ArticlePDF Available

Abstract and Figures

We present the results of a complex archaeometric study of Late Bronze Age copper ingots from the Staré Hodějovice hoard (South Bohemia). In order to understand the origin of the copper and describe the metallurgical process, we use modern analytical methods (metallography analyses, major/trace element and lead isotope analyses) to describe the samples. Within this study, a representative dataset of trace element composition and lead isotope ratios of non-alloyed and non-recycled corpus of copper ingots from the Late Bronze Age was created. We assume that most of the ingots were not altered by alloying, mixing or recycling. Based on lead isotope ratios and major/trace element composition, we suppose that the origin of the copper could be mostly Alpine ores from the Trentino and Mitterberg regions and possibly the Valais region. By this study, it was proved that copper smelted by a matte smelting process was transported in the form of flat or plano-convex ingots from multiple sources to South Bohemia, where it was subsequently refined and alloyed. Obtained analytical results refute the idea of prevailing copper recycling in the Late Bronze Age.
This content is subject to copyright. Terms and conditions apply.
ORIGINAL PAPER
Tracking Alpine copperanalysis of Late Bronze Age copper ingot
hoard from South Bohemia
Jiri Kmosek
1,2
&Yulia V. Erban Kochergina
3
&Ondřej Chvojka
4
&Marek Fikrle
5
Received: 10 May 2020 /Accepted: 21 August 2020
#Springer-Verlag GmbH Germany, part of Springer Nature 2020
Abstract
We present the results of a complex archaeometric study of Late Bronze Age copper ingots from the Staré Hodějovice hoard
(South Bohemia). In order to understand the origin of the copper and describe the metallurgical process, we use modern analytical
methods (metallography analyses, major/trace element and lead isotope analyses) to describe the samples. Within this study, a
representative dataset of trace element composition and lead isotope ratios of non-alloyed and non-recycled corpus of copper
ingots from the Late Bronze Age was created. We assume that most of the ingots were not altered by alloying, mixing or
recycling. Based on lead isotope ratios and major/trace element composition, we suppose that the origin of the copper could be
mostly Alpine ores from the Trentino and Mitterberg regions and possibly the Valais region. By this study, it was proved that
copper smelted by a matte smelting process was transported in the form of flat or plano-convex ingots from multiple sources to
South Bohemia, where it was subsequently refined and alloyed. Obtained analytical results refute the idea of prevailing copper
recycling in the Late Bronze Age.
Keywords Late Bronze Age .Plano-convex ingots .Copper metallurgy .Matte smelting .Trace elements .Lead isotopes
Introduction
Earlier phases of the Urnfield period (Late Bronze Age, ca.
13001000 BC) represent an era of relatively intensive settle-
ment in South Bohemia. About 400 sites of that age are known
nowadays (Chvojka 2009, with later additions). The Bronze
Age development in South Bohemia was continuous, without
any traces of extensive migrations or settlement collapses. The
region was situated between central cultural areasthe
Danube and the Alps regions to the south and Central
Bohemia to the north (Bouzek 2005). Cultural influences from
these regions were mixed in South Bohemia. These strong
connections are reflected especially in numerous bronze ob-
jects, which are formally analogous to some items from
Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s12520-020-01186-z) contains supplementary
material, which is available to authorized users.
*Jiri Kmosek
kmosekj@gmail.com
Yulia V. Erban Kochergina
julia.kocergina@geology.cz
Ondřej Chvojka
ochvojka@ff.jcu.cz
Marek Fikrle
fikrle@ujf.cas.cz
1
Institute of Science and Technology in Art, Academy of Fine Arts
Vienna, Schillerplatz 3, 1010 Vienna, Austria
2
Department of Chemical Technology, Faculty of Restoration,
University of Pardubice, Jiráskova 3, 570
01 Litomyšl, Czech Republic
3
Czech Geological Survey, Geologická 6, 152 00 Prague
5, Czech Republic
4
Faculty of Arts, Institute of Archaeology, University of South
Bohemia, Branišovská 31a, 370 05 České
Budějovice, Czech Republic
5
Nuclear Physics Institute, Academy of Sciences of the
Czech Republic, Řež130, 250 68 Řež, Czech Republic
Archaeological and Anthropological Sciences (2020) 12:234
https://doi.org/10.1007/s12520-020-01186-z
are not altered by alloying, mixing or recycling. Chemical
analyses support our assumptions of the origin of South
Bohemian copper. For the first time, we have exact evidence
that unrefined smelted copper from various Alpine sources
(Mitterberg, Trentino and possibly Valais regions) was con-
centrated and most probably mixed in one find complex in
Bohemia. Still, we have no certain find of an LBA metallur-
gical workshop in Southern Bohemia. Taking into account the
findings of this study, we can refuse a hypothesis that South
Bohemia was merely a transport region for Alpine copper.
Now, we have evidence that the copper came to this region
from various sources and was refined, alloyed and cast into
final forms there.
Acknowledgements We are grateful to TomášKolegar for the drawing
the artefacts and ingots from the hoard, to Šárka Msallamová and her
colleagues from the Institute of Chemical Technology, Prague, for help
with preparing the samples for microstructural study, to Milan Rydvan for
meticulous editing of the text and to anonymous reviewers for contribut-
ing comments.
Funding This work was supported by the DOC Fellowship of the
Austrian Academy of Sciences at the Institute of Science and
Technology in Art, Academy of Fine Arts Vienna (PhD research project
of JiříKmošek). INAA measurements were supported by the CANAM
project (CANAM infrastructure, Ministry of Education, Youth and Sports
(Czech Republic) project No. LM2015056).
References
Addis A (2013) Late Bronze Age metallurgy in the Italian Eastern Alps:
copper smelting slags and mine exploitation. Dissertation,
University of Padova
Addis A, Angelini I, Nimis P, Artioli G (2015) Late Bronze Age copper
smelting slags from Luserna (Trentino, Italy): interpretation of the
metallurgical process. Archaeometry 58:96114. https://doi.org/10.
1111/arcm.12160
Addis A, Angelini I, Artioli G (2017) Late Bronze Age copper smelting in
the southeastern Alps: how standardized was the smelting process?
Evidence from Transacqua and Segonzano, Trentino, Italy.
Archaeol Anthropol Sci 9:985999. https://doi.org/10.1007/
s12520-016-0462-5
Artioli G, Baumgarten B, Marelli M, Giussani B, Recchia S, Nimis P,
Giunti I, Angelini I, Omenetto P (2008) Chemical and isotopic
tracers in Alpine copper deposits: geochemical links between mines
and metal. Geo Alp 5:139148
Artioli G, Angelini I, Nimis P, Villa IM (2016) A lead-isotope database of
copper ores from the Southeastern Alps: a tool for the investigation
of prehistoric copper metallurgy. J Archaeol Sci 75:2739. https://
doi.org/10.1016/j.jas.2016.09.005
Augustýnová M (2017) Metalurgické (Pod)krušnohořístopy po výrobě
bronzu v doběbronzové. Acta Rerum Naturalium 21:79100
Bartelheim M (2007) Die Rolle der Metallurgie in vorgeschichtlichen
Gesellschaften. Sozioökonomische und kulturhistorische Aspekte
der Ressourcennutzung. Ein Vergleich zwische Andalusien,
Zypern und dem Nordalpenraum, Verlag Marie Leidorf
Bartelheim M (2009) Elites and metals in the central European Early
Bronze Age. In: Kienlin TL, Roberts BW (eds) Metals and societies,
studies in honour of Barbara S. Ottaway. Universitätsforschungen
zur prähistorischen Archäologie 169, Bonn, pp 3446
Bartelheim M (2016) Metals as resources in the Early Bronze Age of
Bohemia and Moravia. In: Bartelheim M, Horejs B, Krauß R (eds)
Von Baden bis Troia Ressourcennutzen. Metallurgie und
Wissenstransfer, Rahden/Westf, pp 139152
Bartelheim M, Niederschlag E (1998) Untersuchungen zur
Buntmetallurgie, insbesondere des Kupfers und Zinns, im
sächsisch-böhmische Erzgebirge und dessen Umland. Arbeits- und
Forschungsberichte zur sächsischen Bodendenkmalpflege 40:887
Begemann F, Schmitt-Strecker S, Pernicka E, Lo Schiavo F (2001)
Chemical composition and lead isotope of copper and bronze from
Nuragic Sardinia. Eur J Archaeol 4:4385. https://doi.org/10.1179/
eja.2001.4.1.43
Blažek J, Ernée M, Smejtek L (1998) Die bronzezeitlichen Gußformen in
Nordwestböhmen. Beiträge zur Ur- und Frühgeschichte
Nordwestböhmens 3, Most
Bouzek J (2005) Böhmen und Bayern in der Urnenfelderzeit I. Germania
83:215256
Breitenlechner E, Stöllner T, Thomas P, Lutz J, Oeggl K (2014)
Prehistoric mining activities at the Mitterberg Main Lode
(Salzburg, Austria). Archaeometry 56:102128. https://doi.org/10.
1111/arcm.12010
Budd P, Pollard A, Scaife B, Thomas R (2007) The possible fractionation
of lead isotopes in ancient metallurgical processes. Archaeometry
37:143150. https://doi.org/10.1111/j.1475-4754.1995.tb00732.x
Cattin F, Guénette-Beck B, Curdy P, Meisser N, Ansermet S, Hofmann
B, Kündig R, Hubert V, Wörle M, Hametner K, Günther D, Wichser
A, Ulrich A, Villa IM, Besse M (2011) Provenance of Early Bronze
Age metal artefacts in Western Switzerland using elemental and lead
isotopic compositions and their possible relation with copper min-
erals of the nearby Valais. J Archaeol Sci 38:12211233. https://doi.
org/10.1016/j.jas.2010.12.016
Chmelíková D (2014) Ložiska měděné rudy u Mutěnína v západních
Čechách a otázka jejich využití v pravěku. Acta Rerum
Naturalium 16(2014):1932
Chvojka O (2004) Jihovýchodní vlivy v jižních Čechách ve střední a
mladší doběbronzové. In: Kazdová E, Měřínský Z, Šabatová K
(eds) K poctěVladimíru Podborskému. Masarykova univerzita,
Brno, pp 327340
Chvojka O (2009) JižČechy v mladší a pozdní doběbronzové.
Dissertationes Archaeologicae Brunenses/ Pragensesque 6, Brno
Chvojka O (2015) Bronzezeitliche Metallhortfunde in Südböhmen.
Aktueller Forschungsstand, Fines Transire 24:4965
Chvojka O, Hrubý P (2007) Höhenfundstellen der Bronze- und
Hallstattzeit in Südböhmen und ihre Anknüpfung zum
interregionalen Handelsaustausch. In: Baron J, Lasak I (eds.) Long
distance trade in the Bronze Age and Early Iron Age. Studia
Archeologiczne 40, pp. 7188
Chvojka O, Hlásek D, Menšík P (2017a) Mitteleuropäische Kontakte der
südböhmischen Bronzezeit. Fines Transire 26:133145
Chvojka O, JiráňL, Metlička M (eds.) (2017b) Nové české depoty doby
bronzové. Hromadné nálezy kovových předmětůučiněné do roku
2013. České Budějovice Praha Plzeň
Chytráček M (1992) Doklady metalurgie v pozdní doběbronzové na
Černém vrchu u Svržna (okr. Domažlice) a otázka možného
využívání zdrojůnerostných surovin. Sborník Západočeského
musea v Plzni Historie 8:5973
Cierny J (2008) Prähistorische Kupferproduktion in den südlichen Alpen:
region Trentino Orientale. Der Anschnitt, Zeitschrift für Kunst und
Kultur im Bergbau, Beiheft 22, Bochum
Craddock P (2010) Early metal mining and production. Edinburgh
University Press, Edinburgh
Cui J, Wu X (2010) An experimental investigation on lead isotopic frac-
tionation during metallurgical processes. Archaeometry 53:205
214. https://doi.org/10.1111/j.1475-4754.2010.00548.x
Archaeol Anthropol Sci (2020) 12:234 Page 19 of 21 234
Frána J, JiráňL, Maštalka A, Moucha V (1995) Artifacts of copper and
copper alloys in prehistoric Bohemia from the viewpoint of analyses
of element composition. Památky archeologické Supplementum 3,
Archeologický ústav AV ČR, Praha
Frána J, JiráňL, Moucha V, Sankot P (1997) Artifacts of copper and
copper alloys in prehistoric Bohemia from the viewpoint of analyses
of element composition II. Památky archeologické Supplementum
8, Archeologický ústav AV ČR, Praha
Gale NH, Stos-Gale ZA (2000) Lead isotope analyses applied to prove-
nance studies. In: Ciliberto E, Spoto G (eds) Modern analytical
methods in art and archaeology. John Wiley & Sons, Inc., New
York, pp 503584
Gale NH, Stos-Gale ZA, Maliotis G, Annetts N (1997) Lead isotope data
from the Isotrace Laboratory, Oxford: Archaeometry data base 4,
ores from Cyprus. Archaeometry 39:237246. https://doi.org/10.
1111/j.1475-4754.1997.tb00802.x
Gruber H (2015) Prähistorische Depotfunde in Oberösterreich Ein
Überblick. Fines Transire 24:6785
Huth Ch (2000) Metal circulation, communication, and traditions of
craftsmanship in Late Bronze Age and Early Iron Age Europe. In:
Pare CFE (ed) Metals make the world go round. The supply and
circulation of metals in Bronze Age Europe. Proceedings of a
Conference held at the University of Birmingham in June 1997,
Oxbow, pp 176193
Janousek V, Moyen JF, Martin H, Erban V, Farrow C (2016)
Geochemical modelling of igneous processes principles and rec-
ipes in R language. Bringing the power of R to a geochemical com-
munity, Springer-Verlag, Berlin-Heidelberg
JiráňL (2000) Die Frage nach den Rohstoffquellen der
urnenfelderzeitlichen Bronzeproduktion in Böhmen. In: Chytráček
M, Michálek J, Schmotz K (eds.) Archäologische
Arbeitsgemeinschaft Ostbayern/West- und Südböhmen, 9. Treffen
23. bis 26. Juni 1999 in Neukirchen b. Hl. Blut, Rahden/Westf., pp
6167
Jung R, Mehofer M, Pernicka E (2011) Metal exchange in Italy from the
middle to the final bronze age (14 th-11th century B.C.E.). In:
Betancourt PhP, Ferrence SC (eds.) Metallurgy: understanding
how, learning why (Festschr. J. D. Muhly). Prehist Monogr 29,
pp. 231248
Junghans S, Sangmeister E, Schröder M (1960) Metallanalysen
kupferzeitlicher und frühbronzezeitlicher Bodenfunde aus Europa.
Studien zu den Anfängen der Metallurgie, Band 1, Berlin
Junghans S,SangmeisterE, Schröder M (1968) Kupferund Bronze in der
frühen Metallzeit Europas. Studien zu den Anfängen der
Metallurgie, Band 2/1, 2/2, 2/3, Berlin
Junghans S,SangmeisterE, Schröder M (1974) Kupferund Bronze in der
frühen Metallzeit Europas. Studien zu den Anfängen der
Metallurgie, Band 2/4, Berlin
Kmošek J, Odler M, Fikrle M, Kochergina YV (2018) Invisible connec-
tions. Early Dynastic and Old Kingdom Egyptian metalwork in the
Egyptian Museum of Leipzig University. J Archaeol Sci 96:191
207. https://doi.org/10.1016/j.jas.2018.04.004
Košler J (2008) Spreadsheet-based data reduction for laser ablation ICP-
MS. In: Sylvester PJ (ed), Laser ablation ICP-MS in the earth sci-
ences: current practices and outstanding issues. Mineralogical
Association of Canada, pp 315317. https://doi.org/10.2113/
gsecongeo.104.4.601
Kučera J (2018) Activation analysis in Czechoslovakia and in the
Czech Republic: more than 50 years of activities. J Radioanal
Nucl Chem 318:14731492. https://doi.org/10.1007/s10967-018-
6257-7
Kysela J (2015) Dovozové faly českých Keltů?Živá archeologie REA
17:9196
Kytlicová O (1982) Bronzemetallurgie in Böhmen in der Jung- und
Spätbronzezeit. Archeologia Polski 27(2):383393
Kytlicová O (2007) Jungbronzezeitliche Hortfunde in Böhmen.
Prähistorische Bronzefunde XX/12, Stuttgart
Legiersky J, Vaněček M (1967) Lead isotopic composition of some ga-
lenas from the Mohemian Massif. Acta Universitatis Carolinae
Geologica No. 2, pp 153172
Lutz J (2016) Alpenkupfer die Ostalpen als Rohstoffquelle in
vorgeschichtlicher Zeit. In: Bartelheim M, Horejs B, Krauss R
(eds.) Von Baden bis Troia. Ressourcennutzung, Metallurgie und
Wissenstransfer. Eine Jubiläumsschrift für Ernst Pernicka. Oriental
and European Archaeology, Volume 3, Rahden/Westfalen, pp 333
358
Lutz J, Pernicka E (2013) Prehistoric copper from the Eastern Alps. Open
Journal of Archaeometry 1:122127. https://doi.org/10.4081/arc.
2013.e25
Lutz J, Krutter S, Pernicka E (2019) Composition and spatial distribution
of Bronze Age planoconvex copper ingots from Salzburg, Austria.
First results from the BSalzburger Gusskuchenprojekt. In: Turk R,
Stöllner Th, Goldenberg G (eds.) Alpine Copper II Alpenkupfer II
Rame delle Alpi II Cuivre des Alpes II. New Results and
Perspectives on Prehistoric Copper Production. Der Anschnitt,
Beiheft 42, Rahden/Bochum, pp 363371
Merkel J (1983) Summary of experimental results for Late Bronze Age
copper smelting and refining. Museum Applied Science Center
Journal 2(6):173179
Modl D (2019) Recording plano-convex ingots (Gusskuchen) from Late
Bronze Age Styria and Upper Austria a short manual for the
documentation of morphological and technological features from
production and partition. In: Turk R, Stöllner Th, Goldenberg G
(eds.) Alpine copper II Alpenkupfer II Rame delle Alpi II
Cuivre des Alpes II. New Results and Perspectives on Prehistoric
Copper Production. Der Anschnitt, Beiheft 42, Rahden/Bochum, pp
373-398
Möslein S, Pernicka E (2019) The metal analyses of the SSN-project
(with catalogue). In: Turk R, Stöllner Th, Goldenberg G (eds.)
Alpine Copper II AlpenkupferII Rame delle Alpi II Cuivre
des Alpes II. New Results and Perspectives on Prehistoric Copper
Production. Der Anschnitt, Beiheft 42, Rahden/Bochum, pp 399
453
Moucha V (2005) Hortfunde der frühen Bronzezeit in Böhmen.
Archeologický ústav AV, Praha
Nessel B (2017) Von warmen und kalten Brüchen. Bruchmuster und
Konzepte der Portionierung bronzezeitlichen Rohmnaterials am
Beispiel plankonvexer Gusskuchen. In: Brandherm D, Nessel B
(eds.) Phasenübergänge und Umbrüche im bronzezeitlichen
Europa. Universitätforschungen zur Prähistorischen Archäologie
297, Bonn, pp 169198
Niederschlag E, Pernicka E, Seifert Th, Bartelheim M (2003) The deter-
mination of lead isotope ratios by ,multiple collector Icp-Ms: a case
study of early bronze age artefacts and their possible relation with
ore deposits of the erzgebirge. archaeometry 45:61100. https://doi.
org/10.1111/1475-4754.00097
Pernicka E (1987) Erzlagerstätten in der Ägäis und ihre Ausbeutung im
Altertum: Geochemische Untersuchungen zur
Herkunftsbestimmung archäologischer Metallobjekte. Jahrbuch
Römisch- Germanisches Zentralmuseum 34:607714
Pernicka E (2014) Provenance determination of archaeological metal ob-
jects. In: Roberts B, Thornton C (eds) Archaeometallurgy in global
perspective. Springer, New York, pp 239268
Pernicka E, Lutz J, Stoellner T (2016) Bronze Age copper produced at
Mitterberg, Austria, and its distribution. Archaeologia Austriaca
100:1955. https://doi.org/10.1553/archaeologia100s19
Pollard A, Bray P (2015) A new method for combining lead isotope and
lead abundance data to characterize archaeological copper alloys.
Archaeometry 57:9961008. https://doi.org/10.1111/arcm.12145
Pollard AM, Thomas RG, Ware DP, Williams PA (1991) Experimental
smelting of secondary copper minerals: implications for Early
234 Page 20 of 21 Archaeol Anthropol Sci (2020) 12:234
Bronze Age metallurgy in Britain. In: Pernicka E, Wagner GA (eds)
Archaeometry 90. Birkhäuser Verlag, Basel, pp 127136
RadivojevićM, Roberts BW, Pernicka E (eds) (2018) The provenance,
use, and circulation of metals in the European Bronze Age: the state
of debate. J Archaeol Res 27:131185. https://doi.org/10.1007/
s10814-018-9123-9
Schreiner M (2007) Erzlagerstätten im Hrontal, Slowakei: Genese und
prähistorische Nutzung. Forschungen zur Archäometrie und
Altertumswissenschaft; Bd. 3, Marie Leidorf, Rahden/Westf
Škácha P, GoliášV, Sejkora J, Plasil J, Strnad L, Škoda R, Ježek J (2009)
Hydrothermal uranium-base metal mineralization of the Jánská vein,
Březové Hory, Příbram, Czech Republic: Lead isotopes and chem-
ical dating of uraninite. J Geosci 54:113. https://doi.org/10.3190/
jgeosci.030
Slabina M, Smejtek L (2005) Měděná surovina z Plešivce. Archeologie
ve středních Čechách 9:243246
Smejtek L (1984) K problematice metalurgie doby bronzové. Sborník
symposia Hornická Příbram ve věděa technice, Příbram, pp 131
138
Stöllner T, Rüden von C, Hanning E, Lutz J, Kluwe S (2016) The en-
meshment of eastern Alpine mining communities in the Bronze
Age: from economic networks to communities of practice. In:
Körlin G, Prange M, Stöllner T, Yalcin Ü (eds.) From bright ores
to shiny metals. Festschrift for Andreas Hauptmann on the Occasion
of 40 Years Research in Archaeometallurgy and Archaeometry, Der
Anschnitt Beiheft 29, pp. 75107
Stos ZA, Gale NH, Annetts N (1996) Lead isotope data from the Isotrace
Laboratory, Oxford: archaeometry data base 3, ores from the
Aegean,partI.Archaeometry38:381390. https://doi.org/10.1111/
j.1475-4754.1996.tb00784.x
Tylecote RF(1987) The early history of metallurgy in Europe. Longman,
New York
Tylecote RF, Ghaznavi HA, Boydell PJ (1977) Partitioning of trace ele-
ments between the ores, fluxes, slags and metal during the smelting
of copper. J Archaeol Sci 4:305333. https://doi.org/10.1016/0305-
4403(77)90027-9
Wagner GA, Pernicka E, Vavelidis M, Baranyz I, Bassiakos Y (1986)
Archaeometallurgische Untersuchungen auf Chalkidiki.Der
Anschnitt 38, Deutchen Bergbau Museum, Bochum, pp 166186
Yund AR, Kullerud G (1966) Thermal stability of assemblages in the Cu-
Fe-S system. J Petrol 7:454488. https://doi.org/10.1093/petrology/
7.3.4547
Zachar T, SalašM (2018) Proveniencia medenej suroviny na Morave v
mladšej dobe bronzovej na príklade kovových depotov z Blučiny a
Borotína. Archeologické Rozhledy 70:3966
PublishersnoteSpringer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
Archaeol Anthropol Sci (2020) 12:234 Page 21 of 21 234
... Ve spolupráci s dalšími specialisty začaly být v posledních letech prováděny i elektronové mikroanalýzy a izotopové analýzy olova, cínu a dalších prvků (např. Kmošek et al. 2020). ...
... Ani v mladší době bronzové neustal příliv alpské mědi do jižních Čech, jak doložily i nedávné analýzy koláčovitých ingotů z depotu v Starých Hodějovicích (Kmošek et al. 2020). Z Alp ovšem pochází i šestihranné bronzové špičáky, kterými se v této době těžila sůl v Hallstattu, z depotů v Holašovicích (Kytlicová 2007, Taf. ...
Book
Full-text available
The book presents a complex study of the phenomenon of periphery within prehistoric occupation. It is examined in case region of South Bohemia where the long-term interest of authors mingles here with factors that, in comparison to neighbouring regions, formed a specific environment for prehistoric inhabitants. The book is seeking answers to questions concerning the dynamics by which periphery was settled and, on contrary, when and why did the occupation decline. How important was the interaction of periphery with neighbouring core regions and how did this relationship develop in time? Is it possible to consider communities that inhabited peripheries as societies being different in any aspect? Answers to these questions are sought in a longue dureé perspective comprising eight millennia of cultural development from the beginning of the Mesolithic to the end of Bronze Age.
... HF is never used to avoid dissolving silicate contamination that may be present in the sample, and centrifugation is necessary following HCl-HNO 3 digestion and before sample separation. The quality of Pb separation is very important for archaeological alloys due to low Pb concentrations and very small samples (Kmošek et al. 2018(Kmošek et al. , 2020Odler et al. 2021). Most are very rare and irreplaceable museum samples. ...
Article
Full-text available
In countless modern geochemical studies, diverse biological and geologic samples are analyzed for Sr, Nd, and Pb isotopic composition. Such heterogeneity presents challenges for a “one-size-fits-all” approach to sample preparation, necessitating customization of sample preparation and chromatographic separation methods. We present (1) digestion techniques for low-Nd silicates, carbonatites, carbonates, water, plant and wood material, organic soils, aerosols collected via filtration, as well as archaeological samples (alloys, teeth, and bones) (2) a column chromatographic approach for samples with low concentrations (large amounts of a matrix) and (3) method verification via replicate analyses of a wide variety of isotopic standards.
Article
Full-text available
Lokality Blučina – Cezavy a Borotín poznajú archeológovia najmä v súvislosti s nálezmi depotov kovových predmetov. Prvá zmienená lokalita je na základe 18 dokumentovaných hromadných nálezov považovaná za regionálne centrum bronzovej metalurgie, kolekcia predmetov v Borotíne zaujala nálezom chalkopyritovej rudy priamo v depote. Súbory z obidvoch spomenutých nálezísk obsahujú okrem ďalších artefaktov aj polotovary suroviny vo forme zliatkov. Koncentrácia depotov na Blučine, doklady primárnej metalurgie v podobe ingotov a fragmentu rudy v Borotíne predurčuje zmienené skladby na riešenie problematiky proveniencie medenej suroviny na Morave v mladšej dobe bronzovej pomocou moderných archeometalurgických analýz. Predkladaný článok informuje odbornú verejnosť o predbežných výsledkoch chemickej (ICP-MS, ICP-OES) a izotopovej analýzy vybraných kovových zliatkov z hromadných nálezov Blučina 1 a Borotín. Na základe získaných výsledkov autori diskutujú o možnom pôvode medenej rudy z domácich ložísk, z banských regiónov v oblasti Východných Álp ako i Západných Karpát.
Article
Full-text available
Planoconvex copper ingots (also named "casting cakes" and "bun ingots") were found in huge amounts in the Salzach and Saalach valley, but also at the Mitterberg and in the Saalfelden district. 103 of these ingots (partly fragments) were analysed chemically and about 50 complete or nearly complete ingots were classified by means of their shapes and sizes into six different morphological types. A coarse chronology of these morphological types was developed. The chemical data was statistically analysed (cluster analysis) and four main metal groups were defined. As might be expected, the largest group corresponds to chalcopyrite copper and ores from the Mitterberg district. Ingots made of fahlore copper or "diluted fahlore copper" are rare and occur only in the later periods. Previous analytical investigations of bronze finds and archaeological excavations of prehistoric mines have shown a reappearance of fahlore copper in the Late Bronze Age. Thus, the coarse chronology of copper varieties analysed in the ingots matches the overall picture. The analytical results also provide the opportunity to characterize the chalcopyrite copper from the Mitterberg district much better than it was hitherto possible.
Article
Full-text available
Bronze is the defining metal of the European Bronze Age and has been at the center of archaeological and science-based research for well over a century. Archaeo-metallurgical studies have largely focused on determining the geological origin of the constituent metals, copper and tin, and their movement from producer to consumer sites. More recently, the effects of recycling, both temporal and spatial, on the composition of the circulating metal stock have received much attention. Also, discussions of the value and perception of bronze, both as individual objects and as hoarded material, continue to be the focus of scholarly debate. Here, we bring together the sometimes-diverging views of several research groups on these topics in an attempt to find common ground and set out the major directions of the debate, for the benefit of future research. The paper discusses how to determine and interpret the geological provenance of new metal entering the system; the circulation of extant metal across time and space, and how this is seen in changing compositional signatures; and some economic aspects of metal production. These include the role of metal-producing communities within larger economic settings, quantifying the amount of metal present at any one time within a society, and aspects of hoarding, a distinctive European phenomenon that is less prevalent in the Middle Eastern and Asian Bronze Age societies.
Article
Full-text available
The smelting copper slags from the archaeological sites of Transacqua and Segonzano in Trentino (Italy) were fully analysed to study the extraction of copper from copper and iron sulphide minerals that were carried out in the southeastern Alps during the Late Bronze Age. A combined approach involving physical, chemical, mineralogical and petrographic analyses was applied on over 130 copper slags from Transacqua and Segonzano. Three different types of slags were distinguished from the mineralogical and chemical points of view, differing in the size and relative amount of the unreacted sulphides and matte, the size of metallic copper prills, the ratio between unreacted quartz and newly formed silicate phases and viscosity. By combining all the observations, it is suggested that the three types of slags are the product of a Cu-smelting process formed by three main operations: slagging, matting and refining, which were standardised in the southeast Alps between the fourteenth and the eleventh century BC.
Article
Full-text available
The rich copper ore deposits in the eastern Alps have long been considered as important sources for copper in prehistoric central Europe. However, the role that each deposit played is not clear. To evaluate the amount of prehistoric copper produced from the various mining regions, we attempted to link prehistoric metal artefacts with copper ores based on the geochemical characteristics of the ore deposits that were exploited in ancient times. Alongside the usage of ores as shown by the finished products, the production aspects, the quantity and variation over time must also be considered. Recent archaeological investigation has allowed these datasets to be combined in order to show the importance of one of the largest Bronze Age mining fields in Europe. More than 120 ore samples from the well-known mining regions of Mitterberg, Viehhofen, and Kitzbühel were analysed for lead isotope ratios and trace element concentrations. These results were combined with analytical data generated by previous archaeometallurgical projects in order to compile a substantial database for comparative studies. In the Early Bronze Age, most metal artefacts were made of copper or bronze with fahlore impurity patterns, and most examples from this period match the fahlore deposits in Schwaz and Brixlegg. At the end of the Early Bronze Age, a new variety of copper with low concentrations of impurities appeared. The impurity patterns of these examples match the ores from the Mitterberg region. Later, in the Middle Bronze Age, this variety of copper almost completely replaced the fahlore copper. In the Late Bronze Age, the exploitation of the ores changed again and copper with a fahlore signature reappeared. The reason for the renewed copper production from fahlores might have been a decline of the chalcopyrite mines. But it was more likely due to the fact that the rising demand for copper could no longer be met by the chalcopyrite mines alone. The examples from the Early Iron Age show no fundamental changes in metal composition. The copper metallurgy in the Early Iron Age is based on the traditions of the Late Bronze Age.
Article
Neutron activation analysis has been continuously pursued in the former Czechoslovakia and in the Czech Republic since 1962, after an experimental nuclear reactor VVR-S became available. Activities in photon activation analysis started after the installation of a microtron, a source of high energy photons, in 1980. Methodological developments of both methods are described, as well as their applications in various fields of science and technology, namely in environmental research and occupational health studies, cosmo- and geochemical research, biomedical studies, agricultural, nutritional, material research, archaeological and cultural heritage studies, and in quality control and preparation of reference materials.
Article
The Southeastern Alps were an important source of copper metal in prehistory, at least from the Eneolithic and through the Bronze Age, as documented by the abundant and substantial presence of smelting slags. Evidence of mining activity is scarce, because of limited ad hoc investigation and because of the subsequent systematic erasing by post-Medieval exploitation. Moreover, until recently the profusion of archaeometallurgical and archaeological investigations focusing on the prehistoric exploitation of Northern Alpine, Central European, and Balkan ore sources has somehow obscured the early role of the Italian Southern Alps as a major copper producing area. The recent advances in the systematic characterization of the copper ores in the Southeastern Alps (including Alto Adige, Trentino, Veneto, and nearby regions) by lead isotope analysis, supported by mineralogical and geochemical interpretation, offer now the appropriate tools to re-evaluate the extent of prehistoric mining and the local patterns of ore exploitation. The developed database is a powerful tool to identify the metal derived from local production. It is suggested that (1) based on the abundance and chronological distribution of smelting slags evidence, two major periods of mining exploitation took place, the first in the middle of the 3rd millennium BC and the second during the Late Bronze Age; and (2) based on the discrimination of copper sources and the available analyses, most of the metal circulating in Northern Italy and in the greater Po Valley region was actually produced from Southern Alpine ores.