Content uploaded by Stefán Áki Ragnarsson
Author content
All content in this area was uploaded by Stefán Áki Ragnarsson on Oct 02, 2020
Content may be subject to copyright.
REYKJAVÍK SEPTEMBER 2020
Burrowing behaviour in ocean quahog (
Arctica islandica
) in
situ and in the laboratory
Stefán Ragnarsson og Guðrún G. Þórarinsdóttir
HAF- OG VATNARANNSÓKNIR
MARINE AND FRESHWATER RESEARCH IN ICELAND
HV 2020-43
ISSN 2298-9137
Burrowing behaviour in ocean quahog
(
Arctica islandica
) in situ and in the laboratory
Stefán Ragnarsson og Guðrún G. Þórarinsdóttir
Haf‐ogvatnarannsóknir
MarineandFreshwaterResearchinIceland
Upplýsingablað
Titill:Burrowingbehaviourinoceanquahog(Arcticaislandica)insituandinthelaboratory
Höfundar:StefánRagnarssonogGuðrúnG.Þórarinsdóttir
Skýrslanr.
HV2020‐043
Verkefnisstjóri:
StefánRagnarsson
Verknúmer:
11515
ISSN
2298‐9137
Fjöldisíðna:
20
Útgáfudagur:
28.september2020
Unniðfyrir:
Hafrannsóknastofnun
Dreifing:
Opin
Yfirfariðaf:
KlaraJakobsdóttir
Ágrip
Íþessarrirannsóknvoruárstíðabundnarsveiflurílóðréttrihreyfingukúfskelja(Arctica
islandica)íbotnsetiogskelstærðkönnuðíEyjafirðisemogírannsóknarstofu.Niðurstöður
sýnduaðskeljarvorugrafnardýpraísetiyfirveturensumar,semvæntanlegaskýristaf
minnafæðuframboðioglægrahitastigiáþeimárstíma.Íljósiþessavarathyglisverthversu
skeljarvorudjúptgrafnarísetiíseptember2003.Daganafyrirsýnatökuvarmjöghvasstsem
gætihafaorsakaðmiklahreyfinguábotnsetinuogorðiðtilþessaðskeljrnargrófusigniður
íleitaðskjóli.Tölfræðilegurmunurvarámeðaldýpiskeljaísetiíjúníbæðirannsóknarárin
semerfitteraðskýra.Marktækfylgnifannstámilliskellengdarogdýpisínokkrumsýnatöku
mánuðum.Íathugunumsemfóruframárannsóknarstofufannstekkertsamræmiámilli
einstakingaísetdýpi.Þaðerljóstaðskeljarsemvorumeðþykkavírinnáttuerfittmeðað
grafasigniður.
Abstract
Thisstudyexaminedtheseasonalvariationinburialbehaviourandshelllengthofocean
quahogs(Arcticaislandica)inEyjafjörðurandduringdirectobservationsinlaboratory.The
buryingbehaviourofoceanquahogswasstronglyseasonal,withclamsburrowingmore
deeplyduringwintercomparedtosummer,mostlikelyduetoreducedfoodavailabilityand
lowerseawatertemperatures.Itwasofinteresthowdeeplyburrowedtheclamswerein
September2003,giventhatbothfoodsupplyandtemperatureshouldhavebeenfavourable
atthattimeofyear.Itislikelythatthehighwindspeedsthedayspriortosamplingcaused
sedimentdisturbancesthatinducedoceanquahogstoburrow.Therewerealsodifferences
inburialdepthsinJuneinbothyearsinvestigatedwhicharedifficulttoexplain.Significant
relationshipswerefoundintheburrowingdepthandshelllengthforseveralsampling
months.Inthelaboratorystudy,noclearsynchronyinburrowingbehaviourwasfound
amongindividuals.Itwasclearthatthoseclamsfittedwiththethickwirehadproblems
burrowing.
Keywords:Arcticaislandica,oceanquahog,burrowing,shelllength
Undirskriftverkefnisstjóra:
Undirskriftforstöðumannssviðs:
i
Efnisyfirlit Bls.
Introduction.................................................................................................................1
Materialandmethods.................................................................................................3
Fieldstudy.................................................................................................................3
Laboratorystudy.......................................................................................................5
Statisticalanalysis.....................................................................................................7
1.Temporaltrendsinburyingactivityofoceanquahogs.........................................7
1.1.Environmentalvariables..................................................................................7
1.2.Burialdepth.....................................................................................................9
1.3.Shelllength....................................................................................................11
1.4.Burialdepthandshelllength........................................................................12
2.Laboratorystudy.................................................................................................13
2.1.Mortalityratesandburrowingactivity..........................................................13
Discussion..................................................................................................................15
Acknowledgements...................................................................................................18
References.................................................................................................................18
Tables
Table1.Numberofoceanquahogs,survivalandmortalityrate,burialbehaviour,anddepth
inthecontrolsandwithclamsfittedwiththin(1.6mm)andthick(3mm)wire24,48and72
h.
Tafla1.Fjöldikúfskelja,yfirlifunogdánartíðni,hreyfingíbotnsetiogdýpihjá
viðmiðunarhópi,skelmeðþunnan(1,6mm)ogþykkan(3mm)vírárannsóknartímabilinueftir
24,48og72kls.
Figures
Figure1.Siphonopeningsofoceanquahogs(A.islandica)insandybottom.(Photo/Ljósm.
StefánRagnarsson).
1.mynd.Inn‐ogútstreymisopkúfskelja(A.islandica)ísandbotni.
Figure2.SamplingsiteinEyjafjördur,NorthIceland.
2.mynd.RannsóknarsvæðiðíEyjafirði,norðurland.
Figure3.Samplingofoceanquahogswithinarectangleof1m2.Therightphotoshowsthe
siphonopenings.(Photo/Ljósm.KarlGunnarsson).
3.mynd.Einsfermetrarammitilafmörkunarsýnatökusvæðis.Tilhægrisjástinn‐og
útstreymisopkúfskeljainnanrammans.
ii
Figure4.Oceanquahogs(A.islandica)withwireexposedwhilegluewasdrying.
(Photo/Ljósm.StefánRagnarsson).
4.mynd.Kúfskeljar(A.islandica)meðvíráþurruámeðanlímiðþornar.
Figure5.Oceanquahogs(A.islandica)withandwithoutwirelocatedinthetankatday1(a)
andday2(b).Aclamwithawirestartingburrowinginthesediment(c)andburieddeeply
(d).(Photo/Ljósm.StefánRagnarsson).
5.mynd.Kúfskeljar(A.islandica)meðogánvírsítankiádegi1(a)ogdegi2(b).Skelað
grafasigniður(c)skellangtniðurgrafiníbotnlagiðogaðeinshlutivírssjáanlegur(d).
Figure6.Anoceanquahog(A.islandica)fittedwithwirestartingburrowingintothe
sediment.(Photo/Ljósm.StefánRagnarsson).
6.mynd.Kúfskel(A.islandica)meðvíraðgrafasigniðuríbotnlagið.
Figure7.ReconstructedseawatertemperatureinHjalteyri.Thetemperaturedatawere
reconstructedduetomissingdatabyusingthemeandifferencesintheseawater
temperatureinthenearbylocatedGrímseyislandbetween2000and2006(forwhichthere
wasacompletetemperaturerecord)andHjalteyri.Thedatesonthex‐axisshowthe
samplingoccasions.
7.mynd.Endurgerður(reconstructed)sjávarhitiviðHjalteyri.Hitagögninvoruendurgerð,þar
semgögnvantaði,meðþvíaðnotameðalmuníhitaviðGrímsey(2000‐2006)ogHjalteyri.
Söfnunardagarerusýndiráx‐ás.
Figure8.a)Maximumsustainedwindspeed(m/sec)for10minperiodinHjalteyri(May
2003‐July2004).Thedatesonthex‐axisshowthesamplingoccasions.
8.mynd.Mesti10mínútnameðalvindraði(m/sek)áHjalteyri(maí2003‐júlí2004).
Söfnunardagarerusýndiráx‐ás.
Figure9.BoxplotshowingmeanburialdepthsofoceanquahoginJuneandSeptember2003
andFebruaryandJune2004.Theboxrepresents25‐75%quantiles,thewhiskersthe1.5*
interquantilerangesandthedotstheoutliers.
9.mynd.Kassaritsemsýnirmeðaldýpikúfskeljaísandbotnifebrúar2004,júníbæðiárinog
september2003.Kassinnsýnir25‐75%hlutfallsmörk,skeggineinaoghálfakassalengdog
punktarnirútgildi.
Figure10.FrequencydistributionofoceanquahogburialdepthsinJune(J03)andSeptember
2003(S03)andFebruary(F04)andJune2004(J04).Notethedifferencesinthescaleofthe
y‐axisbetweensamplingmonths.
10.mynd.Dýpikúfskeljaísandbotniíjúní(J03)ogseptember2003(S03),ogfebrúar(F04)og
júní2004(J04).Athugiðmismunandiskalaáy‐ás
Figure11.Boxplotofmeans,25‐75%quantiles(box)and1.5*interquantileranges
(whiskers)ofoceanquahoglengthsinJuneandSeptember2003andFebruaryandJune
2004.Theboxrepresents25‐75%quantiles,thewhiskersthe1.5*interquantilerangesand
thedotstheoutliers.
11.mynd.Kassaritsemsýnirmeðallengdkúfskeljaísandbotnifebrúar2004,júníbæðiárin
ogseptember2003.Kassinnsýnir25‐75%hlutfallsmörk,skeggineinaoghálfakassalengdog
punktarnirútgildi.
Figure12.Relationships(LOESS;locallyweightedsmoothing)betweenburialdepthandshell
lengthofoceanquahogsinJuneandSeptember2003andFebruaryandJune2004.
12.mynd.Samband(LOESS)dýpisskeljaíbotniogskellengdaríjúníogseptember2003og
febrúarogjúní2004.
iii
Figure13.Oceanquahogswithoutawirestartingburrowingintothesediment.Thefootis
clearlyvisible.(Photo/Ljósm.StefánRagnarsson).
13.mynd.Kúfskeljaránvírsaðgrafasigniðuríbotnlagið.Fóturinnséstgreinilega.
Figure14.Sedimentburialdepthoffiveoceanquahogsfittedwiththinwireafter24,48and
72hours.
14.mynd.Lóðrétthreyfingfimmkúfskeljaísetimeðgrannanvíreftir24,48og72
klukkustundir.
1
Introduction
Thefactorsthatgoverntheburrowingbehaviourofinfaunalbivalvesarepoorly
understood.Infaunalbivalvesthatareburrowedatthesediment‐waterinterfaceare
indirectcontactwiththeoverlayingseawatertotakeupoxygenandfilterfood.
Manyinfaunalbivalvespeciescanburydeeperintothesedimentstoescapeadverse
conditionsandsurvivewithoutoxygenbymeansofanerobicrespiration,oftenfora
considerableduration.Thisphysiologicaladaptionenablesthemtolower
considerablytheirenergycosts(Taylor1976,Oeschger1990).Whilemostinfaunal
bivalvescanundergoshort‐termanaerobiosis,especiallyintheintertidalzone(de
Zwaan1977,Siebenaller1979,Holwerdaetal.1983,Sicketal.1983,Fieldsand
Storey1987,Tallqvist2001),relativelyfewspeciescanremainburiedandrespire
anaerobicallyforseveralmonths(Oeschger1990).Thefactorsthathavebeen
suggestedtoinfluenceburrowingactivityincludereducedfoodsupply(Edelaar
2000),lowsalinity(Haideretal.2018),lowtemperature(JohnandFernandez1989,
Davisetal.1999),highpredatoroccurrence(Tallqvist2001,Edelaar2000,Griffith
andRichardson2006,ZwartsandWanink1989),increasedstormintensity(Poseyet
al.1996),presenceofalgalmats,driftingalgaeandtidallytransportedsandinducing
hypoxicconditions(Nashimotoetal.1986,NorkkoandBonsdorff1996)anddredge
inducedstress(Chicharoetal.2003).
Theoceanquahog(A.islandica),iscommonlyfoundinpartsoftheN‐Atlantic,
sometimesinveryhighdensities.Itpossessesshortpairedinhalantandexhalant
siphons.Duringfeedingactivity,itispositionedatthesediment‐waterinterfaceand
thesiphonopeningscanbevisibleonthesedimentsurfaceascylindricalholes.The
diameteroftheholesmadebytheinhalantsiphonisalwaysslightlylargerthanthat
oftheexhalantone(Fig.1).
2
Figure1.Siphonopeningsofoceanquahogs(A.islandica)insandybottom.Photo/Ljósm.:StefánRagnarsson.
1.mynd.Inn‐ogútstreymisopkúfskelja(A.islandica)ísandbotni.
Theoceanquahogisanexampleofaspeciesthatiscapableoflonger‐term
anaerobiosiswhereit“hibernates”foralongtimedeeplyburrowed.Whiletheexact
environmentalstimulitotriggerthisbehaviourispoorlyknown,itisclearlya
responsetoadverseenvironmentalconditions(Taylor1976).Oceanquahogs
appearstobemoreresistanttooxygendeficiencyandcansurvivelongerthanmany
otherinfaunalbivalvespeciessuchasAbraalba(WeigeltandRumohr1986)and
Cerastodermaedule(Theedeetal.1969).Predationhasbeensuggestedtobea
majorburrowingelicitorinbivalves(GriffithandRichardson,2006).Weigeltand
Rumohr(1986)showedthatjuvenileoceanquahogisanimportantfoodresourcefor
benthicandpelagicfish.Adultsarebelievedtobelessaccessibleforpredationdue
tolargersize,thickershellsandgreaterburrowingdepth(ArntzandWeber1970).
However,Thorarinsdóttiretal.(2009)showedhowdislodgedclamsofdifferentsize
range,lyingonthesedimentsurfacebecameaneasypreyforopportunistic
invertebrateandfishpredators.Manyofthesevalvespartiallyopen,giving
predatorseasieraccesstoitssoftparts.
Theenvironmentaleffectsofshellfishdredginghavebeenwelldocumentedfor
manybivalvespecies(e.g.Chicharoetal.2003,Ragnarssonetal.2015).InIceland,
commercialfishingforoceanquahogswithhydraulicdredgestookplace
3
intermittentlybetween1987and2009(Hafrannsóknastofnun2019).Thedredge
penetratesthesedimentasmuchas10cm(Thorarinsdóttiretal.2002).Thefishing
efficiencycanbeashighas92%forshellsthatare107.5mmorlonger
(Thorarinsdottiretal.,2010).Someclamsarenotcaughtbythedredgeandremain
inthetrackoraredisplacedoutofit(Thorarinsdottiretal.2009).Thesurvivalof
theseclamsislikelytodependuponpredatordensity,thedegreeofshelldamage
andtheirabilityofself‐repairandtoreburrow.Ragnarssonetal.(2015)estimated
thatoutoftheoriginaloceanquahogbiomassbeforefishingtookplace,thedredge
captured82%whilethe18%oftheremainingbiomassrepresentedclamsthatwere
eitherdisplacedoutofthetrackorremainedwithinthetracks.
Furthermore,dredgingcaninducestresstotheclams,affectingboththeir
behaviouralandphysiologicalresponsesandcanincreasetheburrowingtimein
bivalves(Chicharoetal.2003).
Theobjectiveofthisstudywastoinvestigatetheburrowingbehaviourofocean
quahogsundernaturalconditionsatdifferenttimesoftheyearandinthelaboratory
at7°Cwatertemperature.Undernaturalconditionsweinvestigatedwhetherthe
burrowingactivitywasseasonaland/orfunctionofbodysize.Underlaboratory
settings,theburrowingactivityofclamswasmonitoredoveradurationof74hours.
Materialandmethods
Fieldstudy
Thestudywasconductedonasandybottomat10mdepthinEyjafjörður,North
Iceland(65°47.8'N,18°3.8'W)withhighdensitiesofoceanquahogs(Fig.2).
Samplingtookplaceon5thJuneand30thSeptember2003and11thFebruaryand30th
June2004.Theseawatertemperatureandthephytoplanktonconcentrationwere
notmeasuredatthestudysitebutthemeanmonthlyseatemperatureinEyjafjördur
between1987‐2000was7.5°C,8°Cand1.5°CinJune,SeptemberandFebruary,
respectively(Jónsson2004).Thephytoplanktonconcentrationfromnearlocalityin
June,andFebruarywere0.9and0.03mgchl/m3respectively(Kaasaand
Gudmundsson1994).
4
Figure2.SamplingsiteinEyjafjördur,NorthIceland.
2.mynd.RannsóknarsvæðiðíEyjafirði,norðurland.
Ateachsamplingdate,diverscollectedallclams>8mmSLwithintwo1m2frames
thatwererandomlylaidontheseafloordowntothesedimentdepthof20cm,using
anunderwatersuctionsampler(Fig.3).Whentheburrowopeningswerevisibleon
theseafloortheburrowingdepthwasconsideredzero.Forclamsthatdidnothave
visiblesiphonopenings,thedepthofburial(thedistancebetweenthesediment
surfacetotheclamedge)wasmeasuredwitharulertothenearest0.5cm.Allclams
sampledfromthesediment(110,93,65and130inJuneandSeptember2003and
FebruaryandJune2004respectively)wereenumeratedandtakentothelaboratory
wheretheshelllengthwasmeasuredwithverniercalliperstothenearest0.1cmand
weighted.
Figure3.Samplingofoceanquahogswithinarectangleof1m2.Therightphotoshowsthesiphonopenings.
Photo/Ljósm.:KarlGunnarsson.
3.mynd.Einsfermetrarammitilafmörkunarsýnatökusvæðis.Tilhægrisjástinn‐ogútstreymisopkúfskeljainnan
rammans.
5
Laboratorystudy
Oceanquahogswerecollectedwithadrydredgefrom20mdepthinFaxaflóiBay,
SW‐Iceland,inMarch2004.Theclamsweretransportedimmediatelytothe
mariculturelaboratorylocatedcloseby,7kmwestofGrindavík,inwhichmanytypes
ofexperimentsinvolvingcultureofmarinefishandechinodermshavebeencarried
out(https://www.hafogvatn.is/en/about/branches/grindavik).Seventyclams(60‐80
mmshelllength)weretransportedfromthefishinggroundtothelaboratoryin
Grindavík.Theexperimentalsetupconsistedofa500ltankwithrunningseawater
pumpedfrom50mdepthwithaconstanttemperatureof7°Cand30pptsalinity.
Thetankhad30cmlayeroffinesand.Fulllightwasinthelaboratorythroughoutthe
experiment.
Inthelaboratory,atotalof36oceanquahogswereusedfortheexperiment.Apiece
ofthingalvanizedwireoftwodifferentdiameters(1.6and3mm)and20cmlong,
wasattachedtoeachshellnexttothesiphon‐openingsusinganepoxyadhesive
(Reefconstruct,Aquamedic,Bissendorf,Germany).Thewireprotrudedabovethe
sedimentsurface,enablingdirectmeasurementoftheburrowingdepth.Fourteen
clamswithoutawire(controlgroup),werekeptinseawaterandplacedinthe
laboratorytankimmediatelyuponarrival.Eightindividualswithathinwire(1.6mm)
and14withthickwire(3mm)wereexposedwhiletheepoxygluewasdrying,for3
and1hourrespectively(Fig.4).
Figure4.Oceanquahogs(A.islandica)withwireexposedwhilegluewasdrying.
Photo/Ljósm.:StefánRagnarsson.
4.mynd.Kúfskeljar(A.islandica)meðvíráþurruámeðanlímiðþornar.
6
Photographsweretakentolocatetheanimalsinthetankatthestartandthrough
theexperiment(Fig.5).Dailyobservationsweremadefor3days.Forshellsfitted
withwire,theburialbehaviouranddepthwererecorded.Theburialdepthwas
determinedbymeasuringthelengthofwireprotrudingabovethesedimentsurface
(Fig.5d).Buryingactivitywasconsideredtohaveinitiatedwhentheclamhadlifted
itselftoanuprightpositionandshowingclearsignittobeburrowingintosediments
(Fig.6).Thetotalburrowingtimewasrecordedastheinstanttheshellissupported
verticalbythefoottoacompleteburialbelowthesurfaceofthesubstratum
(Stanley1970).
Figure5.Oceanquahogs(A.islandica)withandwithoutwirelocatedinthetankatday1(a)andday2(b).Aclam
withawirestartingburrowinginthesediment(c)andburieddeeply(d).Photo/Ljósm.:StefánRagnarsson.
5.mynd.Kúfskeljar(A.islandica)meðogánvírsítankiádegi1(a)ogdegi2(b).Skelaðgrafasigniður(c)skel
langtniðurgrafiníbotnlagiðogaðeinshlutivírssjáanlegur(d).
a b
c d
7
Figure6.Anoceanquahog(A.islandica)fittedwithwirestartingburrowingintothesediment.
Photo/Ljósm.:StefánRagnarsson.
6.mynd.Kúfskel(A.islandica)meðvíraðgrafasigniðuríbotnlagið.
Statisticalanalysis
Testsonmeanburialdepthsandonmeanlengthsoftheclamsbetweensampling
monthsweremadewithone‐wayANOVAonlog‐transformeddata.Forsignificant
tests,subsequentTukeymultiplecomparisontestswerecarriedouttoidentifythose
meansthatdifferedsignificantly.Two‐sampleKolmogorov‐Smirnov(k‐s)testswere
usedtotestfordifferencesintheclamburialdepthfrequencydistributions.
Results
1.Temporaltrendsinburyingactivityofoceanquahogs
1.1.Environmentalvariables
ThetrendsinreconstructedsurfaceseawatertemperaturesinHjalteyriisshownin
Fig.7.Theestimatedseawatertemperaturesatthetimesofsamplingwere8.2°C(5th
ofJune2003),9.1°C(30thofSeptember2003),2.6°C(12thofFebruary2004)and
11.4°C(30thofJune2004).DataonwindspeedsbetweenMay2003andJuly2004
8
wereobtainedfromthemeteorologicalofficefortheAkureyriweatherstation.The
metricforwindspeedused(maximumwindssustainedfor10minutesinm/sec)
decreasedfromMay2003onwardsbutroseintheautumnof2003andremained
highoverwinteruntildecreasinginsummer2004(Fig.8).Highestwindspeedsduring
thestudyperiodwereobservedinendofSeptember2003,precedingthesampling
onthe30thofSeptember.Between20thand22ndofSeptember,theaverage
windspeedssustainedfor10minuteswereover10m/secperdaywhiletherewere
individualobservationswithwindspeedsbetween20–30m/secandasinglegust
over31m/sec.Thedaybeforesampling(Septemberthe29th),therewerethree
instanceswhenthewindspeedsexceeded15m/sec.
Figure7.ReconstructedseawatertemperatureinHjalteyri.Thetemperaturedatawerereconstructeddueto
missingdatabyusingthemeandifferencesintheseawatertemperatureinthenearbylocatedGrímseyisland
between2000and2006(forwhichtherewasacompletetemperaturerecord)andHjalteyri.Thedatesonthex‐
axisshowthesamplingoccasions.
7.mynd.Endurgerður(reconstructed)sjávarhitiviðHjalteyri.Hitagögninvoruendurgerð,þarsemgögnvantaði,
meðþvíaðnotameðalmuníhitaviðGrímsey(2000‐2006)ogHjalteyri.Söfnunardagarerusýndiráx‐ás.
9
Figure8.Maximumsustainedwindspeed(m/sec)for10minperiodinHjalteyri(May2003‐July2004).Thedates
onthex‐axisshowthesamplingoccasions.
8.mynd.Mesti10mínútnameðalvindraði(m/sek)áHjalteyri(maí2003‐júlí2004).Söfnunardagarerusýndirá
x‐ás.
1.2.Burialdepth
Themeanburialdepthsofclamsdifferedsignificantlyamongsamplingmonths(one‐
wayANOVA,F=217,P<0.0001),(Fig.9).Themeanburialdepthwasgreatestin
February(mean=8.5cm,SD=1.7,range4‐12cm),followedbySeptember2003
(mean=8.0cm,S.D=2.8,range2‐15cm)andlowestinthetwoJunesampling
occasions(2003;mean=2.4,SD=2.2,range=0‐10;2004;mean=3.2,SD=1.3,range=0‐
6.5).TheresultsfromtheTukeymultiplecomparisontestsshowthattheonlynon‐
significantdifferenceinthemeanburialdepthsbetweensamplingoccasionswas
betweenSeptember2003andFebruary2004(Padj.0.46).Itwasofinterestthatthe
burialdepthsinJune2004weresignificantlygreatercomparedtoJunetheprevious
year(Tukeymultiplecomparisontest(padj=0.008).Thedifferencesinmeans
betweenallothersamplingoccasionswerehighlysignificant(padj<0.0001).
10
Figure9.BoxplotshowingmeanburialdepthsofoceanquahoginJuneandSeptember2003andFebruaryand
June2004.Theboxrepresents25‐75%quantiles,thewhiskersthe1.5*interquantilerangesandthedotsthe
outliers.
9.mynd.Kassaritsemsýnirmeðaldýpikúfskeljaísandbotnifebrúar2004,júníbæðiárinogseptember2003.
Kassinnsýnir25‐75%hlutfallsmörk,skeggineinaoghálfakassalengdogpunktarnirútgildi.
Theproportionofclamsburiedbelow7cmdepthwas79%inFebruaryand53%in
Septemberbutwasalmostclosetozeroduringsummermonths(2%and0%inthe
twoJunesamplings,respectively)(Fig.10).Theshapeoftheclamburialdepth
frequencydistributionsdifferedsignificantlybetweenthefollowingsamplingmonths
whenindividuallytestedinapairwisefashionwithatwo‐sampleKolmogorov‐
Smirnov(k‐s)tests;J03vsS03(D=0.27,p=0.001),J03vsJ04(D=0.28,p<0.001),S03vs
F04(D=0.38,p<0.001)andF04vsJ04(D=0.36,P<0.001).Nosignificantdifferences
werefoundbetweenJ03vsF04,J03vsF04andS03vsJ04).
11
Figure10.FrequencydistributionofoceanquahogburialdepthsinJune(J03)andSeptember2003(S03)and
February(F04)andJune2004(J04).Notethedifferencesinthescaleofthey‐axisbetweensamplingmonths.
10.mynd.Dýpikúfskeljaísandbotniíjúní(J03)ogseptember2003(S03),ogfebrúar(F04)ogjúní2004(J04).
Athugiðmismunandiskalaáy‐ás
1.3.Shelllength
Theshelllengthdifferedsignificantlybetweensamplingmonths(one‐wayANOVA,
F=13,P<0.0001).TheoutputsfromtheTukeymultiplecomparisontestsrevealed
thatthemeanlengthsdifferedsignificantlyinallpairwisecomparisonofsampling
months,exceptbetweenFebruary2004andJune2003andbetweenJune2004and
September2003.Asanexample,themeanclamlengthinFebruary2004(78.0,
SD=18mm)wassignificantlygreatercomparedtoSeptember2003(58.0mm,
SD=25.6mm)(P=0.001)andJune2004(57.5mm,SD=26.7mmand(P<0.0001),
(Fig.11).
12
Figure11.Boxplotofmeans,25‐75%quantiles(box)and1.5*interquantileranges(whiskers)ofoceanquahog
lengthsinJuneandSeptember2003andFebruaryandJune2004.Theboxrepresents25‐75%quantiles,the
whiskersthe1.5*interquantilerangesandthedotstheoutliers.
11.mynd.Kassaritsemsýnirmeðallengdkúfskeljaísandbotnifebrúar2004,júníbæðiárinogseptember2003.
Kassinnsýnir25‐75%hlutfallsmörk,skeggineinaoghálfakassalengdogpunktarnirútgildi.
1.4.Burialdepthandshelllength
Therelationshipsbetweenburialdepthandshelllengthforeachsamplingmonthis
showninFig.12.ThenonparametricLOESSregressionwasusedtofitasmooth
curvethroughthesamplingpoints.Significantlinearregressions(usinglog‐
transformeddata)werefoundbetweenburrowdepthandshelllengthforJune2003
(p=0.0024)September2003(p=0.012)andJune2004(p=0.0008)butnotinFebruary
2004(p=0.46).
13
Figure12.Relationships(LOESS;locallyweightedsmoothing)betweenburialdepthandshelllengthofocean
quahogsinJuneandSeptember2003andFebruaryandJune2004.
12.mynd.Samband(LOESS)dýpisskeljaíbotniogskellengdaríjúníogseptember2003ogfebrúarogjúní2004.
2.Laboratorystudy
2.1.Mortalityratesandburrowingactivity
Themortalityofclamsafter72hourswaslowestforshellsincontrols(nowire)or
29%butwas60%and38%forshellswiththickandthinwire,respectively.Mostof
themortalityoccurredwithin24hrs(Table1).Theshellsinthecontrolgroup(n=10)
displayedvarietyinburrowingbehaviouroverthecourseofthestudy.Thefirstclam
tostartburrowingbelongedtothecontrolgroup,initiating30minutesafter
placementinthetank(Fig.13).Fiveoftheclamsinthecontrolswerefullyburied
after24hours(nosiphonopeningsvisible)whiletheremainingfiveremainedonthe
sedimentsurface(Table1).At48and72hours,noclamsinthecontrolswerelying
onthesedimentsurface,butwereeitherhalf‐buried,buriedjustbelowthesediment
surface(siphonsvisible)orfullyburied.
14
Figure13.Oceanquahogswithoutawirestartingburrowingintothesediment.Thefootisclearlyvisible.
Photo/Ljósm.:StefánRagnarsson.
13.mynd.Kúfskeljaránvírsaðgrafasigniðuríbotnlagið.Fóturinnséstgreinilega.
Alltheclamsinthethin‐wiregroupthatsurvivedthefirst24h,remainedcompletely
burrowedafter24hours,withnosiphonopeningsbeingvisibleonthesediment
surface(i.e.noevidenceoffeedingactivity).Therewasnooverallpatternin
burrowingbehaviourwithrespecttoburyingdepthandverticalmovements(Fig.14,
Table1).Allclamsinthethin‐wiregroupwereorientedvertically.
Figure14.Sedimentburialdepthoffiveoceanquahogsfittedwiththinwireafter24,48and72hours.
14.mynd.Lóðrétthreyfingfimmkúfskeljaísetimeðgrannanvíreftir24,48og72klukkustundir.
Onlyoneclamfittedwithathickwiremanagedtofullyburrow,reachingthebottom
ofthetankafter48hrs.After72hrsthissameclamhadmovedupwardsto3cm
beneaththesedimentsurface.Theremainingclamsremainedhalf‐buried
throughoutthestudyandwereorientedobliquely.
15
Table1.Numberofoceanquahogs,survivalandmortalityrates,burialbehaviouranddepthinthe
controlsandwithclamsfittedwiththin(1.6mm)andthick(3mm)wire24,48and72h.
Tafla1.Fjöldikúfskelja,yfirlifunogdánartíðni,hreyfingíbotnsetiogdýpihjáviðmiðunarhópi,skelmeðþunnan
(1,6mm)ogþykkan(3mm)vírárannsóknartímabilinueftir24,48og72kls.
ControlThinwireThickwire
Number(no)14810
After24h
5onsedimentsurface
4half‐buriedwithwireoriented
obliquely,
5reburied 1half‐buried
Survivingclams(no)1055
Deadclams(no)4 3 5
Burialdepth(cm) 3,16,2,4,20
After48h2halfburied
4half‐buriedwithwireoriented
obliquely.
5withvisiblesiphon
openings
3reburied
Survivingclams(no)1055
Deadclams(no)000
Burialdepth(cm) 3,3,3,1,1320
After72h
2half
‐
buried
3half‐buriedwithwireoriented
obliquely.
3withvisiblesiphon
openings
Survivingclams(no)54
Deadclams(no)001
Burialdepth(cm)20,20,20,5,53,3,3,13,173
Discussion
Thefindingsfromthisstudyshowthattheburrowingbehaviourofoceanquahogs
wasstronglyseasonal,withindividualsmoredeeplyburiedduringwintertoescape
adverseconditionswhilemostwereactivelyfeedingatthesediment‐waterinterface
duringsummer.ItislikelythatthedeepburrowingdepthofclamsinFebruarywasin
responsetocombinationofcoldertemperatures,reducedphytoplanktondensities
andincreasedstormfrequency.Lowseawatertemperaturesduringcoldseasons
havebeensuggestedtoinducedeeperburrowingandmetabolicarrest(hibernation)
inbivalves(Morleyetal.2007).Foodshortagecanforcebivalvestoburydeeperinto
sedimentsandrespireanaerobically,whichenablesthemtosaveenergyuntilfoodis
availableagain(Edelaar2000).Theglycogenstoreswillthuslastmuchlongerwhen
respiringanaerobicallythanwouldbethecaseduringaerobicrespirationwhenthe
clamsareatriskofstarvation,ashasbeenshownbycalorimetricmeasurements
(Oeschger1990).Thismayhavedevelopedasanevolutionaryadvantagewhere
16
savingsintotalenergybudgetaremadeattimeswhenfoodresourcesarescarce,as
pumpingseawaterissoenergydemanding(Taylor1976).
Sometrendsintheburialbehaviourwereunexpected.Themeanburialdepthof
clamsinFebruaryandSeptemberwasquitesimilarorabout8cm,butintuitivelyone
wouldexpectshellsinSeptembertobeclosertothesurfaceactivelyfeedingatthe
sediment‐waterinterface,similarasinJune.InSeptember,theseawater
temperaturewasrelativelyhigh(~9°C),similartothatofJune(~8°C),butmuch
highercomparedtoFebruary(~2.5°C).Onewouldalsoexpectthattheproductivity
ofphytoplanktontoremainhighinSeptemberasinvestigationsintheareabetween
1988and1991haveshown(GuðrúnG.Þórarinsdóttir,1993).Throughoutthestudy
period,thewindspeedswerehighestintheweeksprecedingthesamplingin
September.Itisplausiblethatthesewindspeedsweresufficienttocreateintense
waveinducedsedimentdisturbancesthattriggeredburrowingofshellsdeeperinto
sediments.DuringsamplinginSeptember,thediversnotedrippledsediment
surfaces,indicatingrecentwaveinducedsedimentdisturbances.Storminduced
wavedisturbancesareknowntohaveeffectonsurvival(YeoandRisk1979,Garcia‐
de‐Lomasetal.2019)andburrowingbehaviour(Nashimotoetal.1986,Haideretal.
2018)forvariousbenthicinvertebrates.Redjahetal.(2010)showedthatclams
burieddeeperintosedimentsinresponsetoincreasedcurrentvelocityinan
experimentalbenthicflume.Anotherfactorthatmayplayaroleisspawningactivity.
WithinIcelandicwaters,oceanquahogscanspawnalltheyeararound,butthemain
spawningactivityisbetweenJuneuntilAugust(Thorarinsdottir2000).During
spawning,clamsiphonsneedtobepositionedatthesediment‐waterinterface,while
followingspawningtheymaymovedeeperintosediments,andthismaypossibly
explainmoreofthedeeperburrowingofclamsinSeptember.
ThedifferencesinthemeanburialdepthsinJuneinthetwoyearsinvestigatedwas
about0.8cm,butneverthelessthisdifferencewassignificant.Itshouldbenoted
thatthestatisticalpoweroftestswashighduetothelargesamplesize(110and130
shellsinJune2003andJune2004respectively).ThetimeofsamplinginJunethetwo
yearsdifferedby25days,butitisunclearhowthismayhaveaffectedtheresults.
Theaveragesizeofclamswassimilaroverthestudyperiodbutwassomewhatlower
inSeptemberandJune2004.Theshelllengthwasonthreeoutoffoursampling
datesfoundtobepositivelyrelatedwithburrowingdepth,supportingfindingsfrom
severalotherstudies(e.g.ZaklanandYdenberg1997).Increasingthetimespent
burroweddeeplymayenhancesurvivalratebecauseofreducedpredationbutatthe
17
costofdecreasedfoodavailability.Forsomebivalvespecies,juvenileshavebeen
observedtoburrowfasterthanadults(JohnandFernadez1989,Davisetal.1999,
Nashimotoetal.1986,delaHuzandLopez2002,Haideretal.2018)whichcanbe
advantageoustoescapepredation.Theoceanquahogsinthepresentstudywere
mostly>25mm,butitispossiblethatsmallerclamscanburrowfaster.
Inthelaboratoryexperiment,noobviousrhythmicitywasobservedinburying
activity.Theperiodspentbeneaththesedimentsurfaceandtheburialdepthswere
variablewithlittlesynchronyamongtheclamsineithertheonsetofburrowingor
movementinthesediment.Allclamsthatmanagedtoburythemselvesremained
buriedthroughoutthestudywheretheyundertookverticalmovementsbutnever
emergedtothesedimentsurface.Taylor(1976)similarlyfoundthattheburrowing
behaviourtobenon‐rhythmicwithclamsremainingbelowthesedimentsurface
from1‐7dayswithnosatisfactoryexplanationfortheburyingbehaviour.
Thehighmortalityofclamsinthelaboratoryexperiment,30,37and50%inthe
control,thethinwireandthethickwiretreatmentgrouprespectivelymighthave
hadsomeinfluenceonthereliabilityoftheresults.Thestressrelatedtocapture,
transportation,andshortdurationoftemperatureacclimation(temperatureatsite
ofcapturewasabout2°Cbutintanks7°C)mighthavecontributedtomortality.
ResultsfromalaboratorystudyonadultC.islandicafromIcelandicwatersshowed
thatsuddenchangesintemperaturehadsignificanteffectontheirsurvival(Jónasson
etal.2004).Itisalsoclearthatthewirethicknessaffectedsurvivalrates.Mostofthe
shellsfittedwiththethickwirehadproblemsburrowingdeeplyinthesedimentsand
thismayhaveaccountedforthereducedsurvival.Whileallsurvivingclamscarried
outsomeburrowingactivity,20%remainedhalf‐buriedthroughoutthestudy.All
clamsfittedwiththethinwireshowedapatternofintermittentburrowingandwere
orientedvertically.Onlyoneclamfittedwithathickwiremanagedtofullyrebury,
withthewireorientedobliquely.Itisthusclearthatthethickwireinterferedwith
theburrowingactivityoftheclamswhilethethinwiremaynothave.Themaximum
burialdepthofoceanquahogsisstillunknown.Theresultsfromthepresentstudy
indicatethattheycanburrowatleastdownto20cm(thesedimentdepthinthe
tanks),butmayhaveburroweddeeperifthesandlayerwouldhavebeenthicker.
Thereislimiteddataonburrowingtimeofoceanquahoginsitubutthevarious
stressexposedtotheclamsinthepresentlaboratorystudymayhavedelayedonset
ofburrowingactivity.Thefirstclamtoreburyinthelaboratorystudy(withouta
wire)startedburrowing30minutesafterbeingplacedinthetankandtheburrowing
18
timewasthreehours.Itisdifficulttoknowwhetherclamslocatedinsituwould
burrowfaster.Oeschger(1990)showedthatmostoceanquahogsmanagedto
reburywithintwohoursafterbeingexperimentallymovedfromanoxic
environmentstosubstrateswithaeratedseawater.Anexampleofaslowburroweris
Myaarenaria,whichtakesabout100minutestoburrowbelowthesedimentsurface
(ChecaandCadée1997).ThereburialtimeforSpisulasolidaincreasedwith
increasingaerialexposure.Individualsthatwereexposedfor3hourstook50
minutestoreburycomparedtoonly15minutesintheinsitucontrols,asdetermined
bydivers(Chícharoetal.2003).
Acknowledgements
WethankthediversKarlGunnarssonandErlendurBogasonforsupportduringthe
fieldworkinEyjafjörðurandthestaffattheFMRImarinestationinGrindavíkforall
assistanceinthelaboratory.KlaraJakobsdóttirreadthedraftreportandgetsthanks
forgivinggoodadvice.
References
Arntz,W.E.andWeber,W.(1970).CyprinaislandicaL.(Molluska,Bivalvia)alsNahrungvonDosrch
undKliescheinKielerBucht.Ber.Dtsch.Wiss.Komm.Meeresforch.21.193‐209.
Checa,A.G.andCadée,G.C.(1997).HydraulicburrowinginthebivalveMyaarenariaLinnaeus
(Myoidea)andassociatedligamentaladaptations.J.Moll.Stud.,73,157‐171.
Chicharo,M.A.,Amaral,A.,Condinho,S.,Alves,F.,Regala,J.andGaspar,M.(2003).Adenylic‐derived
indicesandreburyingtimeasindicatorsoftheeffectsofdredging‐inducedstressontheclamSpisula
solida.MarineBiology,142,1113‐1117.
Davis,J.P.,Barenburg,C.andPederson,D.(1999).Burrowingresponseofjuvenilegeoducks(Panopea
abrupta)tochangesintemperatureandsalinity.J.ShellfishRes.,19,p.689.
delaHuz,R.andLopez,J.(2002).Theinfluenceofsedimentgrainsizeonburrowing,growthand
metabolismofDonaxtruculusL.(Bivalvia:Donacidae).JournalofSeaResearch,47,85‐95.
deZwaan,A.(1977).Anaerobicenergymetabolisminbivalvemolluscs.Oceanogr.Mar.BiolA.Rev.
15,103‐197.
Edelaar,P.(2000).PhenotypicplasticityofburrowingdepthinthebivalveMacomabalthica;
experimentalevidenceandgeneralimplications.GeologicalSocietySpecialPublications,177,451‐
458.
Fields,J.H.A.andStorey,K.B.(1987).Tissue‐specificalanopinedeyhydrogenasefromgilland
strombinedehydrogenasefromthefootmuscleofthecherrystoneclam,Mercenaria,mercenaria
(Linn.).J.Exp.Mar.Biol.Ecol.,105.175‐185.
19
Garcia‐de‐Lomas,J.,Payo,A.,Cuesta,J.A.andMacias,D.(2019).Morphodynamicstudyofa2018
mass‐strandingeventatPuntaUmbriabeach(Spain):EffectofAtlanticstormEmmaonbenthic
marineorganisms.J.Mar.Sci.andEng.,7,344;doi:10.3390/jmse7100344.
Griffith,C.L.andRichardson,C.A.(2006).Chemicallyinducedpredatoravoidancebehaviourinthe
burrowingbivalveMacomabalthica.J.Exp.Mar.Biol.Ecol.,331,91‐98.
GuðrúnG.Þórarinsdóttir.(1993).Tilraunaeldiáhörpudiski,Chlamysislandica(O.F.Muller),í
Breiðafirði.IIVöxtur.Náttúrufræðingurinn62,157‐164.
Haider,F.,Sokolocv,E.P.andSokolova,I.M.(2018).Effectsofmechanicaldisturbanceandsalinity
stressonbioenergeticsandburrowingbehaviourofthesoft‐shellclamMyaarenaria.J.Exp.Biol
(2018)22l,jeb172643.doi:0.1242jeb.172643.0.1242jeb.172643.
Hafrannsóknastofnun.(2019).KÚFSKEL–Arcticaislandica.MFRIAssessmentreport2019.7bls.
Holwerda,D.A.,Veenhof,P.R.,vanHeugten,H.A.A.andZandee,D.I.(1983).Modificationofmussel
pyruvatekinaseduringanaerobiosisandaftertemperatureacclimation.Mol.Physiol.,3,225‐234.
John,L.andFernadez,T.V.(1989).Influenceofenvironmentalfactorsontheburrowingbehaviourof
anestuarinebivalve,VilloritacyprinoidesfromVeliLake.S.W.coastofIndia.J.Ecobiol.1,137‐148.
Jónasson,J.P.,Thórarinsdóttir,G.G.,Eiríksson,H.andMarteinsdóttir,G.(2004).Temperature
toleranceofIcelandscallop,Chlamysislandica(O.F.Müller)undercontrolledexperimental
conditions.AquacultureResearch,35,1405‐1414.
Jónsson,S.(2004).Sjávarhiti,straumarogsúrefniísjónumviðstrendurÍslands.
Hafrnnsóknastofnunin,fjölrit,111,9‐20.InIcelandic.
Kaasa,Ö.AndGuðmundsson,K.(1994).SesonalvariationinphytoplanktoncommunityinEyjafjördur,
NorthIceland.ICESC.M.L;24,p15.
Morley,S.A.,Lloyd,S.P.,Miller,A.J.andPörtner,H.‐O.(2007).Hypxiatoleranceassociatedwith
activityreductionisakeyadaptationforLatermulaellipticaseasonalenergetics.Ecophysology153,
29‐36.
Nashimoto,K.,Kojima,T.andSato,O.(1986).BurrowingbehaviourofJapanesesurfclams.Bull.Fac.
Fish.HokkaidoUniv.,37,171‐180.
Norkko,A.andBonsdorff,E.(1996).Rapidzoobenthiccommunityresponsestoaccumulationsof
driftingalgae.Mar.Ecol.Prog.Ser.,131,143‐157.
Oeschger,R.(1990).Long‐termanaerobiosisinsublittoralmarineinvertebratesfromtheWestern
BalticSea:Halicryptusspinulosus(Priapulida).AstarteborealisandArcticaislandica(Bivalvia).Mar.
Ecol.Prog.Ser.,59,133‐143.
Posey,M.,Lindberg,W.,Alphin,T.andVose,F.(1996).Influenceofstormdisturbanceonanoffshore
benthiccommunity.Bull.Mar.Science,59,523‐529.
Ragnarsson,S.A.,Thorarinsdóttir,G.G.andGunnarsson,K.(2015).Shortandlong‐termeffectsof
hydraulicdredgingonbenthiccommunitiesandoceanquahog(Arcticaislandica)populations.Marine
EnvironmentalResearch.109,113‐123.DOI10.1016/j.marenvres.2015.05.003
Redjah,I.,Olivier,F.,TremblayR.,Myrand,B.,Pernet,F.,Neumeier,U.andChevarieL.(2010).The
importanceofturbulentkineticenergyontransportofjuvenileclams(Myaarenaria).Aquaculture,
307(1‐2),20‐28.
Sibenaller,J.F.,(1979).RegulationofpyruvatekinaseinMytilusedulisbyphosphorylation‐
dephosphorylation.Mar.Biol.Lett.,1,105‐110.
20
Sick,J.M.,deZwann,A.anddeBont,A.M.T.(1983).AnoxicmetobolicrateinthemusselMytilusedulis
L.Estimatdbysimultanjoursdirectcalorimetryandbiochemicalanalysis.Physiol.Zool.,56,56‐73.
Stanley,S.M.(1970).RelationofshellformtolifehabitsoftheBivalvia(Mollusca).TheGeological
SocietyoftheAmericaMemoir,125,1‐295.
Tallqvist,M.(2001).BurrowingbehaviouroftheBalticclam,Macomabalthica:effectsofsediment
type,hypoxiaandpredatorpresence.Mar.Ecol.Prog.Ser.,212,183‐191.
Taylor,A.C.(1976).BurrowingbehaviourandanaerobiosisinthebivalveArcticaislandica(L).J.Mar.
Biol.Ass.U.K.,56,95‐109.
Theede,H.,Ponat,A.,Hiroki,KandSchlieper,C.(1969).Studiesontheresistanceofmarinebottom
invertebratestooxygen‐deficiencyandhydrogensulphide.MarineBiol.2,325‐337.
Thorarinsdóttir,G.G.(2000).Annualgametogeniccycleinoceanquahog,Arcticaislandicafromnorth‐
westernIceland,2000.J.Mar.Biol.Ass.U.K.,80,661‐666.
Thorarinsdóttir,G.G,Ragnarsson,R.ÁandGunnarssonK.(2002).Theimpactofhydraulicdredgingon
oceanquahogpopulation.ICESCM2002/V:28.pp.30
Thorarinsdóttir,G.G.,Jacobson,L.,Ragnarsson,S.Á.,Garcia,E.G.andGunnarsson,K.(2009).Capture
efficiencyandsizeselectivityofhydraulicclamdredgesusedinfishingforoceanquahogs(Arctica
islandica):simultaneousestimationintheSELECTmodel.ICESJournalofMarineScience,67,345‐354.
Thorarinsdóttir,G.G.,Gunnarsson,K.andBogason,E.(2009).
Massmortalityof
oceanquahog,Arcticaislandica,onhardsubstratuminLonafjördur,north‐eastern
Icelandafterastorm,2009.JMBA2‐BiodiversityRecords,3pp.Publishedonline.
Weigelt,M.andRumohrH.(1986).Effectsofwide‐rangeoxygendepletiononbenthicfaunaand
demersalfishinKielBay1981‐1983.Meeresforsch,31,124‐136.
Zaklan,S.D.andYdenber,R.(1997).Thebodysize‐burialdepthrelationshipintheinfaunalclamMya
arenaria.J.Exp.Mar.Biol.Ecol.,215,1‐17.
Zwarts,L.andWanink,J.(1989).Siphonsizeandburyingdepthindeposit‐ andsuspension‐feeding
benthicbivalves.MarineBiology,100,227‐240.
Yeo,R.K.andRisk,M.J.(1979).Intertidalcatastrophes:effectofstormsandhurricanesonintertital
benthosoftheMinasBasin,BayofFundy.J.Fish.Res.BoardofCanada,36,667‐669.
46