ArticlePDF Available

Abstract

در این مقاله به خواص آرنز منظم نگاشت دو خطی کران­دار می­پردازیم و نشان می­دهیم که نگاشت دو خطی کران­دار آرنز منظم است اگر و تنها اگر نگاشت خطی با ضابطۀ ضعیف فشرده باشد. سپس قضیه‌ای را اثبات می­کنیم که ویژگی ضعیف فشردگی نگاشت دو خطی کران­دار و آرنز منظم را به یک‌دیگر مرتبط می­سازد. هم‌چنین به بررسی آرنز منظم و خاصیت ضعیف فشردگی نگاشت­های خطی کران­دار می­پردازیم و نتایجی مشابه نتایج دیلز، اولگر و آریکان را بیان می­کنیم. در ادامه ارتباط بین آرنز منظم جبرهای باناخ و انعکاسی بودن را بررسی می‌کنیم













      
  
        





   


[1]
   









                
 
X
    
()CX


X

()CX



Haghnejad@uma.ac.ir
1
.Bounded bilinear mapping
2
. R. E. Arens
3
. Arens product
Downloaded from mmr.khu.ac.ir at 0:21 IRDT on Friday September 18th 2020




  
      
 
 
    




            


                  

  

     

 
       




    
            
    
 


 
         


  

  

  
         
      
    [10] 
   
 
  

 
   


     

1
.A.
lger
2
. Weakly compact
3
. Adjoint
4
. Flip map
Downloaded from mmr.khu.ac.ir at 0:21 IRDT on Friday September 18th 2020

   



  

  

   
    
 
  
 
  
 
  

   

    
  

      




  


 
  


  

  
   
    
  
       
 
     
    
 
    
 
 
  
 
  
1
. Approximately unital
2
. Unital
Downloaded from mmr.khu.ac.ir at 0:21 IRDT on Friday September 18th 2020


 
 

 
 

 




 
 
  

  











  

    
  



           
                 
 


  
  

    



 

   

    

    


     

   


    
    
 
     
   
       
    

          
      
1
. N. Arikan
Downloaded from mmr.khu.ac.ir at 0:21 IRDT on Friday September 18th 2020

       
        


 
          

  


   
   
   




 
 
          

  








  

  
  


  
  

           
 
  
  


  


  
  
 
  

         
  
   
   
 
    
  
 
      
    
1
. H. G. Dales
2
. A. Rodrigues-Palacios
3
. M. V. Velasco
Downloaded from mmr.khu.ac.ir at 0:21 IRDT on Friday September 18th 2020


   

  

  
  
  





          
 

 






 


 
 
   
   



.  
        


       



  

  
  

      
        
  
 

         
 
     
     
 

     

    
 

     
    
   







   
 
     
1
. A. T. Lau
Downloaded from mmr.khu.ac.ir at 0:21 IRDT on Friday September 18th 2020


 



   

  





    


  





   
       
    
 
  

        
         
   
  
       
  
  








1. Arens R.,"The adjoint of a bilinear operation", Proc. Amer. Math. Soc. 2 (1951) 839-848.
2. Arikan N., "Arens regularity and reflexivity", Quart. J. Math. Oxford Ser. 32 (1981) 383-
388.
3. Arikan N., "A simple condition ensuring the Arens regularity of bilinear mappings", Proc.
Amer. Math. Soc. 84 (1982) 525-532.
4. Bonsall F. F., Duncan J.,"Complete normed algebras", Springer-Verlag, Berlin (1973).
5. Dales H. G., "Banach algebras and automatic continuity", Oxford (2000).
Downloaded from mmr.khu.ac.ir at 0:21 IRDT on Friday September 18th 2020


6. Dales H. G., Rodrigues-Palacios A., Velasco M. V.,"The second transpose of a derivation",
J. London Math. Soc. 64 (2) (2001) 707-721.
7. Lau A. T.,
lger A., "Topological center of certain dual algebras", Trans. Amer. Math. Soc.
384 (3) (1996) 1191-1212.
8. Mohamadzadeh S., Vishki H. R. E., "Arense regularity of module actions and the second
adjoint of a derivation", Bulletin of the Australian Math Soc.77 (2008) 465-476.
9. Morrison T. J., "Functional analysis, An introduction to Banach space theory", John Wiley &
Sons, Inc. (2001).
10. 
lger A., "Weakly compact bilinear forms and Arens regularity", Proc. Amer. Math. Soc.
101 (1987) 697-704.
11.
lger A., "Some stability properties of Arens regular bilinear operators", Proc. Amer. Math.
Soc. 34 (1991) 443-454.
12. Rudin W., "Functional Analysis", McGraw-Hill, New York, Inc. (1973).
13. Sheikhali A., Kanzi N., "Arens regularity of bilinear mapping and reflexivity", J. Phys.
Math. Stat. 5(1) (2018) 65-68.
Downloaded from mmr.khu.ac.ir at 0:21 IRDT on Friday September 18th 2020
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Let X, Y and Z be normed spaces. In this article we give a tool to investigate Arens regularity of a bounded bilinear map f : X Y Z. Also, under some assumptions on and , we give some new results to determine reflexivity of the spaces.
Article
Full-text available
Let A be a Banach algebra, and let D : A → A*be a continuous derivation, where A*is the topological dual space of A. The paper discusses the situation when the second transpose D**:A**→ (A**)*is also a derivation in the case where A" has the first Arens product.
Article
Full-text available
In this paper, first we give a simple criterion for the Arens regularity of a bilinear mapping on normed spaces, which applies in particular to Banach module actions and then we investigate those conditions under which the second adjoint of a derivation into a dual Banach module is again a derivation. As a consequence of the main result, a simple and direct proof for several older results is also included.
Article
We give a simple criterion for certain Banach algebras to be Arens regular, which applies in particular to the algebras $l^1$ with pointwise multiplication, $L^\infty(G)$, where $G$ is a compact group with convolution, and the trace-class algebra. This criterion is best established in the more general context of the regularity of bilinear maps, and depends on the existence of extensions of such maps.
Topological center of certain dual algebras
  • A T Lau
  • A Lger
Lau A. T., lger A., "Topological center of certain dual algebras", Trans. Amer. Math. Soc. 384 (3) (1996) 1191-1212.