 186) 589 ± 961(n = 75,min = 104)
Thirdprimerset 36,451 ± 18,831(n = 186) 13,944 ± 13,710(n = 186,min =
122)
Forthprimerset 7,774 ± 8573(n = 186) 1,565 ± 3,513(n = 145,min =
100)
Fifthprimerset 998 ± 2,389(n = 183) 1,441 ± 2,434(n = 40,min = 104)
2.1.Acaciabacterialcommunitycompositionofendophyticcomparedto
epiphytic
Thediversityestimatesofepiphyticandendophyticbacterialcommunities,forbothA.raddianaand
A.tortilisatSouth“S”canopysidesareshowninTable2.Foralldiversityestimates,thediversityof
endophyticbacteriadiversitywashalfofthatfoundontheepiphytic(Table2)indicatingadifferent
bacterialcommunityanddiversitypatternthatexistsinthesetwomicrobialcommunities.
Table2
Averagediversityestimates(±SD)measuredacrosstheentiresamplingmonthsforsouthside(S)of
thetreecanopyfortheepiphyteandendophytemicrobialcommunitiesofA.raddianaandA.tortilis.
ShownareobservednumberofOTUs,Chao1species’diversityestimate,microbialcommunities
phylogeneticdiversityandtheShannonbacterialcommunities’diversity.Diversitymetricswere
calculatedinQIIME-1software.
Species Canopy Observed
numberofOTUs
Chao1species’
diversity
estimate
microbial
communities
phylogenetic
diversity
Shannon
bacterial
communities’
diversity
A.raddiana S-epiphyte 375 ± 158 644 ± 284 18.5 ± 5.7 5.2 ± 1.1
S-endophye 171 ± 41 350.3 ± 70 10.3 ± 2.1 2.7 ± 0.5
A.tortilis S-epiphyte 410 ± 164 702 ± 277 20.4 ± 6.5 5.0 ± 1.1
S-endophyte 135 ± 35 275.0 ± 73 8.7 ± 2.1 2.7 ± 0.7
Tocomparethediversitiesofepiphyticandendophyticbacterialcommunitiesextractedfromleaf
samples,acaciasamplesfromsouthcanopysides(Table2)wereanalyzedandplottedusingNMDS
basedonBray-Curtisdistancematrix(Fig.2).Twoseparateclustersforendophyticandepiphytic
bacterialcommunities(Fig.2A)werefoundtobesignificantlydifferent(p = 0.005).However,while
bothacaciaspecies(A.raddianaandA.tortilis)demonstratedseparateclusterswithintheendophytic
bacterialcommunities(p-value = 0.006,Fig.2AandB),theydidnotseparateintodifferentclustersin
theepiphyticsamples(p-value = 0.585,Fig.2A).Toillustratethesedifferences,majorbacterialphyla
wereplottedforbothspeciesinepi-andendophyticsamples(Fig.3).Epiphyticsamplesshowed
6
significantlyhigherabundanceofActinobacteria,Cyanobacteriaandsignificantlylowerabundanceof
FirmicutesandProteobacteriacomparedwithendophyticsamplesfromthesameleaves.While
epiphyticbacterialcommunitiesshowednosignificantchangesinphylumcompositionbetweenthe
hostspecies(A.raddianaorA.tortilis),theendophyticbacterialcommunitiesdifferedbetweenacacia
species(Fig.3).Inendophyticbacterialcommunities,abundanceofFirmicuteswassignificantly
higheronA.raddianacomparedwithleavessampledfromA.tortilistrees(61.2 ± 32.0%and32.0 ±
27.9%,respectively),whileA.tortilishadasignificantlyhigherabundanceofProteobacteriathanA.
raddiana(60.9 ± 26.4%and27.7 ± 21.3%,respectively).Interestingly,Comamonadaceaecomposed
morethan88%andBacillaceaecomposedmorethan90%ofproteobacteriaandactinobacteria
respectively.
2.2.Acaciatemporalandcanopyvariationofphyllospherebacterial
communities
Tocheckthetemporaleffectonepi-andendophyticbacterialcommunities,acacialeafsamplesfrom
differentsamplingtimes(Months;TableS1)wereanalyzedandplottedusingNMDSbasedonBray-
Curtisdistancematrix.Results(Fig.4A)showedseparateclustersforepiphytesbacterialcommunities
atdifferentsamplingmonths(p-value = 0.001).Forendophyticbacterialcommunities(Fig.4B),
differentsamplingmonthsshowednoclearseparation(p-value = 0.574),neverthelessaseparate
clusterwasnoticedforthesamplescollectedinJuly-SeptemberandNovembercomparedwiththe
endophyticbacterialcommunitiescollectedinJanuary,February,andinApril-June(Fig.4B).
Toinvestigatetheeffectofmicroclimate(differentsidesofthetreecanopy)ontheepiphytebacterial
communities,thediversityestimatesofepiphyticbacterialcommunitiesforbothA.raddianaandA.
tortilisin(i)northcanopyside,(ii)centercanopyshadedareawere,and(iii)southcanopysidewere
compared(Table3).BothDiversityestimates(Table3)andbacterialcommunitycomposition
ordination(Fig.5)showednocleardifferencesbetweenthedifferentcanopysidesforbothA.tortilis
andA.raddiana(p-value = 0.728),norbetweenthetwospecies(A.raddianaandA.tortilis)(p-value =
0.123),indicatingasimilarepiphyticbacterialdiversityacrossthedifferentsidesofthetrees.
7
Table3
Averagediversityestimates±SDacrosstheentiresamplingmonthsforepiphyticbacterial
communitiesofA.raddianaandA.tortilis.Shownarethedifferentcanopiesfromwhichsampleswere
takenfrom(N=northcanopyside,C=centercanopyshadedarea,S=southcanopyside),observed
numberofOTUs,Chao1species’diversityestimate,microbialcommunitiesphylogeneticdiversityand
theShannonbacterialcommunities’diversity.DiversitymetricswerecalculatedinQIIME-1software.
Species Canopy Observed
numberofOTUs
Chao1species’
diversity
estimate
microbial
communities
phylogenetic
diversity
Shannon
bacterial
communities’
diversity
A.raddiana N-epiphyte 382 ± 204 676 ± 279 19.0 ± 7.1 5.1 ± 1.6
C-epiphyte 342 ± 181 604 ± 292 17.7 ± 6.4 5.0 ± 1.4
S-epiphyte 375 ± 158 644 ± 284 18.5 ± 5.7 5.2 ± 1.1
A.tortilis N-epiphyte 480 ± 189 801 ± 291 22.3 ± 6.5 5.5 ± 1.1
C-epiphyte 437 ± 180 760 ± 271 20.8 ± 6.4 4.8 ± 1.4
S-epiphyte 410 ± 164 702 ± 277 20.4 ± 6.5 5.0 ± 1.1
Tobetterillustratedifferentepiphytebacterialphylaandtheirseasonalitychanges,weplottedthe
differentbacterialphylacompositionalongwiththedifferentsamplingmonthsandcanopysides
(Fig.6).TemporalfluctuationswerefoundbetweenActinobacteriaandFirmicutescompositions,with
thephylaFirmicutesfoundtobemostlydominantinJanuaryandJulyforbothCenterandSouth
canopysides(72.4 ± 14.6%),butnotintheNorthcanopysidewhichwasdominatedbyActinobacteria
phyla(51.2 ± 17.7%)(Fig.6A).DifferentpatternsofbacterialdiversitywerealsofoundinJuly,where
bothNorthandSouthweredominatedbyActinobacteria(52.7 ± 5.8%)comparedtothecenter
canopysidethatwasdominatedbyProteobacteria(70.2 ± 21.7%).InSeptember,differentclusters
formedintheSouth,NorthandCentercanopysides,andallthesecanopysidesweredominated
mostlybyAcidobacteria(57.0 ± 8.7%)andFirmicutes(23.5 ± 5.5%).Itshouldalsobenotedthatin
September,thedifferentcanopysideshostedmoresimilarproportionsofthesedominatingbacterial
groups.
Totestwhetherotherabioticfactorsaffectthemicrobialcommunitiesdifferentlyforcanopysides,
canonicalcorrespondenceanalysis(CCA)[31]wasperformedfortheepiphytic(Fig.7A)and
endophytic(Fig.7B)bacterialcommunitiesofA.raddianaandA.tortilis.Onlythoseabioticfactors
withsignificantvalues(p-value ≦ 0.005)wereplotted.Resultsshowthattemperature,VPD,humidity
andprecipitationhadasignificanteffectontheepiphytesbacterialcommunitiesregardlessofthe
canopyside(Fig.7A),whiletemperatureandprecipitationhadasignificanteffectontheendophytic
8
bacterialcommunities(Fig.7B).
Totestforthemajorchangesinbacterialspecies,theabundantOTU’sandtheirrelativebacterial
familieswereplottedasaheatmapforendophyticandepiphyticsouthcanopyside(Fig.8).Results
showthatonlyfewbacterialOTU’sweredifferentiallyabundantcomparingepi-andendophytic,or
whencomparingwithintheendophyticbetweenA.raddianaandA.tortilis.Themajordifferences
occurredin5majorunclassifiedOTU’sbelongingtoBacillus,Comamonadaceae,Geodematophilaceae
andMicrococcaceaebacterialfamilies.
3.Discussion
Aimingtoimproveourunderstandingofthefunctionsthatphyllospheremicrobialcommunitiesmight
playinplantsgrowinginextremearidenvironments,weappliedahighresolutionsamplingscheme
tostudyingthephyllospheremicrobialcommunitiesoftwodesertkeystonetrees(Acaciaraddiana
andAcaciatortilis).Weinvestigatedboththeendophyticandepiphyticbacterialcommunitiesto
understandthe:(i)intra-andinter-individualspatialvariationofthemicrobialcommunitywithina
tree(thevariationwithinthesametreecausedbydifferentsidesofthecanopy,andthevariation
betweenneighboringtreesofthesamespeciessampledatthesametimeandsite)(ii)hostspecies
variation(variationofthemicrobialcommunitycausedbythehost(tree)species(i.e.,Acacia
raddianacomparedwithneighboringAcaciatortilis),(iii)temporalvariationofthemicrobial
communitywithinthesametreespeciesandcanopyside(samplescollectedfromthesametreesbut
atdifferentseasons).
Ourresultsdemonstratethattheepiphyticbacterialcommunitiesweremoresensitivetochangesin
theexternalenvironmentalconditions,comparedwiththeendophyticbacterialcommunitiesthat
weremorestablebetweendifferentenvironmentalconditions(e.g.,seasons)butvariedamonghost
treespecies.Surprisingly,upto60%ofthetotalbacterialcommunities(thecombinedendophyticand
epiphyticmicrobiomepopulations)wereunclassifiedbelowfamilylevel,highlightingtheuniqueness
ofthemicrobiomeassociatedwithacaciatreesinthearidenvironmentintheArava.
Theepiphyticbacterialdiversitywasfoundtobesignificantlyhigherthantheendophyticbacterial
community(Table2).IntermsoftheoverallobservednumberofOTU’s,theepiphyticbacterial
9
communitywasshowntohavedoublethediversitycomparedtoitsendophyticbacterialcommunity
counterpart.SimilarfindingsatearlyandlateleavesdevelopmentinOriganumvulgarealsofoundthe
totalnumberofcolony-formingunits(CFU)ofendophyticcommunities(1.8 ± 0.1)waslessthanhalf
oftheCFUofepiphyticbacterialcommunities(5.0 ± 0.2)[32].However,ourresultscontradict
previousworkonmicrobiomesassociatedwithArabidopsisthaliana)thatshowedepiphyticbacterial
diversityindexeswerelowerthanthosemeasuredfortheassociatedendophyticbacterial
communities[33].Arecentstudyontheepiphyticandendophyticfungaldiversityinleavesofolive
treesgrowinginMediterraneanenvironments,showedthattheepiphyticfungalcommunitieshad
higherdiversityindicescomparedtotheendophyticdiversityestimates[22].Thefactthatour
epiphyticOTUdiversitywashigherthantheendophyticdiversityisparticularlysurprising,considering
previouspublicationindicatedthatastheconditionsinsidetheplantmightbemorefavorable
comparedtothehostileconditionsoutside[34].Thismightexplainthedifferentfindingscomparing
epiphyticandendophyticbacterialabundanceanddiversityinotherstudies,butinourcase,bothA.
raddianaandA.tortilishadalowerepiphyticbacterialdiversitycomparedtoepiphyticbacterial
diversitythroughoutthesamplingmonth,includingthehotandharshconditionsofthedesert
summer(TableS5).Thisdiscrepancyfindinginourresultsandpreviouslydocumentfindingscouldbe
uniquetodesertplants.Plantsgrownindesertenvironmentsaresubjectedtocontinuousstress
conditionsincludingincreasedsaltconcentrationinendophyticcompartments[35],decreasing
stomatalconductanceandincreasedconcentrationofabscisicacid[36]andmanyothermetabolites
andenzymes[37].Theseplantresponseswereshowntoaffectplants-microbiomecolonization[32,
38,39].Moreover,ourresultsshowedthattheendophyticandepiphyticbacterialcommunitieswere
significantlydifferentfromeachother(Fig.2A).Infact,endophyticbutnotepiphyticbacteria
communities,differedbetweenthetwoacaciaspecies(Fig.3A,3B,4)–specifictothehost(acacia
tree).Thispotentiallyindicatesthatendophyticbacteriawerehorizontallytransmittedandthatthey
mightbemoreaffectedbygenotypicfactorsratherthanabioticfactors[4,5,21].
Similartootherfindingsindicatingthechangesinbacterialcommunitiesinphyllospherefollowing
differentenvironmentalandbioticfactors[38,39],ourresultsshowseasonalitytobethemajordriver
10
ofcommunitycompositioninepiphyticbacteria(Fig.4AandFig.6),includingaspecificabiotic
parameterssuchas;humidity,temperature,precipitationandVPD(Fig.7AandB).Whiletheseresults
highlightthesignificanteffectoftemperatureonbothepiphyticandendophyticbacterial
communities,theeffectofmicroclimate(differentcanopysides)ontheepiphyticbacterialdiversity
(Table3)andcommunitycomposition(Figs.5and6)showednosignificantvariationforthedifferent
canopysidesforbothspecies.Thiscouldbeexplainedbythedifferencebetweenmonthly
temperature,humidityandprecipitationhindersbacktheseeffectsofcanopysidevariation.
Wealsoshowedthatthebacterialcommunitycompositionsfoundinthisstudy,differfromother
epiphyticorendophyticmicrobiomefoundintropical,subtropicalandtemperateregions,whichare
mostlydominatedbyhighabundanceofAlphaproteobacteria,BacteroidetesandAcidobacteria[1,40,
41].Inourstudy,themajordifferencesbetweenepiphyticandendophyticbacterialcommunities
wereduetothedifferentialabundanceoffourmajorunclassifiedOTU’sbelongingthebacterial
familiesofBacillaceae(Firmicutesphylum)andComamonadaceae(Betaproteobacteriaphylum)for
theendophyteofA.raddianaandA.tortilis,respectively(Fig.8).OtherunclassifiedOTU’sbelonging
tothebacterialfamiliesofGeodematophilaceaeandMicrococcaceae(bothbelongingto
Actinobacteriaphylum)werefoundintheepiphytebacterialcommunities(Fig.8).Thesebacterial
familieswerealsofoundinotherstudiesinvestigatingextremeconditionsthatinvestigatedthe
metagenomicsignaturesofTamarixphyllosphere[10,42,43]andotherdesertshrubs[7],
highlightingtheimportanceandtherelationshipofthesefoundbacterialcommunitiesindesertplants
adaptationtoaridenvironment[7].However,theexactlinkbetweenthesedifferentbacterialgroups
andtheirfunctionaldiversityisstilltobeinvestigated,suchstudiescouldshedthelightofspecific
metabolitesandenzymesthattheseadaptivebacterialgroupsexhibitinsuchanenvironmentandat
differentstressconditions.Learningfromthelongcoevolvedplants-microbiomeformnaturally
occurringplantsinharshconditionsisinvitalunderthecurrentrateofclimatechangeandtheurgent
needfornewinnovativesolutionsthatcanbelearnedfromtheseinteractionsformoreadaptivearid
landagriculture.
4.Conclusion
11
Theevolutionaryrelationshipandinteractionbetweenplantsandtheirmicrobiomeisofhigh
importancetotheiradaptationtoextremeconditions.Changesinplantsmicrobiomecanaffectplant
development,growthandhealth.Inthisstudyweexploredtherelationshipbetweennaturally
occurringdesertplantsandtheirmicrobiomealongseasonalandabioticconditions.Theseresults
shedlightontheuniquedesertphyllospheremicrobiomeinmitigatingstressconditionshighlighting
theimportanceofepiphyticandendophyticmicrobialcommunitieswhicharedrivenbydifferent
genotypicandabioticfactors.Nevertheless,morestudiesutilizingthefunctionaldiversityofthese
differentplants-microbiomeinteractionsinaridclimateisinvitalwithdesertificationandglobal
warmingprocessesinmind.Thepotentialagritechoftheseuniquemicrobialcommunitiescallsfor
moreresearchonthistopicinthefutureexploringthefunctionaldiversityofeachendoandepiphytic
microbialcommunitiesalongsidewithplantsmetabolitesatdifferentstressconditions.
5.MaterialsAndMethods
5.1.Studyareaandsamplingscheme
ThisstudywasconductedintheAravavalley,ahyper-aridregionalongtheSyrian-Africanriftin
southernIsraelandJordan.Theelevationofthearearangesfrom230mabovesealevelto419m
belowsealevel(Fig.1A).TheclimateintheAravavalleyishotanddry:30-yearaverageminimum,
mean,andmaximumairtemperatureofthehottestmonthwas26.2°C,33.2°C,and40.2°C,
respectively;averageminimum,mean,andmobotemperaturesensorsmaximumairtemperatureof
thecoolestmonthwererecordedas9.1°C,14.4°C,and19.6°C,respectively,andannual
precipitationofonly20–70mmisrestrictedtotheperiodbetweenOctoberandMay[30]withlarge
year-to-yearvariations[44].Thecombinationoftheveryhighairtemperaturesandtheverylow
relativehumidityvaluesof6%cancausesummermiddayvaporpressuredeficit(VPD)toreachupto
9kPa[30].Vegetationintheregionisusuallyconfinedtowithinwadis(ephemeralriverbeds[45]),
wherethemainwatersupplycomesfromundergroundaquifers[46,47]andwinterflashfloods[48].
MultipleindividualtreesofA.raddianaandA.tortilisarescatteredthroughouttheSheizafwadi
(Fig.1A),butneverformingacontinuouscanopy.Toinvestigatetheeffectofdifferentcanopysides
onphyllospheremicrobiome,leafsampleswerealsocollectedfromthreedifferentcanopysides
12
(north,centerandsouth;Fig.1D).
WadiSheizafisadrysandystreambedatthenorthernedgeoftheAravaValley,Israel(Fig.1A;
30°44'N,35°14'E;elevation− 137m).Meteorologicaldata(airtemperatureandhumiditylogged
every3hours)forthissitewereobtainedfromtheIsraeliMeteorologicalService(IMS)forstation
340528atHatzeva,located7kmnorthofWadiSheizaf(Fig.1C).
Forsamplingbacteriafromacaciatrees,twoneighboringtrees(> 20mawayfromeachother)ofA.
tortilis(T023andT300)andtwoneighboringtreesofA.raddiana(R284andR286)inWadiSheizaf,
weresampledmonthlybetweenJanuaryandDecember2015fortheirNorth,SouthandCentral
canopysides(Fig.1DandTableS1).Thissamplingschemewaschosentoenableustoinvestigate
theeffectofhavingtwodifferenthost(tree)species,inadditiontothevariationcausedbythe
samplingseasonandthemicroclimateeffect(differentcanopysites(central,north,andsouth-facing
sidesoftree)onthephyllospheremicrobiome.
Duringallsamplingmonths,sampleswerecollectedfromtreesusingsterilegloves(changedbetween
eachsample).Leaves(20–25gfreshweight)werecollectedmonthly(seeTableS1forexactdates)
andinsertedinto15mlsteriletubesplacedonice.Uponreachingthelaboratory(within< 2hrs)
samplesweremovedtofreezers(-20°C)wheretheywerekeptuntilsubjectedtoDNAextraction.
5.2.DNAextraction
AllDNAextractionswereperformedusingtheMoBio96wellplatePowerSoilDNAIsolationKits(MO
BIOLaboratories,California,USA).Forepiphyte“outsideofplantsleaves”,0.15g(FW)ofleaveswere
weighedandplacedin1.5mlEppendorftubesfilledwith500µlMoBioPowerbeadSolutionand
sonicated(DG-1300Ultrasoniccleaner,MRCLAB,Israel)for5minandthenthesolutionwas
transferredtothePowerbeadTubesandtherestofthestepsforDNAextractionwerecarriedout
followingthemanufacturerprotocol.Fortheextractionofendophytic(“insideplantleaves”)microbial
communities,leaveswerewashedusing1mlofDNA/RNAfreewaterthreetimestogetridofasmuch
oftheepiphytemicrobiomefraction.Thewashedleaveswerethencutintosmallpiecesusinga
sterilescalpelandplacedintotheMoBio96wellPowerbeadplateforDNAextractionfollowingthe
manufacturer’sprotocol.AllstepsofDNAextractionwerecarriedoutinasterileUV-hood(DNA/RNA
13
UV-cleanerbox,UVT-S-ARbioSan,Ornat,Israel)toreduceexternalcontaminations.IneveryDNA
extraction96wellplate,DNAextractionnegativecontrolswereaddedbyplacing200µlofRNasefree
water(SigmaAldrich,Israel).AllsampleswereplacedrandomlyintheDNAextractionplateto
excludeanybias.
5.3.PCR,librarypreparationandIlluminasequencing
Inordertoobtainabetterphylogeneticresolutionanddiversityestimate,amultiplexPCRusingfive
differentsetsofthe16SrDNAgeneswasappliedtocoverabout1000bpofthe16SrRNAgene(Table
S2).
FirstPCR(PCR-I)reactionswereperformedintriplicates,whereeachPCR-Ireaction(total25µl)
contained;12.5µlofKAPAHiFiHotStartReadyMix(biosystems,Israel);0.4µlofequalv/vmixed
primersforwardandreverseprimers(TableS2);10µlofmoleculargradedDDW(Sigma,Israel)and;
2µlof(2-100ng/µl)DNAtemplate.PCR-IreactionswereperformedinBiometrathermalcycler
(Biometra,TGradient48)asthefollowing:initialdenaturation95°Cfor2min,followedby35cycles
of98°Cfor10sec,61°Cfor15sec,and72°Cfor7sec.EndingthePCR-Iroutinewasafinal
extensionfor72°Cfor1min.UponcompletionofPCR-I,anelectrophoresisgelwasruntoverifyall
thesamplesworkedsuccessfully.Followingsuccessfulandverifiedamplification,triplicatesamples
werepooledtogetherandwerecleanedusingAgencourt®AMPureXP(BeckmanCoulter,Inc,
Indianapolis,USA)beadsolutionbasedonmanufacturer’sprotocol.
5.3.1.LibraryPreparationandIlluminasequencing
LibrarypreparationwasperformedusingasecondPCR(PCR-II)toconnecttheilluminalinker,adapter
andunique8basepairbarcodeforeachsample[49].ThePCR-IIreactionswerepreparedbymixing
21µlofKAPAHiFiHotStartReadyMix(biosystems,Israel),2µlofmixedprimerswithilluminaadapter
(TableS3),12.6µlofRNasefreewater(Sigma,Israel),4µlofeachsamplefromthefirstPCRproduct
with2µlofbarcodedreverseprimer,andplacedinBiometrathermalcycler(Biometra,TGradient48)
asthefollowing:initialdenaturation98°Cfor2min,andthen8cyclesof98°Cfor10sec;64°Cfor
15sec;72°Cfor25sec;andfinalextensionof72°Cfor5min.ThenallPCR-IIproductwerepooled
togetherandsubjectedtocleaningusingAgencourt®AMPureXP(BeckmanCoulter,Inc,Indianapolis,
14
USA)beadsolutionbasedonmanufacturer’sprotocol,where50µlofpooledPCR-IIproductwere
cleanedusing1:1ratiowiththebeadsolutionformoreconservativesizeexclusionoffragmentsless
than200bp,andatthefinalstep,50µlofDDWwith10mMTris[pH = 8.5]wereaddedtoeach
sample.Thiswasfollowedbyaliquoting48µlofthesupernatantintosterilePCRtubesandstoredin
-80°C,whileanadditional15µlofthefinalproductweresenttotheHebrewUniversity(Jerusalem,
Israel)wheretheyweresequencedonfulllaneof150PEilluminaMiseqplatform.
5.4.Sequenceanalysisandqualitycontrol
Aseriesofsequencequalitycontrolstepswereappliedbeforedataanalysis.Theseincludedthe
followingsteps:allsampleswerefilteredforPhiXcontaminationusingBowtie2[50];incompleteand
low-qualitysequenceswereremovedbypairingthetworeadsusingPEARsoftware[51];lookingfor
ambiguousbasesandmissmergedsequencescarriedoutusingtheMOTHURSoftwareV.1.36.1[52].
Followingqualitycontrol,QIIME-1software[53]wasused.Sequenceswerealigned,checkedfor
chimericsequencesandclusteredtodifferentOTU’s(operationaltaxonomicunit)basedon97%
sequencesimilarity,thenthesequenceswereclassifiedbasedonGreengenesdatabaseV13.8[54],
andanOTUtablewasgenerated.Allsequencesclassifiedasf__mitochondria,c__Chloroplast,
k__ArchaeaandK__Unclassified,wereremovedfromtheOTUtable.
5.4.1.OTUrichnessanddiversityestimates
Foreachsample,fourdiversityestimatesweremeasured;(i)observednumberofOTU’s,(ii)Chao1
species’diversityestimate[55],(iii)Shannonbacterialcommunities’diversity[56],and(iv)microbial
communitiesphylogeneticdiversity[57].AllthesediversitymetricswerecalculatedinQIIME-1
software[58]usingtheparallel_alpha_diversity.pycommandontherarefactionsubsamplesto10,000
sequencesusingmultiple_rarefactions.pycommand.
5.4.2.Assessmentofcommunitycomposition
FromtheobtainedQIIMEclassifiedOTUtable,eachtaxonomicgroupwasallocateddowntothegenus
levelusingsummarize_taxa.pycommandinQiimeandrelativeabundancewassetasthenumberof
sequencesaffiliatedwiththattaxonomicleveldividedbythetotalnumberofsequences.Relative
abundanceswereplottedusingRstatisticalsoftware[59]whereeachphylumwasassigneda
distinguishedcolourandallgeneraunderthesamephylum,wereassignedtodifferentshadesofthe
15
samecolour.
5.4.3.StatisticalAnalysis
UsingRstatisticalsoftware[59]allsampleswereanalyzedbasedonthepreviouslygeneratedOTU
table.UsingVEGANpackage[60]inR,non-parametricmultidimensionalscaling(NMDS)wereusedto
produceordinationbasedonBray-Curtisdistancematrixusingatotalsumtransformedmatrixforthe
rowOTUtable[61,62].Statisticalcomparisonsweredonebasedonanalysisofthesimilaritybetween
thematricesofdifferentOTU’stableusingANOSIMcommandinR.
Declarations
Ethicsapprovalandconsenttoparticipate
Notapplicable
Consenttopublish
AllAuthorapprovehesubmission
Authors'information(optional)
Notapplicable
Availabilityofdataandmaterial
AllcuratedsequenceswerejoinedintoasinglefastafileandsubmittedtoMG-RASTunderprojectlink
(https://www.mg-rast.org/linkin.cgi?project=mgp92155).
Codeavailability
Allcodesforquarationsteps,qualitycontrolandsequenceanalysisuploadedtoGitHubrepository,
includingthemetadatafilesandmadepubliclyavailable(https://github.com/ashrafashhab/Desert-
plant-microbiome).
Competinginterests
Allauthorsdeclarenoconflictofinterest
16
Funding
ThisresearchwassupportedbyICAfundingagency,grantnumber:03-16-06A
Authors'contributions
Dr.AshrafAlAshhabwasinvolvedintheprojectconceptualization,datacuration,formalanalysis,
methodology,projectadministration,resources,visualizationandMSwriting.Dr.ShiriMeshner,
MichaelBrandweinandDr.GidonWinterswereinvolvedinFundingacquisition,project
Conceptualizationandprojectinvestigation.Inaddition,bothDr.GidonWintersandDr.YaelBar-lavn
alsotookanactivepartinMSandgraphicsrevisionandediting.WhileMs.RivkaAlexander-Shaniand
HanaDimeretshelpedinlaboratoryandfieldwork.
Acknowledgments
WethankIsraelCharitableAssociation(ICA)thefundingagencyforitsgeneroussupportofthis
researchthatwasawardedundergrantnumber:03-16-06A.WealsothankDr.NoamShentalfromthe
DepartmentofComputerScienceattheOpenUniversityofIsrael,forhisgeneroussupportin
preliminarydataanalysis,selectionof16sPrimesandhisinsightintheexperimentaldesign.Also
specialthankstoMs.TalGalkerfromAravaStudiofordevelopingFig.1intheMS.
References
1. K e mbelSW,O’ConnorTK , A r n o l d H K,etal(2014)Relatio n s h i p s b e tweenphyllosphere
bacterialcommunitiesa n d p l a n t functionaltraitsinaneotr o p i c a l f o r est.ProcNatl
AcadSci111:13715 – 1 3 7 2 0.https://doi.org/10.10 7 3 / p n a s.1216057111
2. M artirosyanV,Steinberge r Y ( 2 0 1 4)Microbialfunctionald i v e r s i t y i n t h ephyllosphere
andlaimosphereofdif f e r e n t d e sertplants.JAridEnviron 1 0 7 : 2 6 –33.
https://doi.org/10.101 6 / j . j a r i d e n v.2014.04.002
3. S a leemM,MeckesN,P e r v a i z Z H ,TrawMB(2017)M i c r o b i a l i n teractionsinthe
17
phyllosphereincreasep l a n t p e r f ormanceunderherbiv o r e b i o t i c stress.Front
Microbiol8:.https://doi.o r g / 1 0 . 3 3 89/fmicb.2017.000 4 1
4. W hipps,J.M.,Hand,P.,Pin k , D . a n dBending,G.D.2008 . P h y l l o s p h eremicrobiology
withspecialreferenceto d i v e r s i t y andplantgenotype.Jou r n a l o f A pplied
Microbiology105(6),p p . 1 7 4 4 –1755.
5. A g lerMT,RuheJ,KrollS,e t a l ( 2 0 1 6 )MicrobialHubTaxaL i n k H o s t andAbiotic
FactorstoPlantMicrobio m e V a r ia tion.PLoSBiol14:.
https://doi.org/10.137 1 / j o u r n a l . p bio.1002352
6. R e dfordAJ,BowersRM , K n i g h t R , etal(2010)Theecolo g y o f t h e phyllosphere:
Geographicandphylog e n e t i c v a riabilityinthedistributionof b a c t e r i a ontreeleaves.
EnvironMicrobiol12:28 8 5 – 2 8 93.https://doi.org/10.1 1 1 1 / j . 1 462-2920.2010.02 2 5 8 . x
7. M artirosyanV,UncA,Mille r G , e t a l (2016)DesertPerenn i a l S h r u b s Shapethe
Microbial-CommunityM i s c e l l a n y i n LaimosphereandPh y l l o s p h e r e Space.MicrobEcol.
https://doi.org/10.100 7 / s 0 0 2 4 8-016-0822-9
8. Q v it-RazN,JurkevitchE,Be l k i n S ( 2 0 08)Drop-sizesodalak e s : T r a n s ie ntmicrobial
habitatsonasalt-secretin g d e s e r ttree.Genetics178:16 1 5 – 1 6 22.
https://doi.org/10.153 4 / g e n e t i c s.107.082164
9. C a rvalho,S.D.andCastillo, J . A . 2 0 1 8.InfluenceofLightonP l a n t - P h y l l o s phere
Interaction.Frontiersinp la n t s c i e n c e9,p.1482.
10. F i n k e lOM,BurchAY,EladT, e t a l ( 2 0 1 2)Distance-decayrela t i o n s h i p s p artially
determinediversitypat t e r n s o f p hyllospherebacteriaon T a m r i x t reesacrossthe
sonorandesert.ApplE n v i r o n M ic robiol78:6187–619 3 .
https://doi.org/10.112 8 / A E M . 0 0888-12
11. L a m baisMR,BarreraSE, S a n t o s E C,etal(2017)Phyllosp h e r e M e taproteomesof
TreesfromtheBrazilian A t l a n t i c F orestShowHighLevels o f F u n c t io nalRedundancy.
18
MicrobEcol.https://doi.o r g / 1 0 . 1 007/s00248-016-08 7 8 - 6
12. M w a jitaMR,MurageH,Ta n i A , K a h angiEM(2013)Evalu a t i o n o f r h izosphere,
rhizoplaneandphyllosp h e r e b a c teriaandfungiisolatedf r o m r i c e inKenyaforplant
growthpromoters.Sp r i n g e r P l u s.https://doi.org/10.11 8 6 / 2 1 9 3-1801-2-606
13. B a t o olF,RehmanY,Hasna i n S ( 2 0 16)Phylloplaneassociat e d p l a n t b acteriaof
commerciallysuperior w h e a t v arietiesexhibitsuperiorp l a n t g r o w thpromoting
abilities.FrontLifeSci.http s : / / d o i . o r g /10.1080/215537 6 9 . 2 0 1 6.1256842
14. S c a v ino,A.F.andPedraza, R . O . 2 0 1 3.TheRoleofSiderop h o r e s i n P lantGrowth-
PromotingBacteria.In: M a h e s h wari,D.K.,Saraf,M., a n d A e r o n,A.eds.Bacteriain
agrobiology:cropprod u c t i v i t y . B erlin,Heidelberg:Spring e r B e r l i n H eidelberg,pp.
265–285.
15. F u S F ,SunPF,LuHY,etal(2 0 1 6 ) P l a ntgrowth-promotingtr a i t s o f y e astsisolated
fromthephyllosphere a n d r h i z o sphereofDroseraspa t u l a t a L a b.FungalBiol.
https://doi.org/10.101 6 / j . f u n b i o . 2015.12.006
16. L i S B , FangM,ZhouRC,Hu a n g J ( 2 0 12)Characterizationa n d e v a l u a tionofthe
endophyteBacillusB01 4 a s a p otentialbiocontrolagent f o r t h e c o ntrolof
Xanthomonasaxonop o d i s p v . dieffenbachiae-Induce d b l i g h t o f Anthurium.Biol
Control.https://doi.org/1 0 . 1 0 1 6 /j.biocontrol.2012.06.0 0 2
17. K e f i A ,SlimeneIB,Karkouch I , e t a l ( 2 0 15)Characterizationof e n d o p h y ticBacillus
strainsfromtomatop la n t s ( L y c o persiconesculentum)d i s p l a y i n g antifungalactivity
againstBotrytiscinerea P e r s . W o rldJMicrobiolBiotechnol.
https://doi.org/10.100 7 / s 1 1 2 7 4-015-1943-x
18. C o p e landJK,YuanL,Layegh i f a r d M , etal(2015)Seasonalc o m m u nitysuccessionof
thephyllospheremicro b i o m e . M olPlantMicrobeInterac t 2 8 : 2 7 4 –285.
https://doi.org/10.109 4 / M P M I - 1 0-14-0331-FI
19
19. R e d f ordAJ,FiererN(2009 ) B a c t e r i a lsuccessionontheleafs u r f a c e : A novelsystem
forstudyingsuccessiona l d y n a m ics.MicrobEcol58:18 9 – 1 9 8 .
https://doi.org/10.100 7 / s 0 0 2 4 8-009-9495-y
20. L e f f J W ,DelTrediciP,Friedma n W E , F iererN(2015)Spatial s t r u c t u r i n g ofbacterial
communitieswithinindiv i d u a l G i n k gobilobatrees.Environ M i c r o b i o l 17:2352–2361.
https://doi.org/10.111 1 / 1 4 6 2 -2920.12695
21. R a s t o giG,CoakerGL,Levea u J H J ( 2 0 13)Newinsightsintothe s t r u c t u r e andfunction
ofphyllospheremicrob i o t a t h r o u ghhigh-throughputmo l e c u l a r a p proaches.FEMS
MicrobiolLett348:1–1 0 . h t t p s : / / doi.org/10.1111/157 4 - 6 9 6 8 .12225
22. G o m es,T.,Pereira,J.A.,Ben h a d i , J . , L i n o-Neto,T.andBaptista, P . 2 0 1 8 .Endophytic
andepiphyticphyllosphe r e f u n g a lcommunitiesaresha p e d b y d ifferent
environmentalfactorsin a m e d iterraneanecosystem. M i c r o b i a lEcology76(3),pp.
668–679.
23. S t r i n g erLC,DyerJC,ReedM S , e t a l ( 2 009)Adaptationstoclim a t e c h a nge,drought
anddesertification:local i n s i g h t s t o enhancepolicyinsouthe r n A f r i c a . EnvironSci
Policy.https://doi.org/10. 1 0 1 6 / j . e nvsci.2009.04.002
24. V a c h erC,HampeA,Porté A J , e t a l ( 2 016)ThePhyllosphere: M i c r o b i a lJungleatthe
Plant–ClimateInterface. A n n u R e vEcolEvolSyst47:1–2 4 .
https://doi.org/10.114 6 / a n n u r e v-ecolsys-121415-03 2 2 3 8
25. D a n i n ,A.1983.Desertveg e t a t i o n o f IsraelandSinai.Jerusale m : C a n a Publishing
House148p.-illus.,col.illu s . , m a p s..EnIcones,Maps.Ge o g 2 .
26. M u n zbergovaZ,WardD(2 0 0 2 ) A caciatreesaskeystone s p e c i e s in negevdesert
ecosystems.JVegSci1 3 : 2 2 7 – 236.https://doi.org/10 . 1 1 1 1 / j. 1654-
1103.2002.tb02043.x
27. M i l t o n SJ,DeanWRJ(1995)H o w u s e fulisthekeystonespecie s c o n c e pt,andcanitbe
20
appliedtoAcaciaeriolob a i n t h e K alahariDesert?ZFürO k o l o g i e N aturschutz4:147–
156
28. W a r d,D.andRohner,C.1 9 9 7 . A n thropogeniccausesofh i g h m o r talityandlow
recruitmentinthreeAca c i a t r e e t axaintheNegevdeser t , I s r a e l . B iodiversityand
Conservation6(6),pp. 8 7 7 – 8 9 3.
29. R o d g erYS,GreenbaumG , S i l v e r M ,etal(2018)Detecting h i e r a r c h i c allevelsof
connectivityinapopulatio n o f A c a ciatortilisatthenortherne d g e o f t h especies’
globaldistribution:Comb i n i n g c l a s s icalpopulationgeneticsa n d n e t w orkanalyses.
PLoSONE.https://doi.or g / 1 0 . 1 3 71/journal.pone.0194 9 0 1
30. W i n t e rsG,OtienoD,CohenS , e t a l ( 2 0 18)Treegrowthand w a t e r - u s einhyper-arid
Acaciaoccursduringth e h o t t e s t a nddriestseason.Oec o l o g i a .
https://doi.org/10.100 7 / s 0 0 4 4 2-018-4250-z
31. T e r B raakCJF(1986)Cano n i c a l c o r r espondenceanalysis:a n e w e i g envector
techniqueformultivaria t e d i r e c t g radientanalysis.Ecology .
https://doi.org/10.230 7 / 1 9 3 8 672
32. P o n t o nioE,DiCagnoR,Tarra f W , e t a l(2018)Dynamicand a s s e m blyofepiphyteand
endophytelacticacidba c t e r i a d u ringthelifecycleofOriga n u m v u lgareL.Front
Microbiol.https://doi.org/ 1 0 . 3 3 8 9/fmicb.2018.0137 2
33. B o d e nhausenN,HortonM W , B e r g elsonJ(2013)Bacteria l C o m m unitiesAssociated
withtheLeavesandthe R o o t s o fArabidopsisthaliana.P L o S O N E .
https://doi.org/10.137 1 / j o u r n a l . p one.0056329
34. T h a p a,S.andPrasanna,R . 2 0 1 8 . Prospectingthecharac t e r i s t i c s a n dsignificanceof
thephyllospheremicro b i o m e . A nnalsofmicrobiology6 8 ( 5 ) , p p . 229–245.
35. A r n d tSK,ArampatsisC,Foe t z k i A , e t a l(2004)Contrastingpa t t e r n s o f leafsolute
accumulationandsalta d a p t a t i o ninfourphreatophyticd e s e r t p l a ntsinahyperarid
21
desertwithsalinegroun d w a t e r . JAridEnviron.
https://doi.org/10.101 6 / j . j a r i d e n v.2004.01.017
36. L i a n g J,ZhangJ,WongMH( 1 9 9 6 ) S tomatalconductancein r e l a t i o n t o xylemsap
abscisicacidconcentrat i o n s i n t w o tropicaltrees,Acaciaco n f u s a a ndLitsea
glutinosa.PlantCellEnviro n . h t t p s : / / d oi.org/10.1111/j.136 5 - 3 0 4 0 .1996.tb00230.x
37. W a h id ,A.,Gelani,S.,Ashraf, M . a n d F oolad,M.2007.Hea t t o l e r a n c einplants:An
overview.Environmen t a l a n d e xperimentalbotany61 ( 3 ) , p p . 199–223.
38. R e m us-EmsermannMNP , S c h l e c h terRO(2018)Phyllosp h e r e m i c robiology:atthe
interfacebetweenmic r o b i a l i n d i v idualsandtheplanthos t . N e w P hytol218:.
https://doi.org/10.111 1 / n p h . 1 5 054
39. S c h l e chter,R.O.,Miebach,M . a n d R emus-Emsermann,M . N . P . 2 0 19.Drivingfactorsof
epiphyticbacterialcomm u n i t i e s : A review.Journalofadv a n c e d r e search19,pp.57–
65.
40. K i m M ,SinghD,Lai-HoeA,e t a l ( 2 0 1 2)DistinctivePhyllosphere B a c t e r i a l
CommunitiesinTropica l T r e e s . M icrobEcol63:674–68 1 .
https://doi.org/10.100 7 / s 0 0 2 4 8-011-9953-1
41. L a f o r est-LapointeI,MessierC , K e m b e lSW(2016)Treephy l l o s p h e r e bacterial
communities:exploring t h e m a g nitudeofintra-andinter - i n d i v i d u a l variationamong
hostspecies.PeerJ4:e2 3 6 7 . h t tps://doi.org/10.7717/ p e e r j . 2 3 67
42. F i n k e lOM,DelmontTO,Post A F , B e l k i n S(2016)Metageno m i c s i g n a turesofbacterial
adaptationtolifeinthep h y l l o s p h e reofasalt-secretingdes e r t t r e e . ApplEnviron
Microbiol82:2854–2 8 6 1 . h t t p s://doi.org/10.1128/A E M . 0 0 4 83-16
43. F i n k e lOM,BurchAY,Lindow S E , e t a l (2011)Geographicallo c a t i o n d e terminesthe
populationstructureinp h y l l o s p h e r emicrobialcommunitie s o f a s a lt-excretingdesert
tree.ApplEnvironMicro b i o l 7 7 : 7 647–7655.https://do i . o r g / 1 0 . 1128/AEM.05565-1 1
22
44. G i n a t H,ShlomiY,BatersehS , V o g e l J (2011)ReductioninPre c i p i t a t i o n L evelsinthe
AravaValley(Southern I s r a e l a n d Jordan),1949-2009 . J D e a d - S eaAravaRes
45. W a r d,D.2010.Theeffect s o f a p i c a lmeristemdamage o n g r o w thanddefencesof
twoAcaciaspeciesinth e N e g e v Desert.EvolutionaryEc o l o g y R e search.
46. S h e r AA,WiegandK,Ward D ( 2 0 1 0 )DoAcaciaandTam a r i x t r e e s competeforwater
intheNegevdesert?JA r i d E n v i r o n .https://doi.org/10.10 1 6 / j . j a r i d e nv.2009.09.007
47. W i n t e rsG,RyvkinI,RudkovT , e t a l ( 2 0 15)Mappingunderg r o u n d l a y ersinthesuper
aridGidronWadiusing e l e c t r i c a l r esistivitytomography(ER T ) . J A r i d Environ.
https://doi.org/10.101 6 / j . j a r i d e n v.2015.05.008
48. S h r e sthaMK,StockWD,W a r d D , G olan-GoldhirshA(2003) W a t e r s tatusofisolated
Negevdesertpopulatio n s o f A c a ciaraddianawithdiffe r e n t m o r talitylevels.Plant
Ecol.https://doi.org/10.1 0 2 3 / A : 1 024431124954
49. F u k s G,ElgartM,AmirA,et a l ( 2 0 1 8 )Combining16SrRNA g e n e v a riableregions
enableshigh-resolutionm i c r o b i a l c ommunityprofiling.Mic r o b i o m e .
https://doi.org/10.118 6 / s 4 0 1 6 8-017-0396-x
50. L a n g meadB,SalzbergSL ( 2 0 1 2 ) Fastgapped-readalign m e n t w ithBowtie2.Nat
Methods9:357–359
51. Z h a n gJ,KobertK,FlouriT,Sta m a t a k i s A(2014)PEAR:Afas t a n d a c c urateIllumina
Paired-EndreAdmerg e R . B i o i n formatics30:614–62 0 .
https://doi.org/10.109 3 / b i o i n f o r matics/btt593
52. S c h l o ssPD,WestcottSL,Rya b i n T , e t a l(2009)Introducingm o t h u r : O p en-source,
platform-independent, c o m m u nity-supportedsoftware f o r d e s cribingandcomparing
microbialcommunities. A p p l E n v ironMicrobiol75:7537 – 7 5 4 1 .
https://doi.org/10.112 8 / A E M . 0 1541-09
53. C a p o rasoJG,KuczynskiJ,Stom b a u g h J,etal(2010)QIIMEallo w s a n a l y sisofhigh-
23
throughputcommunity s e q u e n cingdata.NatMethods 7 : 3 3 5 – 336
54. D e S a ntisTZ,HugenholtzP,La r s e n N , etal(2006)Greengen e s , a c h i m era-checked
16SrRNAgenedata b a s e a n d workbenchcompa t i b l e w i t h A RB.ApplEnvironMicrob i o l .
https://doi.org/10.112 8 / A E M . 0 3006-05
55. H i l l , T . C .J.,Walsh,K.A.,Harris,J. A . a n d M offett,B.F.2003.Usin g e c o l o g ic aldiversity
measureswithbacter i a l c o m m unities.FEMSMicrobiolo g y E c o l o gy43(1),pp.1–11.
56. H a e gemanB,HamelinJ,M o r i a r t y J , etal(2013)Robustes t i m a t i o n o fmicrobial
diversityintheoryandin p r a c t i c e . ISMEJ.https://doi.org/10 . 1 0 3 8 / is mej.2013.10
57. F a i t h , D.P.andBaker,A.M. 2 0 0 7 . P hylogeneticdiversity(PD) a n d b i o d iversity
conservation:somebio i n f o r m a ticschallenges.Evolutiona r y B i o i n f o rmaticsOnline2,
pp.121–128.
58. K u c z y nski,J.,Stombaugh,J.,W a l t e r s , W .A.,González,A.,Capo r a s o , J . G . andKnight,
R.2012.UsingQIIME t o a n a l y z e 16SrRNAgeneseq u e n c e s f rommicrobial
communities.Currentp r o t o c o l s i n microbiologyChapter 1 , p . U n it 1E.5.
59. R C o reteam(2015)RCor e T e a m
60. O k s a nenJ,BlanchetFG,Frien d l y M , e tal(2019)vegan:Com m u n i t y EcologyPackage.
Rpackageversion2. 5 - 2 . C r a n R
61. M a r tín ezI,StegenJC,Maldon a d o - G ó m ezMX,etal(2015)Th e G u t M ic robiotaofRural
PapuaNewGuineans : C o m p o sition,DiversityPatterns,a n d E c o l o gicalProcesses.Cell
Rep.https://doi.org/10. 1 0 1 6 / j . c elrep.2015.03.049
62. S i n c l a ir L,OsmanOA,Bertilsso n S , E i l e r A(2015)Microbialcom m u n i t y composition
anddiversityvia16SrR N A g e n eamplicons:Evaluating t h e i l l u m i n aplatform.PLoS
ONE.https://doi.org/10 . 1 3 7 1 / j o urnal.pone.0116955
Figures
24
Figure1
SouthIsraeltopographymapshowingthestudiedsiteofWadiSheizaf(A),andacaciatrees
(A.raddianaandA.tortilis;B)sampledmonthlyduring2015.Airtemperatureandhumidity
werehourlyobtainedfromtheHazevameteorologicalstation(C).Ineachmonth,leaf
samples(exampleofleavescollectedshowninE)werecollectedfromthenorth,centerand
southsidesofthecanopies(D).withaclose-uppictureshowingthecollectedleavesfor
endophyticandepiphyticmicrobialcommunityanalysis.
25
Figure2
NMDSillustratingthephyllospherebacterialcommunityshowingseparateclustersof
bacterialcommunitiesbetween(A)theepiphytic(red)andtheendophytic(blue)bacterial
communitiesfromleavessampledfromsouthsidecanopyareasand(B)differentclusters
forA.raddiana(blue)andA.tortilis(green)forendophyticbacterialcommunities.
26
Figure3
Boxplotillustratingepi-andendophytemajorbacterialphyla.
27
Figure4
NMDSillustratesthephyllospherebacterialcommunitiesshowingseparateclustersof
bacterialcommunitiesbetweendifferentsamplingmonthsfor(A)epiphyticand(B)
endophyticbacterialcommunities.
28
Figure5
NMDSillustratestheepiphytesbacterialcommunityatnorth(red),south(green)andcenter
(blue)canopyside,forA.raddiana(circles)andA.tortilis(triangles).
29
Figure6
Epiphytesbacterialcommunitycompositionclustersarrangedprimarilybysamplingmonth
andcanopyside.A)Clusteringdendrogramofbacterialcommunities,and(B)bacterial
communitycompositionforthesamplesshowninpanelA.Differentbarcolorsrepresent
differentphylumwhileshadesofthesamecolorrepresentdifferentOTU’s.TheX-axistitles
werecolorcodedfordifferentmonths,Januaryinblue,Juneingreen,Julyinredand
Septemberinblack.
30
Figure7
CCAordinationillustrating(A)epiphyticbacterialcommunityatnorth(red),south(green)
andcenter(blue)canopysidesand(B)endophyticbacterialcommunities,forA.raddiana
(circles)andA.tortilis(triangles)withsignificantabioticfactorsaffectingthebacterial
communities.
31
Figure8
HeatmapshowingtheabundanceofOTUs>5%ofthetotalbacterialcommunities(x-axis)
foreachofthesampledepiphyticandendophyticbacterialcommunitiesatsouthcanopy
sideatdifferentsamplingmonths(1-12)during2015.
SupplementaryFiles
Thisisalistofsupplementaryfilesassociatedwiththispreprint.Clicktodownload.
TableS2(1).docx
TableS4(1).docx
TableS5(1).docx
TableS3(1).docx