PreprintPDF Available

Temporal and spatial changes in phyllosphere microbiome of acacia trees growing in arid environments

Authors:

Abstract and Figures

Background: The evolutionary relationships between plants and their microbiome are of high importance to the survival of plants in extreme conditions. Changes in microbiome of plants can affect plant development, growth and health. Along the arid Arava, southern Israel, acacia trees ( Acacia raddiana and Acacia tortilis ) are considered keystone species. In this study, we investigated the ecological effects of plant species, microclimate (different areas within the tree canopies) and seasonality on the endophytic and epiphytic microbiome associated with these two tree species. 186 leaf samples were collected along different seasons throughout the year and their microbial communities were studied using the diversity of the 16S rDNA gene sequenced on the 150-PE Illumina sequencing platform. Results: our results showed amplifying V4 region of the 16S rDNA better presented the bacterial communities of both end and epiphytes of Acacia trees than V2, V3 and V5 regions of the 16S r DNA. When comparing the bacterial diversity of endo and epiphytes of the two acacia trees (shannon, choa1, PD and observed number of OTU’s), the epiphytes diversity indices showed about twice higher diversity compared to endophytes. The bacterial community compositions comparing both end and epiphytes were also significantly different. Interestingly, Acacia tortilis (umbral canopy shape) had a higher epiphytes bacterial diversity compared to Acacia raddiana, but were not statistically different. However the endophyte bacterial communities were significantly different compared to the two Acacia species (Firmicutes dominated Acacia raddiana and Proteobacteria dominated the Acacia tortilis ) . Alongside the biotic factor, Abiotic factors such as air temperature and precipitation also showed to significantly effect endo and epiphytes bacterial communities, while air humidity only affected the epiphytes bacterial communities. Conclusions: These results shed light on the unique desert phyllosphere microbiome in mitigating stress conditions highlighting the importance of epiphytic and endophytic microbial communities which are driven by different genotypic and abiotic factors. This paper also shows only a few bacteria species (OTUS’s) to dominate both epi and endophytes highlighting the importance of climate change (precipitation, Air temperature) in affecting arid land ecosystems where acacia trees are considered keystone species in many arid regions.
Content may be subject to copyright.
1
Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.
Temporalandspatialchangesinphyllosphere
microbiomeofacaciatreesgrowinginarid
environments
CURRENTSTATUS:UNDERREVIEW
AshrafAl-Ashhab
ADSSC
ashraf@adssc.orgCorrespondingAuthor
ORCiD:https://orcid.org/0000-0002-3716-2279
ShiriMeshner
adssc
RivkaAlexander-Shani
adssc
HanaDimerets
adssc
MichaelBrandwein
adssc
YaelBar-Lavan
adssc
GidonWinters
adssc
DOI:
10.21203/rs.3.rs-15477/v1
SUBJECTAREAS
Agroecology EcologicalModeling
KEYWORDS
Acaciaraddiana,Acaciatortilis,Phyllosphere,Desertplants,Microbiome,Endophytes
Epiphytes
2
Abstract
Background:Theevolutionaryrelationshipsbetweenplantsandtheirmicrobiomeareofhigh
importancetothesurvivalofplantsinextremeconditions.Changesinmicrobiomeofplantscan
affectplantdevelopment,growthandhealth.AlongthearidArava,southernIsrael,acaciatrees(
AcaciaraddianaandAcaciatortilis)areconsideredkeystonespecies.Inthisstudy,weinvestigated
theecologicaleffectsofplantspecies,microclimate(differentareaswithinthetreecanopies)and
seasonalityontheendophyticandepiphyticmicrobiomeassociatedwiththesetwotreespecies.186
leafsampleswerecollectedalongdifferentseasonsthroughouttheyearandtheirmicrobial
communitieswerestudiedusingthediversityofthe16SrDNAgenesequencedonthe150-PEIllumina
sequencingplatform.
Results:ourresultsshowedamplifyingV4regionofthe16SrDNAbetterpresentedthebacterial
communitiesofbothendandepiphytesofAcaciatreesthanV2,V3andV5regionsofthe16Sr
DNA.Whencomparingthebacterialdiversityofendoandepiphytesofthetwoacaciatrees(shannon,
choa1,PDandobservednumberofOTU’s),theepiphytesdiversityindicesshowedabouttwicehigher
diversitycomparedtoendophytes.Thebacterialcommunitycompositionscomparingbothendand
epiphyteswerealsosignificantlydifferent.Interestingly,Acaciatortilis(umbralcanopyshape)hada
higherepiphytesbacterialdiversitycomparedtoAcaciaraddiana,butwerenotstatisticallydifferent.
Howevertheendophytebacterialcommunitiesweresignificantlydifferentcomparedtothetwo
Acaciaspecies(FirmicutesdominatedAcaciaraddianaandProteobacteriadominatedtheAcacia
tortilis).Alongsidethebioticfactor,Abioticfactorssuchasairtemperatureandprecipitationalso
showedtosignificantlyeffectendoandepiphytesbacterialcommunities,whileairhumidityonly
affectedtheepiphytesbacterialcommunities.
Conclusions:Theseresultsshedlightontheuniquedesertphyllospheremicrobiomeinmitigating
stressconditionshighlightingtheimportanceofepiphyticandendophyticmicrobialcommunities
whicharedrivenbydifferentgenotypicandabioticfactors.Thispaperalsoshowsonlyafewbacteria
species(OTUS’s)todominatebothepiandendophyteshighlightingtheimportanceofclimatechange
(precipitation,Airtemperature)inaffectingaridlandecosystemswhereacaciatreesareconsidered
3
keystonespeciesinmanyaridregions.
1.Background
Theabove-groundsurfacesofplants(thephyllosphere)harboradiversevarietyofmicroorganisms,
includingbacteria.Theplantphyllospheremicrobiomehasbeenshowntoplayanimportantrolein
theadaptationoftheplanthosttodifferentenvironmentssuchastolerancetoheat,cold,drought
andsalinity[1 − 5].Manystudieshavedemonstrateddesertplantseco-physiologicaladaptationin
microbialfunctionaldiversity[2,6].Whiletheexactcorrelationofphyllospheremicrobial
communitiesandtheseuniqueadaptationsisyettobeclarified,growingfindingsindicatethateach
planttypeprovidesasuitableanduniquemicroenvironment.Plantphyllospheremicrobeswerefound
todifferamongdifferenthabitatandclimateconditionswhencomparedbetweenarid,semiaridand
temperatehabitat(8).Forinstance,recentstudyinvestigatedtheadaptationofthreeNegevdesert
plantspeciesfindingBacteroidetestodominatetheleavesofH.scopariaandwerenotabundantin
theotherspeciestheyinvestigated[7].Thesemicrobeswerealsofoundtocorrelatewithhigh
temperature,droughtsandUNradiation[8,9],regardlessoftheirgeographicaldistance[10].Inthis
context,Desertphyllospheremicrobiomeshowedtointerveneinplantgrowthandalternativewaysin
themetabolismofsomenutrientssuchas:fixingnitrogen(N)fromatmosphericsources[1,11],orby
utilizingphosphorus(P)throughsolubilizingenzymes[12,13]andbyproductionofSiderophoresto
bindiron[14,15],evenincreasingplanthealthagainstotherbacteriapathogenssuchasblight
disease[16],botrytisfungalinfection[17].
Alongsidewiththeeffectofseasonality[6,18,19]andcanopystructure[20]onplantphyllosphere
microbiome,otherstudiesshowedabiotic(climate-related)andbiotic(plantgenotype)factorsplaya
pivotalroleinstructuringthephyllospheremicrobialcommunities[21].Infact,endophytic(“insidethe
leavesofplants”)andepiphytic(“outsidetheleavesofplants”)microbialcommunitiesshowedtobe
differentinthemicrobialcommunitycomposition,wereepiphyticbacterialcommunitieswerericher
andmoreabundantcomparedtotheendophyticbacterialcommunities,moreover,abioticfactors
wereshowntohavedifferenteffectsonendophyticandepiphyticbacterialcommunities.Seasonwas
themajordriverofcommunitycompositionofepiphyteswhilewindspeed,rainfall,andtemperature
4
werethemajordriversforendophyticcomposition[22].
Thesecomplexinteractionsbetweenplantmicrobiome(bothendophyticandepiphytic)anddifferent
bioticandabioticconditionswithinaridecosystems,isofparticularinterestconsideringthecurrent
scenariosofclimatechangeanddesertification[23].Additionally,studiesonmicrobiomesinarid
plantscouldshednewlightonimportantkeymicrobialgroupsthatmightbeofpotentialuseinarid
agriculturalpractices,biotechnologyandplantadaptationstrategiestoclimatechange[24].Inthis
study,wefocusedontheNegevdesert(Fig.1A)byinvestigatingtheendophyticandepiphytic
microbiomeassociatedwiththephyllosphere(leaves)ofAcaciaraddiana(Savi)andAcaciatortilis
(Forssk)(Fig.1B).
ThesetwotreespeciesarefoundgrowinginsomeofthehottestanddriestplacesonEarth.Within
thearidAravavalleyalongtheSyrian-Africantransform(GreatRiftvalley)insouthernIsraeland
Jordan,AcaciaraddianaandAcaciatortilisarethetwomostabundantand,inmanyplaces,theonly
treespeciespresent[25].Inthesearidhabitats,acaciasarefoundmostlygrowinginthechannelsof
ephemeralriverbeds[26].BothAcaciaraddianaandA.tortilisareconsideredkeystonespeciesthat
supportthemajorityofthebiodiversitysurroundingthemandlocallyimprovesoilconditionsforother
plantspecies[26 − 30].Wehypothesizedthatvariationsinthebacterialcommunitiesofphyllosphere
wouldbeassociatednotonlywiththehostspecies(A.raddianaandA.tortilis),butalsowithsampling
season(temporalchanges),treemicroclimate(leavesgrowingonthenorthorsouthsideoftree
canopythatareexposedtodirectsunradiationvs.shadedleaves).
2.Results
Atotalof186acacialeavessamplewerecollectedforbothepiphyticandendophyticmicrobial
communities.Afterdataprocessing,eachofthefiveprimersetswereexaminedseparatelyfortheir
coverageacrossthesamplesandtheirretainedsequencenumbers(TableS4).
Resultsshowthatwhenusingthethirdprimerset,wewereabletoretainthelargestnumberof
sequencesforallthesamples13,944 ± 13,710(n = 186,min = 122)comparedtotherestofthe
primers(Table1).Thus,webasedallourfurtheranalysisofbacterialcommunitiesonthisprimerset.
5
Table1
Sequencenumberofthesplitfilesbasedonthedifferentprimersetwithsomebasicstatisticsincluding
sequencesaverage±SD,numberoffinalsamplesaftercuration(n),andtheminimumsequence
numberineachsample(min).
Firstprimerset 15,812 ± 14,109(n = 186) 4,569 ± 6,594(n = 175,min = 
102)
Secondprimerset 1,540 ± 3,631(n = 186) 589 ± 961(n = 75,min = 104)
Thirdprimerset 36,451 ± 18,831(n = 186) 13,944 ± 13,710(n = 186,min = 
122)
Forthprimerset 7,774 ± 8573(n = 186) 1,565 ± 3,513(n = 145,min = 
100)
Fifthprimerset 998 ± 2,389(n = 183) 1,441 ± 2,434(n = 40,min = 104)
2.1.Acaciabacterialcommunitycompositionofendophyticcomparedto
epiphytic
Thediversityestimatesofepiphyticandendophyticbacterialcommunities,forbothA.raddianaand
A.tortilisatSouth“S”canopysidesareshowninTable2.Foralldiversityestimates,thediversityof
endophyticbacteriadiversitywashalfofthatfoundontheepiphytic(Table2)indicatingadifferent
bacterialcommunityanddiversitypatternthatexistsinthesetwomicrobialcommunities.
Table2
Averagediversityestimates(±SD)measuredacrosstheentiresamplingmonthsforsouthside(S)of
thetreecanopyfortheepiphyteandendophytemicrobialcommunitiesofA.raddianaandA.tortilis.
ShownareobservednumberofOTUs,Chao1species’diversityestimate,microbialcommunities
phylogeneticdiversityandtheShannonbacterialcommunities’diversity.Diversitymetricswere
calculatedinQIIME-1software.
Species Canopy Observed
numberofOTUs
Chao1species’
diversity
estimate
microbial
communities
phylogenetic
diversity
Shannon
bacterial
communities’
diversity
A.raddiana S-epiphyte 375 ± 158 644 ± 284 18.5 ± 5.7 5.2 ± 1.1
S-endophye 171 ± 41 350.3 ± 70 10.3 ± 2.1 2.7 ± 0.5
A.tortilis S-epiphyte 410 ± 164 702 ± 277 20.4 ± 6.5 5.0 ± 1.1
S-endophyte 135 ± 35 275.0 ± 73 8.7 ± 2.1 2.7 ± 0.7
Tocomparethediversitiesofepiphyticandendophyticbacterialcommunitiesextractedfromleaf
samples,acaciasamplesfromsouthcanopysides(Table2)wereanalyzedandplottedusingNMDS
basedonBray-Curtisdistancematrix(Fig.2).Twoseparateclustersforendophyticandepiphytic
bacterialcommunities(Fig.2A)werefoundtobesignificantlydifferent(p = 0.005).However,while
bothacaciaspecies(A.raddianaandA.tortilis)demonstratedseparateclusterswithintheendophytic
bacterialcommunities(p-value = 0.006,Fig.2AandB),theydidnotseparateintodifferentclustersin
theepiphyticsamples(p-value = 0.585,Fig.2A).Toillustratethesedifferences,majorbacterialphyla
wereplottedforbothspeciesinepi-andendophyticsamples(Fig.3).Epiphyticsamplesshowed
6
significantlyhigherabundanceofActinobacteria,Cyanobacteriaandsignificantlylowerabundanceof
FirmicutesandProteobacteriacomparedwithendophyticsamplesfromthesameleaves.While
epiphyticbacterialcommunitiesshowednosignificantchangesinphylumcompositionbetweenthe
hostspecies(A.raddianaorA.tortilis),theendophyticbacterialcommunitiesdifferedbetweenacacia
species(Fig.3).Inendophyticbacterialcommunities,abundanceofFirmicuteswassignificantly
higheronA.raddianacomparedwithleavessampledfromA.tortilistrees(61.2 ± 32.0%and32.0 ± 
27.9%,respectively),whileA.tortilishadasignificantlyhigherabundanceofProteobacteriathanA.
raddiana(60.9 ± 26.4%and27.7 ± 21.3%,respectively).Interestingly,Comamonadaceaecomposed
morethan88%andBacillaceaecomposedmorethan90%ofproteobacteriaandactinobacteria
respectively.
2.2.Acaciatemporalandcanopyvariationofphyllospherebacterial
communities
Tocheckthetemporaleffectonepi-andendophyticbacterialcommunities,acacialeafsamplesfrom
differentsamplingtimes(Months;TableS1)wereanalyzedandplottedusingNMDSbasedonBray-
Curtisdistancematrix.Results(Fig.4A)showedseparateclustersforepiphytesbacterialcommunities
atdifferentsamplingmonths(p-value = 0.001).Forendophyticbacterialcommunities(Fig.4B),
differentsamplingmonthsshowednoclearseparation(p-value = 0.574),neverthelessaseparate
clusterwasnoticedforthesamplescollectedinJuly-SeptemberandNovembercomparedwiththe
endophyticbacterialcommunitiescollectedinJanuary,February,andinApril-June(Fig.4B).
Toinvestigatetheeffectofmicroclimate(differentsidesofthetreecanopy)ontheepiphytebacterial
communities,thediversityestimatesofepiphyticbacterialcommunitiesforbothA.raddianaandA.
tortilisin(i)northcanopyside,(ii)centercanopyshadedareawere,and(iii)southcanopysidewere
compared(Table3).BothDiversityestimates(Table3)andbacterialcommunitycomposition
ordination(Fig.5)showednocleardifferencesbetweenthedifferentcanopysidesforbothA.tortilis
andA.raddiana(p-value = 0.728),norbetweenthetwospecies(A.raddianaandA.tortilis)(p-value = 
0.123),indicatingasimilarepiphyticbacterialdiversityacrossthedifferentsidesofthetrees.
7
Table3
Averagediversityestimates±SDacrosstheentiresamplingmonthsforepiphyticbacterial
communitiesofA.raddianaandA.tortilis.Shownarethedifferentcanopiesfromwhichsampleswere
takenfrom(N=northcanopyside,C=centercanopyshadedarea,S=southcanopyside),observed
numberofOTUs,Chao1species’diversityestimate,microbialcommunitiesphylogeneticdiversityand
theShannonbacterialcommunities’diversity.DiversitymetricswerecalculatedinQIIME-1software.
Species Canopy Observed
numberofOTUs
Chao1species’
diversity
estimate
microbial
communities
phylogenetic
diversity
Shannon
bacterial
communities’
diversity
A.raddiana N-epiphyte 382 ± 204 676 ± 279 19.0 ± 7.1 5.1 ± 1.6
C-epiphyte 342 ± 181 604 ± 292 17.7 ± 6.4 5.0 ± 1.4
S-epiphyte 375 ± 158 644 ± 284 18.5 ± 5.7 5.2 ± 1.1
A.tortilis N-epiphyte 480 ± 189 801 ± 291 22.3 ± 6.5 5.5 ± 1.1
C-epiphyte 437 ± 180 760 ± 271 20.8 ± 6.4 4.8 ± 1.4
S-epiphyte 410 ± 164 702 ± 277 20.4 ± 6.5 5.0 ± 1.1
Tobetterillustratedifferentepiphytebacterialphylaandtheirseasonalitychanges,weplottedthe
differentbacterialphylacompositionalongwiththedifferentsamplingmonthsandcanopysides
(Fig.6).TemporalfluctuationswerefoundbetweenActinobacteriaandFirmicutescompositions,with
thephylaFirmicutesfoundtobemostlydominantinJanuaryandJulyforbothCenterandSouth
canopysides(72.4 ± 14.6%),butnotintheNorthcanopysidewhichwasdominatedbyActinobacteria
phyla(51.2 ± 17.7%)(Fig.6A).DifferentpatternsofbacterialdiversitywerealsofoundinJuly,where
bothNorthandSouthweredominatedbyActinobacteria(52.7 ± 5.8%)comparedtothecenter
canopysidethatwasdominatedbyProteobacteria(70.2 ± 21.7%).InSeptember,differentclusters
formedintheSouth,NorthandCentercanopysides,andallthesecanopysidesweredominated
mostlybyAcidobacteria(57.0 ± 8.7%)andFirmicutes(23.5 ± 5.5%).Itshouldalsobenotedthatin
September,thedifferentcanopysideshostedmoresimilarproportionsofthesedominatingbacterial
groups.
Totestwhetherotherabioticfactorsaffectthemicrobialcommunitiesdifferentlyforcanopysides,
canonicalcorrespondenceanalysis(CCA)[31]wasperformedfortheepiphytic(Fig.7A)and
endophytic(Fig.7B)bacterialcommunitiesofA.raddianaandA.tortilis.Onlythoseabioticfactors
withsignificantvalues(p-value ≦ 0.005)wereplotted.Resultsshowthattemperature,VPD,humidity
andprecipitationhadasignificanteffectontheepiphytesbacterialcommunitiesregardlessofthe
canopyside(Fig.7A),whiletemperatureandprecipitationhadasignificanteffectontheendophytic
8
bacterialcommunities(Fig.7B).
Totestforthemajorchangesinbacterialspecies,theabundantOTU’sandtheirrelativebacterial
familieswereplottedasaheatmapforendophyticandepiphyticsouthcanopyside(Fig.8).Results
showthatonlyfewbacterialOTU’sweredifferentiallyabundantcomparingepi-andendophytic,or
whencomparingwithintheendophyticbetweenA.raddianaandA.tortilis.Themajordifferences
occurredin5majorunclassifiedOTU’sbelongingtoBacillus,Comamonadaceae,Geodematophilaceae
andMicrococcaceaebacterialfamilies.
3.Discussion
Aimingtoimproveourunderstandingofthefunctionsthatphyllospheremicrobialcommunitiesmight
playinplantsgrowinginextremearidenvironments,weappliedahighresolutionsamplingscheme
tostudyingthephyllospheremicrobialcommunitiesoftwodesertkeystonetrees(Acaciaraddiana
andAcaciatortilis).Weinvestigatedboththeendophyticandepiphyticbacterialcommunitiesto
understandthe:(i)intra-andinter-individualspatialvariationofthemicrobialcommunitywithina
tree(thevariationwithinthesametreecausedbydifferentsidesofthecanopy,andthevariation
betweenneighboringtreesofthesamespeciessampledatthesametimeandsite)(ii)hostspecies
variation(variationofthemicrobialcommunitycausedbythehost(tree)species(i.e.,Acacia
raddianacomparedwithneighboringAcaciatortilis),(iii)temporalvariationofthemicrobial
communitywithinthesametreespeciesandcanopyside(samplescollectedfromthesametreesbut
atdifferentseasons).
Ourresultsdemonstratethattheepiphyticbacterialcommunitiesweremoresensitivetochangesin
theexternalenvironmentalconditions,comparedwiththeendophyticbacterialcommunitiesthat
weremorestablebetweendifferentenvironmentalconditions(e.g.,seasons)butvariedamonghost
treespecies.Surprisingly,upto60%ofthetotalbacterialcommunities(thecombinedendophyticand
epiphyticmicrobiomepopulations)wereunclassifiedbelowfamilylevel,highlightingtheuniqueness
ofthemicrobiomeassociatedwithacaciatreesinthearidenvironmentintheArava.
Theepiphyticbacterialdiversitywasfoundtobesignificantlyhigherthantheendophyticbacterial
community(Table2).IntermsoftheoverallobservednumberofOTU’s,theepiphyticbacterial
9
communitywasshowntohavedoublethediversitycomparedtoitsendophyticbacterialcommunity
counterpart.SimilarfindingsatearlyandlateleavesdevelopmentinOriganumvulgarealsofoundthe
totalnumberofcolony-formingunits(CFU)ofendophyticcommunities(1.8 ± 0.1)waslessthanhalf
oftheCFUofepiphyticbacterialcommunities(5.0 ± 0.2)[32].However,ourresultscontradict
previousworkonmicrobiomesassociatedwithArabidopsisthaliana)thatshowedepiphyticbacterial
diversityindexeswerelowerthanthosemeasuredfortheassociatedendophyticbacterial
communities[33].Arecentstudyontheepiphyticandendophyticfungaldiversityinleavesofolive
treesgrowinginMediterraneanenvironments,showedthattheepiphyticfungalcommunitieshad
higherdiversityindicescomparedtotheendophyticdiversityestimates[22].Thefactthatour
epiphyticOTUdiversitywashigherthantheendophyticdiversityisparticularlysurprising,considering
previouspublicationindicatedthatastheconditionsinsidetheplantmightbemorefavorable
comparedtothehostileconditionsoutside[34].Thismightexplainthedifferentfindingscomparing
epiphyticandendophyticbacterialabundanceanddiversityinotherstudies,butinourcase,bothA.
raddianaandA.tortilishadalowerepiphyticbacterialdiversitycomparedtoepiphyticbacterial
diversitythroughoutthesamplingmonth,includingthehotandharshconditionsofthedesert
summer(TableS5).Thisdiscrepancyfindinginourresultsandpreviouslydocumentfindingscouldbe
uniquetodesertplants.Plantsgrownindesertenvironmentsaresubjectedtocontinuousstress
conditionsincludingincreasedsaltconcentrationinendophyticcompartments[35],decreasing
stomatalconductanceandincreasedconcentrationofabscisicacid[36]andmanyothermetabolites
andenzymes[37].Theseplantresponseswereshowntoaffectplants-microbiomecolonization[32,
38,39].Moreover,ourresultsshowedthattheendophyticandepiphyticbacterialcommunitieswere
significantlydifferentfromeachother(Fig.2A).Infact,endophyticbutnotepiphyticbacteria
communities,differedbetweenthetwoacaciaspecies(Fig.3A,3B,4)–specifictothehost(acacia
tree).Thispotentiallyindicatesthatendophyticbacteriawerehorizontallytransmittedandthatthey
mightbemoreaffectedbygenotypicfactorsratherthanabioticfactors[4,5,21].
Similartootherfindingsindicatingthechangesinbacterialcommunitiesinphyllospherefollowing
differentenvironmentalandbioticfactors[38,39],ourresultsshowseasonalitytobethemajordriver
10
ofcommunitycompositioninepiphyticbacteria(Fig.4AandFig.6),includingaspecificabiotic
parameterssuchas;humidity,temperature,precipitationandVPD(Fig.7AandB).Whiletheseresults
highlightthesignificanteffectoftemperatureonbothepiphyticandendophyticbacterial
communities,theeffectofmicroclimate(differentcanopysides)ontheepiphyticbacterialdiversity
(Table3)andcommunitycomposition(Figs.5and6)showednosignificantvariationforthedifferent
canopysidesforbothspecies.Thiscouldbeexplainedbythedifferencebetweenmonthly
temperature,humidityandprecipitationhindersbacktheseeffectsofcanopysidevariation.
Wealsoshowedthatthebacterialcommunitycompositionsfoundinthisstudy,differfromother
epiphyticorendophyticmicrobiomefoundintropical,subtropicalandtemperateregions,whichare
mostlydominatedbyhighabundanceofAlphaproteobacteria,BacteroidetesandAcidobacteria[1,40,
41].Inourstudy,themajordifferencesbetweenepiphyticandendophyticbacterialcommunities
wereduetothedifferentialabundanceoffourmajorunclassifiedOTU’sbelongingthebacterial
familiesofBacillaceae(Firmicutesphylum)andComamonadaceae(Betaproteobacteriaphylum)for
theendophyteofA.raddianaandA.tortilis,respectively(Fig.8).OtherunclassifiedOTU’sbelonging
tothebacterialfamiliesofGeodematophilaceaeandMicrococcaceae(bothbelongingto
Actinobacteriaphylum)werefoundintheepiphytebacterialcommunities(Fig.8).Thesebacterial
familieswerealsofoundinotherstudiesinvestigatingextremeconditionsthatinvestigatedthe
metagenomicsignaturesofTamarixphyllosphere[10,42,43]andotherdesertshrubs[7],
highlightingtheimportanceandtherelationshipofthesefoundbacterialcommunitiesindesertplants
adaptationtoaridenvironment[7].However,theexactlinkbetweenthesedifferentbacterialgroups
andtheirfunctionaldiversityisstilltobeinvestigated,suchstudiescouldshedthelightofspecific
metabolitesandenzymesthattheseadaptivebacterialgroupsexhibitinsuchanenvironmentandat
differentstressconditions.Learningfromthelongcoevolvedplants-microbiomeformnaturally
occurringplantsinharshconditionsisinvitalunderthecurrentrateofclimatechangeandtheurgent
needfornewinnovativesolutionsthatcanbelearnedfromtheseinteractionsformoreadaptivearid
landagriculture.
4.Conclusion
11
Theevolutionaryrelationshipandinteractionbetweenplantsandtheirmicrobiomeisofhigh
importancetotheiradaptationtoextremeconditions.Changesinplantsmicrobiomecanaffectplant
development,growthandhealth.Inthisstudyweexploredtherelationshipbetweennaturally
occurringdesertplantsandtheirmicrobiomealongseasonalandabioticconditions.Theseresults
shedlightontheuniquedesertphyllospheremicrobiomeinmitigatingstressconditionshighlighting
theimportanceofepiphyticandendophyticmicrobialcommunitieswhicharedrivenbydifferent
genotypicandabioticfactors.Nevertheless,morestudiesutilizingthefunctionaldiversityofthese
differentplants-microbiomeinteractionsinaridclimateisinvitalwithdesertificationandglobal
warmingprocessesinmind.Thepotentialagritechoftheseuniquemicrobialcommunitiescallsfor
moreresearchonthistopicinthefutureexploringthefunctionaldiversityofeachendoandepiphytic
microbialcommunitiesalongsidewithplantsmetabolitesatdifferentstressconditions.
5.MaterialsAndMethods
5.1.Studyareaandsamplingscheme
ThisstudywasconductedintheAravavalley,ahyper-aridregionalongtheSyrian-Africanriftin
southernIsraelandJordan.Theelevationofthearearangesfrom230mabovesealevelto419m
belowsealevel(Fig.1A).TheclimateintheAravavalleyishotanddry:30-yearaverageminimum,
mean,andmaximumairtemperatureofthehottestmonthwas26.2°C,33.2°C,and40.2°C,
respectively;averageminimum,mean,andmobotemperaturesensorsmaximumairtemperatureof
thecoolestmonthwererecordedas9.1°C,14.4°C,and19.6°C,respectively,andannual
precipitationofonly20–70mmisrestrictedtotheperiodbetweenOctoberandMay[30]withlarge
year-to-yearvariations[44].Thecombinationoftheveryhighairtemperaturesandtheverylow
relativehumidityvaluesof6%cancausesummermiddayvaporpressuredeficit(VPD)toreachupto
9kPa[30].Vegetationintheregionisusuallyconfinedtowithinwadis(ephemeralriverbeds[45]),
wherethemainwatersupplycomesfromundergroundaquifers[46,47]andwinterflashfloods[48].
MultipleindividualtreesofA.raddianaandA.tortilisarescatteredthroughouttheSheizafwadi
(Fig.1A),butneverformingacontinuouscanopy.Toinvestigatetheeffectofdifferentcanopysides
onphyllospheremicrobiome,leafsampleswerealsocollectedfromthreedifferentcanopysides
12
(north,centerandsouth;Fig.1D).
WadiSheizafisadrysandystreambedatthenorthernedgeoftheAravaValley,Israel(Fig.1A;
30°44'N,35°14'E;elevation− 137m).Meteorologicaldata(airtemperatureandhumiditylogged
every3hours)forthissitewereobtainedfromtheIsraeliMeteorologicalService(IMS)forstation
340528atHatzeva,located7kmnorthofWadiSheizaf(Fig.1C).
Forsamplingbacteriafromacaciatrees,twoneighboringtrees(> 20mawayfromeachother)ofA.
tortilis(T023andT300)andtwoneighboringtreesofA.raddiana(R284andR286)inWadiSheizaf,
weresampledmonthlybetweenJanuaryandDecember2015fortheirNorth,SouthandCentral
canopysides(Fig.1DandTableS1).Thissamplingschemewaschosentoenableustoinvestigate
theeffectofhavingtwodifferenthost(tree)species,inadditiontothevariationcausedbythe
samplingseasonandthemicroclimateeffect(differentcanopysites(central,north,andsouth-facing
sidesoftree)onthephyllospheremicrobiome.
Duringallsamplingmonths,sampleswerecollectedfromtreesusingsterilegloves(changedbetween
eachsample).Leaves(20–25gfreshweight)werecollectedmonthly(seeTableS1forexactdates)
andinsertedinto15mlsteriletubesplacedonice.Uponreachingthelaboratory(within< 2hrs)
samplesweremovedtofreezers(-20°C)wheretheywerekeptuntilsubjectedtoDNAextraction.
5.2.DNAextraction
AllDNAextractionswereperformedusingtheMoBio96wellplatePowerSoilDNAIsolationKits(MO
BIOLaboratories,California,USA).Forepiphyte“outsideofplantsleaves”,0.15g(FW)ofleaveswere
weighedandplacedin1.5mlEppendorftubesfilledwith500µlMoBioPowerbeadSolutionand
sonicated(DG-1300Ultrasoniccleaner,MRCLAB,Israel)for5minandthenthesolutionwas
transferredtothePowerbeadTubesandtherestofthestepsforDNAextractionwerecarriedout
followingthemanufacturerprotocol.Fortheextractionofendophytic(“insideplantleaves”)microbial
communities,leaveswerewashedusing1mlofDNA/RNAfreewaterthreetimestogetridofasmuch
oftheepiphytemicrobiomefraction.Thewashedleaveswerethencutintosmallpiecesusinga
sterilescalpelandplacedintotheMoBio96wellPowerbeadplateforDNAextractionfollowingthe
manufacturer’sprotocol.AllstepsofDNAextractionwerecarriedoutinasterileUV-hood(DNA/RNA
13
UV-cleanerbox,UVT-S-ARbioSan,Ornat,Israel)toreduceexternalcontaminations.IneveryDNA
extraction96wellplate,DNAextractionnegativecontrolswereaddedbyplacing200µlofRNasefree
water(SigmaAldrich,Israel).AllsampleswereplacedrandomlyintheDNAextractionplateto
excludeanybias.
5.3.PCR,librarypreparationandIlluminasequencing
Inordertoobtainabetterphylogeneticresolutionanddiversityestimate,amultiplexPCRusingfive
differentsetsofthe16SrDNAgeneswasappliedtocoverabout1000bpofthe16SrRNAgene(Table
S2).
FirstPCR(PCR-I)reactionswereperformedintriplicates,whereeachPCR-Ireaction(total25µl)
contained;12.5µlofKAPAHiFiHotStartReadyMix(biosystems,Israel);0.4µlofequalv/vmixed
primersforwardandreverseprimers(TableS2);10µlofmoleculargradedDDW(Sigma,Israel)and;
2µlof(2-100ng/µl)DNAtemplate.PCR-IreactionswereperformedinBiometrathermalcycler
(Biometra,TGradient48)asthefollowing:initialdenaturation95°Cfor2min,followedby35cycles
of98°Cfor10sec,61°Cfor15sec,and72°Cfor7sec.EndingthePCR-Iroutinewasafinal
extensionfor72°Cfor1min.UponcompletionofPCR-I,anelectrophoresisgelwasruntoverifyall
thesamplesworkedsuccessfully.Followingsuccessfulandverifiedamplification,triplicatesamples
werepooledtogetherandwerecleanedusingAgencourt®AMPureXP(BeckmanCoulter,Inc,
Indianapolis,USA)beadsolutionbasedonmanufacturer’sprotocol.
5.3.1.LibraryPreparationandIlluminasequencing
LibrarypreparationwasperformedusingasecondPCR(PCR-II)toconnecttheilluminalinker,adapter
andunique8basepairbarcodeforeachsample[49].ThePCR-IIreactionswerepreparedbymixing
21µlofKAPAHiFiHotStartReadyMix(biosystems,Israel),2µlofmixedprimerswithilluminaadapter
(TableS3),12.6µlofRNasefreewater(Sigma,Israel),4µlofeachsamplefromthefirstPCRproduct
with2µlofbarcodedreverseprimer,andplacedinBiometrathermalcycler(Biometra,TGradient48)
asthefollowing:initialdenaturation98°Cfor2min,andthen8cyclesof98°Cfor10sec;64°Cfor
15sec;72°Cfor25sec;andfinalextensionof72°Cfor5min.ThenallPCR-IIproductwerepooled
togetherandsubjectedtocleaningusingAgencourt®AMPureXP(BeckmanCoulter,Inc,Indianapolis,
14
USA)beadsolutionbasedonmanufacturer’sprotocol,where50µlofpooledPCR-IIproductwere
cleanedusing1:1ratiowiththebeadsolutionformoreconservativesizeexclusionoffragmentsless
than200bp,andatthefinalstep,50µlofDDWwith10mMTris[pH = 8.5]wereaddedtoeach
sample.Thiswasfollowedbyaliquoting48µlofthesupernatantintosterilePCRtubesandstoredin
-80°C,whileanadditional15µlofthefinalproductweresenttotheHebrewUniversity(Jerusalem,
Israel)wheretheyweresequencedonfulllaneof150PEilluminaMiseqplatform.
5.4.Sequenceanalysisandqualitycontrol
Aseriesofsequencequalitycontrolstepswereappliedbeforedataanalysis.Theseincludedthe
followingsteps:allsampleswerefilteredforPhiXcontaminationusingBowtie2[50];incompleteand
low-qualitysequenceswereremovedbypairingthetworeadsusingPEARsoftware[51];lookingfor
ambiguousbasesandmissmergedsequencescarriedoutusingtheMOTHURSoftwareV.1.36.1[52].
Followingqualitycontrol,QIIME-1software[53]wasused.Sequenceswerealigned,checkedfor
chimericsequencesandclusteredtodifferentOTU’s(operationaltaxonomicunit)basedon97%
sequencesimilarity,thenthesequenceswereclassifiedbasedonGreengenesdatabaseV13.8[54],
andanOTUtablewasgenerated.Allsequencesclassifiedasf__mitochondria,c__Chloroplast,
k__ArchaeaandK__Unclassified,wereremovedfromtheOTUtable.
5.4.1.OTUrichnessanddiversityestimates
Foreachsample,fourdiversityestimatesweremeasured;(i)observednumberofOTU’s,(ii)Chao1
species’diversityestimate[55],(iii)Shannonbacterialcommunities’diversity[56],and(iv)microbial
communitiesphylogeneticdiversity[57].AllthesediversitymetricswerecalculatedinQIIME-1
software[58]usingtheparallel_alpha_diversity.pycommandontherarefactionsubsamplesto10,000
sequencesusingmultiple_rarefactions.pycommand.
5.4.2.Assessmentofcommunitycomposition
FromtheobtainedQIIMEclassifiedOTUtable,eachtaxonomicgroupwasallocateddowntothegenus
levelusingsummarize_taxa.pycommandinQiimeandrelativeabundancewassetasthenumberof
sequencesaffiliatedwiththattaxonomicleveldividedbythetotalnumberofsequences.Relative
abundanceswereplottedusingRstatisticalsoftware[59]whereeachphylumwasassigneda
distinguishedcolourandallgeneraunderthesamephylum,wereassignedtodifferentshadesofthe
15
samecolour.
5.4.3.StatisticalAnalysis
UsingRstatisticalsoftware[59]allsampleswereanalyzedbasedonthepreviouslygeneratedOTU
table.UsingVEGANpackage[60]inR,non-parametricmultidimensionalscaling(NMDS)wereusedto
produceordinationbasedonBray-Curtisdistancematrixusingatotalsumtransformedmatrixforthe
rowOTUtable[61,62].Statisticalcomparisonsweredonebasedonanalysisofthesimilaritybetween
thematricesofdifferentOTU’stableusingANOSIMcommandinR.
Declarations
Ethicsapprovalandconsenttoparticipate
Notapplicable
Consenttopublish
AllAuthorapprovehesubmission
Authors'information(optional)
Notapplicable
Availabilityofdataandmaterial
AllcuratedsequenceswerejoinedintoasinglefastafileandsubmittedtoMG-RASTunderprojectlink
(https://www.mg-rast.org/linkin.cgi?project=mgp92155).
Codeavailability
Allcodesforquarationsteps,qualitycontrolandsequenceanalysisuploadedtoGitHubrepository,
includingthemetadatafilesandmadepubliclyavailable(https://github.com/ashrafashhab/Desert-
plant-microbiome).
Competinginterests
Allauthorsdeclarenoconflictofinterest
16
Funding
ThisresearchwassupportedbyICAfundingagency,grantnumber:03-16-06A
Authors'contributions
Dr.AshrafAlAshhabwasinvolvedintheprojectconceptualization,datacuration,formalanalysis,
methodology,projectadministration,resources,visualizationandMSwriting.Dr.ShiriMeshner,
MichaelBrandweinandDr.GidonWinterswereinvolvedinFundingacquisition,project
Conceptualizationandprojectinvestigation.Inaddition,bothDr.GidonWintersandDr.YaelBar-lavn
alsotookanactivepartinMSandgraphicsrevisionandediting.WhileMs.RivkaAlexander-Shaniand
HanaDimeretshelpedinlaboratoryandfieldwork.
Acknowledgments
WethankIsraelCharitableAssociation(ICA)thefundingagencyforitsgeneroussupportofthis
researchthatwasawardedundergrantnumber:03-16-06A.WealsothankDr.NoamShentalfromthe
DepartmentofComputerScienceattheOpenUniversityofIsrael,forhisgeneroussupportin
preliminarydataanalysis,selectionof16sPrimesandhisinsightintheexperimentaldesign.Also
specialthankstoMs.TalGalkerfromAravaStudiofordevelopingFig.1intheMS.
References
1.  K e mbelSW,OConnorTK , A r n o l d H K,etal(2014)Relatio n s h i p s b e tweenphyllosphere
bacterialcommunitiesa n d p l a n t functionaltraitsinaneotr o p i c a l f o r est.ProcNatl
AcadSci111:13715 1 3 7 2 0.https://doi.org/10.10 7 3 / p n a s.1216057111
2.  M artirosyanV,Steinberge r Y ( 2 0 1 4)Microbialfunctionald i v e r s i t y i n t h ephyllosphere
andlaimosphereofdif f e r e n t d e sertplants.JAridEnviron 1 0 7 : 2 6 33.
https://doi.org/10.101 6 / j . j a r i d e n v.2014.04.002
3.  S a leemM,MeckesN,P e r v a i z Z H ,TrawMB(2017)M i c r o b i a l i n teractionsinthe
17
phyllosphereincreasep l a n t p e r f ormanceunderherbiv o r e b i o t i c stress.Front
Microbiol8:.https://doi.o r g / 1 0 . 3 3 89/fmicb.2017.000 4 1
4.  W hipps,J.M.,Hand,P.,Pin k , D . a n dBending,G.D.2008 . P h y l l o s p h eremicrobiology
withspecialreferenceto d i v e r s i t y andplantgenotype.Jou r n a l o f A pplied
Microbiology105(6),p p . 1 7 4 4 1755.
5.  A g lerMT,RuheJ,KrollS,e t a l ( 2 0 1 6 )MicrobialHubTaxaL i n k H o s t andAbiotic
FactorstoPlantMicrobio m e V a r ia tion.PLoSBiol14:.
https://doi.org/10.137 1 / j o u r n a l . p bio.1002352
6.  R e dfordAJ,BowersRM , K n i g h t R , etal(2010)Theecolo g y o f t h e phyllosphere:
Geographicandphylog e n e t i c v a riabilityinthedistributionof b a c t e r i a ontreeleaves.
EnvironMicrobiol12:28 8 5 2 8 93.https://doi.org/10.1 1 1 1 / j . 1 462-2920.2010.02 2 5 8 . x
7.  M artirosyanV,UncA,Mille r G , e t a l (2016)DesertPerenn i a l S h r u b s Shapethe
Microbial-CommunityM i s c e l l a n y i n LaimosphereandPh y l l o s p h e r e Space.MicrobEcol.
https://doi.org/10.100 7 / s 0 0 2 4 8-016-0822-9
8.  Q v it-RazN,JurkevitchE,Be l k i n S ( 2 0 08)Drop-sizesodalak e s : T r a n s ie ntmicrobial
habitatsonasalt-secretin g d e s e r ttree.Genetics178:16 1 5 1 6 22.
https://doi.org/10.153 4 / g e n e t i c s.107.082164
9.  C a rvalho,S.D.andCastillo, J . A . 2 0 1 8.InfluenceofLightonP l a n t - P h y l l o s phere
Interaction.Frontiersinp la n t s c i e n c e9,p.1482.
10.  F i n k e lOM,BurchAY,EladT, e t a l ( 2 0 1 2)Distance-decayrela t i o n s h i p s p artially
determinediversitypat t e r n s o f p hyllospherebacteriaon T a m r i x t reesacrossthe
sonorandesert.ApplE n v i r o n M ic robiol78:6187619 3 .
https://doi.org/10.112 8 / A E M . 0 0888-12
11.  L a m baisMR,BarreraSE, S a n t o s E C,etal(2017)Phyllosp h e r e M e taproteomesof
TreesfromtheBrazilian A t l a n t i c F orestShowHighLevels o f F u n c t io nalRedundancy.
18
MicrobEcol.https://doi.o r g / 1 0 . 1 007/s00248-016-08 7 8 - 6
12.  M w a jitaMR,MurageH,Ta n i A , K a h angiEM(2013)Evalu a t i o n o f r h izosphere,
rhizoplaneandphyllosp h e r e b a c teriaandfungiisolatedf r o m r i c e inKenyaforplant
growthpromoters.Sp r i n g e r P l u s.https://doi.org/10.11 8 6 / 2 1 9 3-1801-2-606
13.  B a t o olF,RehmanY,Hasna i n S ( 2 0 16)Phylloplaneassociat e d p l a n t b acteriaof
commerciallysuperior w h e a t v arietiesexhibitsuperiorp l a n t g r o w thpromoting
abilities.FrontLifeSci.http s : / / d o i . o r g /10.1080/215537 6 9 . 2 0 1 6.1256842
14.  S c a v ino,A.F.andPedraza, R . O . 2 0 1 3.TheRoleofSiderop h o r e s i n P lantGrowth-
PromotingBacteria.In: M a h e s h wari,D.K.,Saraf,M., a n d A e r o n,A.eds.Bacteriain
agrobiology:cropprod u c t i v i t y . B erlin,Heidelberg:Spring e r B e r l i n H eidelberg,pp.
265–285.
15.  F u S F ,SunPF,LuHY,etal(2 0 1 6 ) P l a ntgrowth-promotingtr a i t s o f y e astsisolated
fromthephyllosphere a n d r h i z o sphereofDroseraspa t u l a t a L a b.FungalBiol.
https://doi.org/10.101 6 / j . f u n b i o . 2015.12.006
16.  L i S B , FangM,ZhouRC,Hu a n g J ( 2 0 12)Characterizationa n d e v a l u a tionofthe
endophyteBacillusB01 4 a s a p otentialbiocontrolagent f o r t h e c o ntrolof
Xanthomonasaxonop o d i s p v . dieffenbachiae-Induce d b l i g h t o f Anthurium.Biol
Control.https://doi.org/1 0 . 1 0 1 6 /j.biocontrol.2012.06.0 0 2
17.  K e f i A ,SlimeneIB,Karkouch I , e t a l ( 2 0 15)Characterizationof e n d o p h y ticBacillus
strainsfromtomatop la n t s ( L y c o persiconesculentum)d i s p l a y i n g antifungalactivity
againstBotrytiscinerea P e r s . W o rldJMicrobiolBiotechnol.
https://doi.org/10.100 7 / s 1 1 2 7 4-015-1943-x
18.  C o p e landJK,YuanL,Layegh i f a r d M , etal(2015)Seasonalc o m m u nitysuccessionof
thephyllospheremicro b i o m e . M olPlantMicrobeInterac t 2 8 : 2 7 4 285.
https://doi.org/10.109 4 / M P M I - 1 0-14-0331-FI
19
19.  R e d f ordAJ,FiererN(2009 ) B a c t e r i a lsuccessionontheleafs u r f a c e : A novelsystem
forstudyingsuccessiona l d y n a m ics.MicrobEcol58:18 9 1 9 8 .
https://doi.org/10.100 7 / s 0 0 2 4 8-009-9495-y
20.  L e f f J W ,DelTrediciP,Friedma n W E , F iererN(2015)Spatial s t r u c t u r i n g ofbacterial
communitieswithinindiv i d u a l G i n k gobilobatrees.Environ M i c r o b i o l 17:23522361.
https://doi.org/10.111 1 / 1 4 6 2 -2920.12695
21.  R a s t o giG,CoakerGL,Levea u J H J ( 2 0 13)Newinsightsintothe s t r u c t u r e andfunction
ofphyllospheremicrob i o t a t h r o u ghhigh-throughputmo l e c u l a r a p proaches.FEMS
MicrobiolLett348:11 0 . h t t p s : / / doi.org/10.1111/157 4 - 6 9 6 8 .12225
22.  G o m es,T.,Pereira,J.A.,Ben h a d i , J . , L i n o-Neto,T.andBaptista, P . 2 0 1 8 .Endophytic
andepiphyticphyllosphe r e f u n g a lcommunitiesaresha p e d b y d ifferent
environmentalfactorsin a m e d iterraneanecosystem. M i c r o b i a lEcology76(3),pp.
668–679.
23.  S t r i n g erLC,DyerJC,ReedM S , e t a l ( 2 009)Adaptationstoclim a t e c h a nge,drought
anddesertification:local i n s i g h t s t o enhancepolicyinsouthe r n A f r i c a . EnvironSci
Policy.https://doi.org/10. 1 0 1 6 / j . e nvsci.2009.04.002
24.  V a c h erC,HampeA,Porté A J , e t a l ( 2 016)ThePhyllosphere: M i c r o b i a lJungleatthe
PlantClimateInterface. A n n u R e vEcolEvolSyst47:12 4 .
https://doi.org/10.114 6 / a n n u r e v-ecolsys-121415-03 2 2 3 8
25.  D a n i n ,A.1983.Desertveg e t a t i o n o f IsraelandSinai.Jerusale m : C a n a Publishing
House148p.-illus.,col.illu s . , m a p s..EnIcones,Maps.Ge o g 2 .
26.  M u n zbergovaZ,WardD(2 0 0 2 ) A caciatreesaskeystone s p e c i e s in negevdesert
ecosystems.JVegSci1 3 : 2 2 7 236.https://doi.org/10 . 1 1 1 1 / j. 1654-
1103.2002.tb02043.x
27.  M i l t o n SJ,DeanWRJ(1995)H o w u s e fulisthekeystonespecie s c o n c e pt,andcanitbe
20
appliedtoAcaciaeriolob a i n t h e K alahariDesert?ZFürO k o l o g i e N aturschutz4:147
156
28.  W a r d,D.andRohner,C.1 9 9 7 . A n thropogeniccausesofh i g h m o r talityandlow
recruitmentinthreeAca c i a t r e e t axaintheNegevdeser t , I s r a e l . B iodiversityand
Conservation6(6),pp. 8 7 7 8 9 3.
29.  R o d g erYS,GreenbaumG , S i l v e r M ,etal(2018)Detecting h i e r a r c h i c allevelsof
connectivityinapopulatio n o f A c a ciatortilisatthenortherne d g e o f t h especies
globaldistribution:Comb i n i n g c l a s s icalpopulationgeneticsa n d n e t w orkanalyses.
PLoSONE.https://doi.or g / 1 0 . 1 3 71/journal.pone.0194 9 0 1
30.  W i n t e rsG,OtienoD,CohenS , e t a l ( 2 0 18)Treegrowthand w a t e r - u s einhyper-arid
Acaciaoccursduringth e h o t t e s t a nddriestseason.Oec o l o g i a .
https://doi.org/10.100 7 / s 0 0 4 4 2-018-4250-z
31.  T e r B raakCJF(1986)Cano n i c a l c o r r espondenceanalysis:a n e w e i g envector
techniqueformultivaria t e d i r e c t g radientanalysis.Ecology .
https://doi.org/10.230 7 / 1 9 3 8 672
32.  P o n t o nioE,DiCagnoR,Tarra f W , e t a l(2018)Dynamicand a s s e m blyofepiphyteand
endophytelacticacidba c t e r i a d u ringthelifecycleofOriga n u m v u lgareL.Front
Microbiol.https://doi.org/ 1 0 . 3 3 8 9/fmicb.2018.0137 2
33.  B o d e nhausenN,HortonM W , B e r g elsonJ(2013)Bacteria l C o m m unitiesAssociated
withtheLeavesandthe R o o t s o fArabidopsisthaliana.P L o S O N E .
https://doi.org/10.137 1 / j o u r n a l . p one.0056329
34.  T h a p a,S.andPrasanna,R . 2 0 1 8 . Prospectingthecharac t e r i s t i c s a n dsignificanceof
thephyllospheremicro b i o m e . A nnalsofmicrobiology6 8 ( 5 ) , p p . 229245.
35.  A r n d tSK,ArampatsisC,Foe t z k i A , e t a l(2004)Contrastingpa t t e r n s o f leafsolute
accumulationandsalta d a p t a t i o ninfourphreatophyticd e s e r t p l a ntsinahyperarid
21
desertwithsalinegroun d w a t e r . JAridEnviron.
https://doi.org/10.101 6 / j . j a r i d e n v.2004.01.017
36.  L i a n g J,ZhangJ,WongMH( 1 9 9 6 ) S tomatalconductancein r e l a t i o n t o xylemsap
abscisicacidconcentrat i o n s i n t w o tropicaltrees,Acaciaco n f u s a a ndLitsea
glutinosa.PlantCellEnviro n . h t t p s : / / d oi.org/10.1111/j.136 5 - 3 0 4 0 .1996.tb00230.x
37.  W a h id ,A.,Gelani,S.,Ashraf, M . a n d F oolad,M.2007.Hea t t o l e r a n c einplants:An
overview.Environmen t a l a n d e xperimentalbotany61 ( 3 ) , p p . 199223.
38.  R e m us-EmsermannMNP , S c h l e c h terRO(2018)Phyllosp h e r e m i c robiology:atthe
interfacebetweenmic r o b i a l i n d i v idualsandtheplanthos t . N e w P hytol218:.
https://doi.org/10.111 1 / n p h . 1 5 054
39.  S c h l e chter,R.O.,Miebach,M . a n d R emus-Emsermann,M . N . P . 2 0 19.Drivingfactorsof
epiphyticbacterialcomm u n i t i e s : A review.Journalofadv a n c e d r e search19,pp.57
65.
40.  K i m M ,SinghD,Lai-HoeA,e t a l ( 2 0 1 2)DistinctivePhyllosphere B a c t e r i a l
CommunitiesinTropica l T r e e s . M icrobEcol63:67468 1 .
https://doi.org/10.100 7 / s 0 0 2 4 8-011-9953-1
41.  L a f o r est-LapointeI,MessierC , K e m b e lSW(2016)Treephy l l o s p h e r e bacterial
communities:exploring t h e m a g nitudeofintra-andinter - i n d i v i d u a l variationamong
hostspecies.PeerJ4:e2 3 6 7 . h t tps://doi.org/10.7717/ p e e r j . 2 3 67
42.  F i n k e lOM,DelmontTO,Post A F , B e l k i n S(2016)Metageno m i c s i g n a turesofbacterial
adaptationtolifeinthep h y l l o s p h e reofasalt-secretingdes e r t t r e e . ApplEnviron
Microbiol82:28542 8 6 1 . h t t p s://doi.org/10.1128/A E M . 0 0 4 83-16
43.  F i n k e lOM,BurchAY,Lindow S E , e t a l (2011)Geographicallo c a t i o n d e terminesthe
populationstructureinp h y l l o s p h e r emicrobialcommunitie s o f a s a lt-excretingdesert
tree.ApplEnvironMicro b i o l 7 7 : 7 6477655.https://do i . o r g / 1 0 . 1128/AEM.05565-1 1
22
44.  G i n a t H,ShlomiY,BatersehS , V o g e l J (2011)ReductioninPre c i p i t a t i o n L evelsinthe
AravaValley(Southern I s r a e l a n d Jordan),1949-2009 . J D e a d - S eaAravaRes
45.  W a r d,D.2010.Theeffect s o f a p i c a lmeristemdamage o n g r o w thanddefencesof
twoAcaciaspeciesinth e N e g e v Desert.EvolutionaryEc o l o g y R e search.
46.  S h e r AA,WiegandK,Ward D ( 2 0 1 0 )DoAcaciaandTam a r i x t r e e s competeforwater
intheNegevdesert?JA r i d E n v i r o n .https://doi.org/10.10 1 6 / j . j a r i d e nv.2009.09.007
47.  W i n t e rsG,RyvkinI,RudkovT , e t a l ( 2 0 15)Mappingunderg r o u n d l a y ersinthesuper
aridGidronWadiusing e l e c t r i c a l r esistivitytomography(ER T ) . J A r i d Environ.
https://doi.org/10.101 6 / j . j a r i d e n v.2015.05.008
48.  S h r e sthaMK,StockWD,W a r d D , G olan-GoldhirshA(2003) W a t e r s tatusofisolated
Negevdesertpopulatio n s o f A c a ciaraddianawithdiffe r e n t m o r talitylevels.Plant
Ecol.https://doi.org/10.1 0 2 3 / A : 1 024431124954
49.  F u k s G,ElgartM,AmirA,et a l ( 2 0 1 8 )Combining16SrRNA g e n e v a riableregions
enableshigh-resolutionm i c r o b i a l c ommunityprofiling.Mic r o b i o m e .
https://doi.org/10.118 6 / s 4 0 1 6 8-017-0396-x
50.  L a n g meadB,SalzbergSL ( 2 0 1 2 ) Fastgapped-readalign m e n t w ithBowtie2.Nat
Methods9:357359
51.  Z h a n gJ,KobertK,FlouriT,Sta m a t a k i s A(2014)PEAR:Afas t a n d a c c urateIllumina
Paired-EndreAdmerg e R . B i o i n formatics30:61462 0 .
https://doi.org/10.109 3 / b i o i n f o r matics/btt593
52.  S c h l o ssPD,WestcottSL,Rya b i n T , e t a l(2009)Introducingm o t h u r : O p en-source,
platform-independent, c o m m u nity-supportedsoftware f o r d e s cribingandcomparing
microbialcommunities. A p p l E n v ironMicrobiol75:7537 7 5 4 1 .
https://doi.org/10.112 8 / A E M . 0 1541-09
53.  C a p o rasoJG,KuczynskiJ,Stom b a u g h J,etal(2010)QIIMEallo w s a n a l y sisofhigh-
23
throughputcommunity s e q u e n cingdata.NatMethods 7 : 3 3 5 336
54.  D e S a ntisTZ,HugenholtzP,La r s e n N , etal(2006)Greengen e s , a c h i m era-checked
16SrRNAgenedata b a s e a n d workbenchcompa t i b l e w i t h A RB.ApplEnvironMicrob i o l .
https://doi.org/10.112 8 / A E M . 0 3006-05
55.  H i l l , T . C .J.,Walsh,K.A.,Harris,J. A . a n d M offett,B.F.2003.Usin g e c o l o g ic aldiversity
measureswithbacter i a l c o m m unities.FEMSMicrobiolo g y E c o l o gy43(1),pp.111.
56.  H a e gemanB,HamelinJ,M o r i a r t y J , etal(2013)Robustes t i m a t i o n o fmicrobial
diversityintheoryandin p r a c t i c e . ISMEJ.https://doi.org/10 . 1 0 3 8 / is mej.2013.10
57.  F a i t h , D.P.andBaker,A.M. 2 0 0 7 . P hylogeneticdiversity(PD) a n d b i o d iversity
conservation:somebio i n f o r m a ticschallenges.Evolutiona r y B i o i n f o rmaticsOnline2,
pp.121128.
58.  K u c z y nski,J.,Stombaugh,J.,W a l t e r s , W .A.,González,A.,Capo r a s o , J . G . andKnight,
R.2012.UsingQIIME t o a n a l y z e 16SrRNAgeneseq u e n c e s f rommicrobial
communities.Currentp r o t o c o l s i n microbiologyChapter 1 , p . U n it 1E.5.
59.  R C o reteam(2015)RCor e T e a m
60.  O k s a nenJ,BlanchetFG,Frien d l y M , e tal(2019)vegan:Com m u n i t y EcologyPackage.
Rpackageversion2. 5 - 2 . C r a n R
61.  M a r tín ezI,StegenJC,Maldon a d o - G ó m ezMX,etal(2015)Th e G u t M ic robiotaofRural
PapuaNewGuineans : C o m p o sition,DiversityPatterns,a n d E c o l o gicalProcesses.Cell
Rep.https://doi.org/10. 1 0 1 6 / j . c elrep.2015.03.049
62.  S i n c l a ir L,OsmanOA,Bertilsso n S , E i l e r A(2015)Microbialcom m u n i t y composition
anddiversityvia16SrR N A g e n eamplicons:Evaluating t h e i l l u m i n aplatform.PLoS
ONE.https://doi.org/10 . 1 3 7 1 / j o urnal.pone.0116955
Figures
24
Figure1
SouthIsraeltopographymapshowingthestudiedsiteofWadiSheizaf(A),andacaciatrees
(A.raddianaandA.tortilis;B)sampledmonthlyduring2015.Airtemperatureandhumidity
werehourlyobtainedfromtheHazevameteorologicalstation(C).Ineachmonth,leaf
samples(exampleofleavescollectedshowninE)werecollectedfromthenorth,centerand
southsidesofthecanopies(D).withaclose-uppictureshowingthecollectedleavesfor
endophyticandepiphyticmicrobialcommunityanalysis.
25
Figure2
NMDSillustratingthephyllospherebacterialcommunityshowingseparateclustersof
bacterialcommunitiesbetween(A)theepiphytic(red)andtheendophytic(blue)bacterial
communitiesfromleavessampledfromsouthsidecanopyareasand(B)differentclusters
forA.raddiana(blue)andA.tortilis(green)forendophyticbacterialcommunities.
26
Figure3
Boxplotillustratingepi-andendophytemajorbacterialphyla.
27
Figure4
NMDSillustratesthephyllospherebacterialcommunitiesshowingseparateclustersof
bacterialcommunitiesbetweendifferentsamplingmonthsfor(A)epiphyticand(B)
endophyticbacterialcommunities.
28
Figure5
NMDSillustratestheepiphytesbacterialcommunityatnorth(red),south(green)andcenter
(blue)canopyside,forA.raddiana(circles)andA.tortilis(triangles).
29
Figure6
Epiphytesbacterialcommunitycompositionclustersarrangedprimarilybysamplingmonth
andcanopyside.A)Clusteringdendrogramofbacterialcommunities,and(B)bacterial
communitycompositionforthesamplesshowninpanelA.Differentbarcolorsrepresent
differentphylumwhileshadesofthesamecolorrepresentdifferentOTU’s.TheX-axistitles
werecolorcodedfordifferentmonths,Januaryinblue,Juneingreen,Julyinredand
Septemberinblack.
30
Figure7
CCAordinationillustrating(A)epiphyticbacterialcommunityatnorth(red),south(green)
andcenter(blue)canopysidesand(B)endophyticbacterialcommunities,forA.raddiana
(circles)andA.tortilis(triangles)withsignificantabioticfactorsaffectingthebacterial
communities.
31
Figure8
HeatmapshowingtheabundanceofOTUs>5%ofthetotalbacterialcommunities(x-axis)
foreachofthesampledepiphyticandendophyticbacterialcommunitiesatsouthcanopy
sideatdifferentsamplingmonths(1-12)during2015.
SupplementaryFiles
Thisisalistofsupplementaryfilesassociatedwiththispreprint.Clicktodownload.
TableS2(1).docx
TableS4(1).docx
TableS5(1).docx
TableS3(1).docx
32
TableS1(1).docx
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Bacteria establish complex, compositionally consistent communities on healthy leaves. Ecological processes such as dispersal, diversification, ecological drift, and selection as well as leaf surface physicochemistry and topology impact community assembly. Since the leaf surface is an oligotrophic environment, species interactions such as competition and cooperation may be major contributors to shape community structure. Furthermore, the plant immune system impacts on microbial community composition, as plant cells respond to bacterial molecules and shape their responses according to the mixture of molecules present. Such tunability of the plant immune network likely enables the plant host to differentiate between pathogenic and non-pathogenic colonisers, avoiding costly immune responses to non-pathogenic colonisers. Plant immune responses are either systemically distributed or locally confined, which in turn affects the colonisation pattern of the associated microbiota. However, how each of these factors impacts the bacterial community is unclear. To better understand this impact, bacterial communities need to be studied at a micrometre resolution, which is the scale that is relevant to the members of the community. Here, current insights into the driving factors influencing the assembly of leaf surface-colonising bacterial communities are discussed, with a special focus on plant host immunity as an emerging factor contributing to bacterial leaf colonisation.
Article
Full-text available
Plant–phyllosphere interactions depend on microbial diversity, the plant host and environmental factors. Light is perceived by plants and by microorganisms and is used as a cue for their interaction. Photoreceptors respond to narrow-bandwidth wavelengths and activate specific internal responses. Light-induced plant responses include changes in hormonal levels, production of secondary metabolites, and release of volatile compounds, which ultimately influence plant–phyllosphere interactions. On the other hand, microorganisms contribute making some essential elements (N, P, and Fe) biologically available for plants and producing growth regulators that promote plant growth and fitness. Therefore, light directly or indirectly influences plant–microbe interactions. The usage of light-emitting diodes in plant growth facilities is helping increasing knowledge in the field. This progress will help define light recipes to optimize outputs on plant–phyllosphere communications. This review describes research advancements on light-regulated plant–phyllosphere interactions. The effects of full light spectra and narrow bandwidth-wavelengths from UV to far-red light are discussed.
Article
Full-text available
Drought-induced tree mortality has been recently increasing and is expected to increase further under warming climate. Conversely, tree species that survive under arid conditions might provide vital information on successful drought resistance strategies. Although Acacia (Vachellia) species dominate many of the globe’s deserts, little is known about their growth dynamics and water-use in situ. Stem diameter dynamics, leaf phenology, and sap flow were monitored during 3 consecutive years in five Acacia raddiana trees and five Acacia tortilis trees in the Arid Arava Valley, southern Israel (annual precipitation 20–70 mm, restricted to October–May). We hypothesized that stem growth and other tree activities are synchronized with, and limited to single rainfall or flashflood events. Unexpectedly, cambial growth of both Acacia species was arrested during the wet season, and occurred during most of the dry season, coinciding with maximum daily temperatures as high as 45 °C and vapor pressure deficit of up to 9 kPa. Summer growth was correlated with peak sap flow in June, with almost year-round activity and foliage cover. To the best of our knowledge, these are the harshest drought conditions ever documented permitting cambial growth. These findings point to the possibility that summer cambial growth in Acacia under hyper-arid conditions relies on concurrent leaf gas exchange, which is in turn permitted by access to deep soil water. Soil water can support low-density tree populations despite heat and drought, as long as recharge is kept above a minimum threshold.
Article
Full-text available
Origanum vulgare L. (oregano) was chosen as suitable model to investigate the ability of the endophyte-microbiome, especially that of lactic acid bacteria, to develop specific interactions with the plant, mediated by the essential oils (EOs). Combined culture-dependent and -independent approaches analyzed the bacterial dynamic and assembly of Origanum vulgare L. throughout the life cycle. Epiphyte bacteria were more abundant than the endophyte ones. The number of presumptive lactic acid bacteria increased throughout oregano life cycle, according to the plant organ. Diverse species of lactic acid bacteria populated the plant, but Lactobacillus plantarum stably dominated both epiphyte and endophyte populations. High-throughput DNA sequencing showed highest epiphyte bacterial diversity at early vegetative and full-flowering stages, with blooming signing the main microbial differentiation among plant organs. Proteobacteria, Actinobacteria and Bacteroidetes, and Firmicutes and Cyanobacteria at lower abundance were the main phyla. Various genera were detectable, but oregano harbored mainly Methylobacterium, Sphingomonas, Rhizobium and Aurantimonas throughout phenological stages. Firmicutes epiphyte and endophyte microbiotas were different, with a core microbiota consisting of Bacillus, Exiguobacterium, Streptococcus, Staphylococcus and Lactobacillus genera. Bacillus dominated throughout phenological stages. High-throughput DNA sequencing confirmed the dominance of L. plantarum within the epiphyte and endophyte populations of lactic acid bacteria. Yields of EOs varied among plant organs and throughout plant life cycle. L. plantarum strains were the most resistant to the total EOs (mainly thymol and carvacrol) as extracted from the plant. The positive correlation among endophyte lactic acid bacteria and the EOs content seems confirm the hypothesis that the colonization within plant niches may be regulated by mechanisms linked to the synthesis of the secondary metabolites.
Article
Full-text available
Genetic diversity and structure of populations at the edge of the species’ spatial distribution are important for potential adaptation to environmental changes and consequently, for the long-term survival of the species. Here, we combined classical population genetic methods with newly developed network analyses to gain complementary insights into the genetic structure and diversity of Acacia tortilis, a keystone desert tree, at the northern edge of its global distribution, where the population is under threat from climatic, ecological, and anthropogenic changes. We sampled A. tortilis from 14 sites along the Dead Sea region and the Arava Valley in Israel and in Jordan. In addition, we obtained samples from Egypt and Sudan, the hypothesized origin of the species. Samples from all sites were genotyped using six polymorphic microsatellite loci.Our results indicate a significant genetic structure in A. tortilis along the Arava Valley. This was detected at different hierarchical levels—from the basic unit of the subpopulation, corresponding to groups of trees within ephemeral rivers (wadis), to groups of subpopulations (communities) that are genetically more connected relative to others. The latter structure mostly corresponds to the partition of the major drainage basins in the area. Network analyses, combined with classical methods, allowed for the identification of key A. tortilis subpopulations in this region, characterized by their relatively high level of genetic diversity and centrality in maintaining gene flow in the population. Characterizing such key subpopulations may enable conservation managers to focus their efforts on certain subpopulations that might be particularly important for the population’s long-term persistence, thus contributing to species conservation within its peripheral range.
Article
Full-text available
Leaf surfaces are home to diverse bacterial communities. Within these communities, every individual cell perceives its unique environment and responds accordingly. In this insight article, the perspective of the bacterial individual is assumed in an attempt to describe how the spatially heterogeneous leaf surface determines the fate of bacteria. To investigate behaviour at scales relevant to bacteria, single-cell approaches are essential. Single-cell studies provide important lessons about how current ‘omics’ approaches fail to give an accurate picture of the behaviour of bacterial populations in heterogeneous environments. Upcoming techniques will soon allow us to combine the power of single-cell and omics approaches.
Article
Full-text available
The diversity and factors influencing fungal assemblages in phyllosphere of Mediterranean tree species have been barely studied, especially when endophytic and epiphytic communities are simultaneously considered. In this work, the endophytic and epiphytic fungal communities from olive tree phyllosphere were studied. This tree species is natural from the Mediterranean region and adapted to grow under adverse climatic conditions. The main objectives were to determine whether there are differences between both fungal communities and to examine whether different abiotic (climate-related) and biotic (plant organs) factors play a pivotal role in structuring these communities. Both communities differed in size and composition, with epiphytic community being richer and more abundant, displaying also a dominance of melanized fungi. Season was the major driver of community composition, especially of epiphytes. Other drivers shaping epiphytes were wind speed and temperature, while plant organ, rainfall, and temperature were the major drivers for endophytic composition. In contrast, canopy orientation caused slight variations in community composition of fungi, but with distinct effects in spring and autumn seasons. In conclusion, epiphytic and endophytic communities are not driven by the same factors. Several sources of variation undergo complex interactions to form and maintain phyllosphere fungal community in Mediterranean climates. Climatic parameters have influence on these fungal communities, suggesting that they are likely to be affected by climate changes in a near future.
Article
Full-text available
Background: Most of our knowledge about the remarkable microbial diversity on Earth comes from sequencing the 16S rRNA gene. The use of next-generation sequencing methods has increased sample number and sequencing depth, but the read length of the most widely used sequencing platforms today is quite short, requiring the researcher to choose a subset of the gene to sequence (typically 16-33% of the total length). Thus, many bacteria may share the same amplified region, and the resolution of profiling is inherently limited. Platforms that offer ultra-long read lengths, whole genome shotgun sequencing approaches, and computational frameworks formerly suggested by us and by others all allow different ways to circumvent this problem yet suffer various shortcomings. There is a need for a simple and low-cost 16S rRNA gene-based profiling approach that harnesses the short read length to provide a much larger coverage of the gene to allow for high resolution, even in harsh conditions of low bacterial biomass and fragmented DNA. Results: This manuscript suggests Short MUltiple Regions Framework (SMURF), a method to combine sequencing results from different PCR-amplified regions to provide one coherent profiling. The de facto amplicon length is the total length of all amplified regions, thus providing much higher resolution compared to current techniques. Computationally, the method solves a convex optimization problem that allows extremely fast reconstruction and requires only moderate memory. We demonstrate the increase in resolution by in silico simulations and by profiling two mock mixtures and real-world biological samples. Reanalyzing a mock mixture from the Human Microbiome Project achieved about twofold improvement in resolution when combing two independent regions. Using a custom set of six primer pairs spanning about 1200 bp (80%) of the 16S rRNA gene, we were able to achieve ~ 100-fold improvement in resolution compared to a single region, over a mock mixture of common human gut bacterial isolates. Finally, the profiling of a Drosophila melanogaster microbiome using the set of six primer pairs provided a ~ 100-fold increase in resolution and thus enabling efficient downstream analysis. Conclusions: SMURF enables the identification of near full-length 16S rRNA gene sequences in microbial communities, having resolution superior compared to current techniques. It may be applied to standard sample preparation protocols with very little modifications. SMURF also paves the way to high-resolution profiling of low-biomass and fragmented DNA, e.g., in the case of formalin-fixed and paraffin-embedded samples, fossil-derived DNA, or DNA exposed to other degrading conditions. The approach is not restricted to combining amplicons of the 16S rRNA gene and may be applied to any set of amplicons, e.g., in multilocus sequence typing (MLST).
Article
Full-text available
The phyllosphere supports a tremendous diversity of microbes and other organisms. However, little is known about the colonization and survival of pathogenic and beneficial bacteria alone or together in the phyllosphere across the whole plant life-cycle under herbivory, which hinders our ability to understand the role of phyllosphere bacteria on plant performance. We addressed these questions in experiments using four genetically and biogeographically diverse accessions of Arabidopsis thaliana, three ecologically important bacterial strains (Pseudomonas syringae DC3000, Xanthomonas campestris, both pathogens, and Bacillus cereus, plant beneficial) under common garden conditions that included fungus gnats (Bradysia spp.). Plants supported greater abundance of B. cereus over either pathogenic strain in the phyllosphere under such greenhouse conditions. However, the Arabidopsis accessions performed much better (i.e., early flowering, biomass, siliques, and seeds per plant) in the presence of pathogenic bacteria rather than in the presence of the plant beneficial B. cereus. As a group, the plants inoculated with any of the three bacteria (Pst DC3000, Xanthomonas, or Bacillus) all had a higher fitness than uninoculated controls under these conditions. These results suggest that the plants grown under the pressure of different natural enemies, such as pathogens and an herbivore together perform relatively better, probably because natural enemies induce host defense against each other. However, in general, a positive impact of Bacillus on plant performance under herbivory may be due to its plant-beneficial properties. In contrast, bacterial species in the mixture (all three together) performed poorer than as monocultures in their total abundance and host plant growth promotion, possibly due to negative interspecific interactions among the bacteria. However, bacterial species richness linearly promoted seed production in the host plants under these conditions, suggesting that natural enemies diversity may be beneficial from the host perspective. Collectively, these results highlight the importance of bacterial community composition on plant performance and bacterial abundance in the phyllosphere.
Article
Phyllosphere represents the largest global interface of the aerial parts of the plant, comprising mainly stem and leaves, which is inhabited by various groups of microorganisms. Analyses of the spatial abundance of microflora, diversity, and distribution of microbial communities and the influence of abiotic and biotic factors have revealed that this niche is unique. This reflects the impact of both evolutionary and ecological factors, leading to sorting of microbial species, delineation of keystone species or microbial hubs, mediated by inter-kingdom connectivity and networking. Production of hormones, pigments, volatiles, extracellular polysaccharides (EPS), cross-kingdom signals, and quorum sensing are characteristic facets, which promote proliferation and survival in the harsh and inhospitable habitat of the phyllosphere, exposed to radiation and environmental extremes. The use of both traditional morphology-culturing-based taxonomy and modern tools of metagenomics, proteomics, and transcriptomics has illustrated that the diversity among bacterial members is mainly restricted to Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and less frequently, Cyanobacteria; oomycetous communities are common inhabitants, besides fungi. Despite scanty published work on foliar disease-related aspects, the phyllosphere can provide a model microenvironment, in which the interactions between the pathogen and biocontrol agent can be visualized and modulated. The major aims of the present review are as follows: (i) to elucidate the mechanisms of microbial colonization and decipher the nature of spatial and temporal changes in the abundance and diversity in this niche; (ii) to illustrate the significance of the different taxonomic groups; and (iii) outline future strategies for research on the phyllosphere microbiome.