Content uploaded by Santiago Peredo Parada
Author content
All content in this area was uploaded by Santiago Peredo Parada on Sep 11, 2020
Content may be subject to copyright.
Bioagro 32(2): 139-144. 2020
Technical note
NUTRITIONAL VALUE OF Dasyphyllum diacanthoides (Less.)
Carb.: AN ENDEMIC TREE USED AS SUPLEMENTARY
FORAGE IN AGROFORESTRY SYSTEMS
Santiago F. Peredo Parada
1
, Ricardo Alvarez Flores 2, Claudia Barrera Salas1
and Esperanza Parada Zamorano1
ABSTRACT
In view of the evidence of the use of Dasyphyllum diacanthoides by peasants of the Region of the Araucanía, in the center-south
zone of Chile, as winter food for their cattle, and the nonexistence of reports on the use of this forage, in this paper we determined
the nutritional value of the species. Samples taken from different edible parts of D. diacanthoides were dried and subjected to a
proximate analysis and detergent system to determine dry matter; crude protein, ether extract; phosphorus, crude fiber, acid
detergent fiber, neutral detergent fiber, total ash and metabolizable energy. It was shown that shoots and leaves are the edible parts
that have the best nutritional values among the analyzed variables. Additionally, by calculating the digestible energy, digestible
dry matter and the average metabolizable energy, it was found that D. diacanthoides has intermediate values for these variables
compared to those of forage tree species used in different parts of the world and to the main local forage species. The plant
presents balanced energy-protein ratio values, turning into an important winter supplement forage in view of the low availability
of forage in the mountain localities of the Region of the Araucanía, as compared to other forage species used in Chile.
Additional keywords: Agroecology, cattle, local resources, rural communities, trevo
RESUMEN
Valor nutricional de Dasyphyllum diacanthoides (Less.) Carb.: árbol endémico de uso forrajero
suplementario para sistemas agroforestales
Ante la evidencia de la utilización de Dasyphyllum diacanthoides por parte de campesinos en la Region de la Araucanía, en la
zona centro-sur de Chile, como alimento invernal para su ganado y, la inexistencia de registros que reporten este uso forrajero, se
llevó a cabo este estudio para determinar el valor nutricional de la referida especie. Se tomaron muestras de las partes comestibles
(hojas, brotes y ramas) de D. diacanthoides a las cuales, una vez secadas, se les realizaron análisis proximal y sistema detergente
para determinar materia seca, proteína cruda, extracto etéreo, fósforo, fibra cruda, fibra detergente ácido, fibra detergente neutro,
ceniza y energía metabolizable. Los resultados mostraron que las hojas y brotes presentan los mejores valores nutricionales en las
variables analizadas. Por otra parte, luego de calcular los valores de energía digerible, materia seca digerible y el promedio de la
energía metabolizable, se encontró que D. diacanthoides presenta valores intermedios para estas variables al compararla con
especies forrajeras arbóreas utilizadas en otros países y con las principales forrajeras locales. La planta presenta valores
equilibrados en la relación energía-proteína, constituyéndose en una importante forrajera de suplemento invernal ante la escasa
disponibilidad de forraje en las localidades cordilleranas de la Región de la Araucanía en Chile.
Palabras clave adicionales: Agroecología, comunidades rurales, ganado, recurso local, trevo
Received: October 13, 2019 Accepted: March 23, 2020
1 Grupo de Agroecología y Medio Ambiente (GAMA). e-mail: santiago.peredo@usach.cl (autor de correspondencia),
y Laboratorio de Agroecología y Biodiversidad (LAB), Universidad de Santiago de Chile.
e-mail: claudia.barrera.s@usach.cl; esperanza.parada@gmail.com
2 Centre d’Ecologie Fonctionnelle et Evolutive (CEFE-CNRS) de Montpellier. e-mail: Ricardo.alvarez-flores@cefe.cnrs.fr
139
INTRODUCTION
Providing food for cattle in rural communities
has been based mainly on establishing pastures
and their derivatives in their different forms. The
use of elaborate supplies (silage and concentrates),
in addition to increasing production costs involve
the establishment of productive systems with
140
Volumen 32 (2020) BIOAGRO N° 2
species that are not adapted to the location (so
they do not express their potential) in land that is
not necessarily fit for agriculture. Most of them
are soils fit for forestry, of which 60% are eroded
(Sotomayor, 2010). Furthermore, if they are on the
mountain slopes, the inclement weather and the
frail ecological conditions generate a vulnerability
situation that permanently, year after year, puts at
risk the survival of the cattle, a central element of
the economies of those rural communities.
Under these conditions, agroecology proposes
the design of agroforestry (silvopastoral) systems
incorporating and/or using local species
(autoctonous, native, endemic) according to the
place's environmental conditions (Prabhu et al.,
2015). Agroforestry systems are the expression of
the cultural identity of a locality where living
systems that preserve the natural resources as the
base material (among others) of their economy
coexist. These resources present advantages due to
the multifunctionality of the ecosystems services:
food, medicinal, animal forage, firewood, shade,
live hedges. References to these systems, at the
world level, are diverse, mainly in (sub)tropical
American zones. In Chile, on the other hand, the
agroforestry systems developed by government´s
institutions using Prosopis tamarugo, Acacia
caven, Atriplex sp., Populus spp., Pinus radiata
and Pinus contorta, in whose identification,
design and execution peasants and farmers have
participated, should be mentioned (Sotomayor,
2010).
Participative research carried out with farmers
and peasants from different parts of the world
dealing with forage trees highlight the importance
of knowing their preferences for establishing long-
term strategies (Chettri and Sharma, 2009), the
potential of local vegetation, and the importance
of traditional knowledge in the characterization of
forage resources (Nunes et al., 2015), the
improvement of the local economy due to the
multifunctionality of the environmentally friendly
systems (Jiménez et al., 2008), the quality levels
of the native forage bush species (Mekoya et al.,
2008), the material as well as the emblematic
value (Martínez et al., 2012) and the knowledge
that the farmers have of the forage quality of the
trees used is very consistent with the information
level generated in the analyses made at the
laboratory level (Thorne et al., 1999).
Although studies of the nutritional value of
forage trees are recorded in other countries, in
Chile this kind of studies have been made only on
tree forage species in silvopastoral systems for the
exotic species Chamaecytisus proliferus ssp.
palmensis (Avendaño et al., 2003) and Morus
alba leaves (Manterola et al., 2004) as a
supplement for lactating goats. In the case of
native species there are studies on the leaves and
fruits of Prosopis tamarugo and Prosopis
chilensis (Silva et al., 2000). However, there are
no records of the use of Dasyphyllum
diacanthoides as forage (nor of its nutritional
value), as shown by observations made in the field
in joint work with peasants and farmers of the
Huechelepún community (Melipeuco, Region of
the Araucanía). This species belongs to the family
Asteraceae and is known as trevo or palo santo. It
is an evergreen tree, with dense foliage and thorny
branches, that can reach a height of up to 20
meters with trunk diameter more than one meter
(Abarzúa et al., 2007).
The objective of this paper is to determine the
nutritional value of this plant as an endemic tree
species used as forage supplement for cattle in
mountain zones of the Region of the Araucanía. It
is aimed to find out the nutritional contribution of
the different parts of D. diacanthoides eaten by
cattle, its nutritional values in relation to the main
food sources used for feeding ruminants in the
region, and the nutritional value in relation to
other forage trees.
MATERIALS AND METHODS
After 2 years of technical support and based on
observations made in the native forest of the
locality of Huechepelún, Melipeuco, Region of the
Araucanía, plant material (branches) from D.
diacanthoides trees (which are browsed by the
cattle), was collected in the area between
38°53’20” S, 71°29’31” W, 947 masl and
38°53’52” S, 71°30’23” W, 1003 masl. A total of
100 branches were selected (50 branches with
northern exposure from different trees, and 50
branches with southern exposure), with their
duplicate for the analyzes. The edible parts
(leaves, shoots and stems) of the year's shoots in
3- to 5-m tall plants were chosen. The samples
were weighed fresh and then dried at 60 ºC during
24 h in a forced-air oven.
Once the samples were dry they were ground
141
Peredo et al. Nutrition value of Dasyphyllum diacanthoides, an endemic forage tree
to determine dry matter (DM), crude protein (CP),
crude fiber (CF), ether extract (EE), phosphorus
(P) by proximate analysis (Weende method). Total
ash (TA) was determined after calcination of the
samples in a muffle furnace at 550 °C during 5 h
(AOAC, 1998). The CP content was determined
by the Kjeldahl method using a factor of 6.25
according to the AOAC method, and the values of
P by the vanadomolybdate method. ADF (acid
detergent fiber) and NDF (neutral detergent fiber)
were determined by the method of Van Soest et al.
(1991). The determination of metabolizable
energy (ME) was based on the ADF using the
following equation: ME = (14.68-0.0182 * %
ADF * 10) * 0.239. For the comparative analysis
with other forage species the values of D.
diacanthoides were averaged and the following
equations were applied: ME=DE (McalKg-1)
*0.8210, where DE is digestible energy, which
was determined as DE=0.628+0.984*DDM, and
where DDM is the digestible dry matter,
determined from DDM=88.9-(ADF+0.779)
according to Khalil et al. (1986). The results of the
nutritional values are presented as their averages
and standard deviations.
RESULTS AND DISCUSSION
The results of the proximate analysis made of
the different edible parts of D. diacanthoides show
differences between them (Table 1), with the CP
and CF values standing out, as they are smaller
and larger, respectively, in the stem, due to the
higher degree of lignification. The lower of CP,
ME and P values in this fraction, together with the
higher fiber values, would indicate that the best
sections in terms of nutrition are found in the
younger parts. However, since we are dealing with
feeding based on browsing, the field observation
indicates that there is no selection by the cattle.
Table 1. Chemical composition of the organs of D. diacanthoides eaten by cattle (mean ± SE)
DM
%
CP
%
EE
%
P
%
CF
%
ADF
%
NDF
%
TA
%
ME
Mcal·kg-1
Shoot
39.95 ± 1.52
7.76 ± 0.15
2.36 ± 0.07
0.13 ± 0.004
23.53 ± 0.56
32.91 ± 0.92
39.42 ± 0.82
11.11 ± 0.45
2.49 ± 0.02
Leaf
39.49 ± 1.52
8.72 ± 0.25
2.78 ± 0.25
0.15 ± 0.004
19.15 ± 0.68
32.38 ± 0.82
36.68 ± 0.18
13.34 ± 0.68
2.68 ± 0.03
Stem
46.53 ± 1.08
5.03 ± 0.10
2.28 ± 0.27
0.10 ± 0.01
35.97 ± 1.06
46.38 ± 0.25
57.15 ± 0.21
5.33 ± 0.22
1.94 ± 0.05
DM: dry matter; CP: crude protein; ME: metabolizable energy; EE: ether extract; P: phosphorus; TA: total ash; CF: crude
fiber; ADF: acid detergent fiber; NDF: neutral detergent fiber
According to Anrique et al. (2014), the energy-
protein ratio is the most relevant to optimize the
absorption of nutrients in ruminants. Based on that
ratio, and considering the main food sources for
the center-south zone of Chile, Table 1 shows that
the CP values of crude protein of D. diacanthoides
(7.76-8.72 % shoot-leaf) are below those of forage
species shown in Table 2 like Medicago sativa
(18.9 %), Trifolium pratense (12.9 %) and Avena
nuda (14.4 %), but above Triticum aestivum (3.5
%) and similar to Zea mays (7.5 %). Although hay
has increased its values due to improved handling
and application of technology (Anrique et al.,
2014), its average value (7.3 %) approaches that
of D. diacanthoides.
The calculated average values were 2.38 and
2.66 Mcal·kg-1 for ME and DE, respectively, and
61.56 % for DDM. Thus, as to energy values (DE)
expressed as Mcal·kg-1, D. diacanthoides (2.38) is
exceeded only by some species shown in Table 2,
such as A. nuda (3.34) and Z. mays (2.62), it is
slightly greater than M. sativa (2.35), and it is
even considered in a good range (2.3-2.6)
compared to energy contribution values of prairie
sillage (Irara and Saldaña, 2002).
The balanced energy-protein ratio of D.
diacanthoides, according to the chemical
composition delivered by the proximate
analysis, places it as an important supplementary
nutritional alternative, considering, also, its
availability in winter as an important source of
energy.
Considering the above, based on the calculated
average values obtained for D. diacanthoides,
compared to studies made of other woody species
used as forage in different parts of the world
(Annex I), the plant stands out as an important
energy source, taking relative positions 24 and 28
for ME and DE, respectively, among 58 registered
species. This is an important fact considering that
142
Volumen 32 (2020) BIOAGRO N° 2
D. diacanthoides is used as a nutritional source in
mountain zones where temperatures below zero
are recorded during more than one half of the year
during the months of March through September
(an accumulation of 2540 hours of temperatures
below 7 ºC, and a total of 36 below freezing per
year), so it can be determinant for keeping body
temperature under those conditions (Bondi, 1989),
and in this way make up for the growth rate (Zea
and Díaz, 1990).
Table 2. Chemical composition of green forage species used in the south of Chile (adapted from Anrique
et al., 2014)
DM: dry matter; CP: crude protein; EE: ether extract; P:phosphorus; TA: total ash; CF:fiber crude; ADF: acid detergent
fiber; NDF: neutral detergent fiber, ME: metabolizable energy; DE: digestible energy, DDM: digestible dry matter
Another outstanding characteristic is its
relative intermediate position (28 out of 58) in
relation to the percentage of DDM, indicating its
relative potential as food (Ayala et al., 2006).
Additionally, despite belonging to the Asteraceae
family, the plant does not accumulate alkaloids,
thus being completely safe for cattle consumption
(Zampini et al., 2007).
If to the above we add palatability (Abarzúa et
al., 2007), an endemic condition (therefore,
adapted to the ecosystem), the use and knowledge
by the peasants, and the reproductive strategy
(Peredo et al., 2015), D. diacanthoides represents
an endogenous resource appropriate for the
establishment of agroforestry systems for
mountain conditions in the center-south zone of
Chile. CONCLUSIONS
D. diacanthoides presents balanced values in
the energy-protein relationship, constituting an
important forage of winter supplement due to the
scarce availability of forage in the cordilleran
localities of the Region of Araucanía in Chile.
Being an endemic species, the plant is an easily
accessible resource for farmers and is adapted to
the agroecosystems of the area. However,
management plans should be established for their
sustainable use.
ACKNOWLEDGEMENT
The authors are grateful to the peasant of
Huechelepún Gastón Pincheira and Rafael
Altamirano for their collaboration, basal proyect
(1555) and to the Vicerrectoría de Investigación,
Desarrollo e Innovación of the Universidad de
Santiago de Chile for sponsoring a stay at the
Centre d’Ecologie Fonctionnelle et Evolutive
(CEFE) of Montpellier, France.
LITERATURE CITED
1. Abarzúa, A., P. Donoso and C. Donoso. 2007.
Dasyphylum diacanthoides (Asteraceae).
Trevo, tayo, tevo, palo santo, palo blanco,
Familia Asteraceae (Compositae). In: C.
Donoso (ed.). Las Especies Arbóreas de los
Bosques Templados de Chile y Argentina.
Autoecología, Marisa Cueno Ediciones,
Valdivia, Chile. pp. 212-215.
2. Anrique, R., X. Molina, M. Alfaro and R.
Saldaña. 2014. Composición de alimentos para
el ganado bovino. Universidad Austral de
Chile-INIA, Valdivia, Chile. 96 p.
3. AOAC. 1998. Official methods of analysis.
Association of Official Analytical Chemists.
Washington.
Specie
Family
DM
%
CP
%
EE
%
P
%
CF
%
ADF
%
NDF
%
TA
%
ME
Mcal·k·g-1
DE
Mcal·k·g-1
DDM
%
Avena nuda (hay)
Poaceae
87.9
14.4
5.89
0.44
2.7
2.8
13.8
2.2
3.34
3.74
86.8
Hay (several species)
---
85.4
7.3
1.12
0.16
33.9
38.7
62.0
6.5
2.17
2.54
58.8
Medicago sativa
Fabaceae
27.9
18.9
3.30
0.30
24.4
29.1
37.0
8.0
2.35
2.86
66.3
Trifolium pratense (hay)
Fabaceae
86.1
12.9
0.96
0.28
27.7
36.6
48.5
7.6
2.27
2.61
60.4
Triticum aestivum (hay)
Poaceae
86.1
3.5
0.79
0.08
42.7
55.4
82.9
5.3
1.46
1.98
45.7
Zea mays
Poaceae
22.1
7.5
3.00
0.13
27.7
33.3
53.0
4.6
2.62
2.72
62.9
143
Peredo et al. Nutrition value of Dasyphyllum diacanthoides, an endemic forage tree
4. Avendaño, J., C. Ovalle, and M. Ramírez.
2003. Caracterización de los componentes
vegetales consumidos por ovinos y bovinos
en plantas de tagasaste (Chamaecytisus
proliferus ssp. palmensis). Agric. Téc. 63(1):
38-47.
5. Ayala, A., C. Capetillo, R. Cetina, C. Sandoval
and Zapata. 2006. Composición química-
nutricional de árboles forrajeros. Facultad de
Medicina Veterinaria y Zootecnia, Universidad
Autónoma de Yucatán. Mérida, México. 60 p.
6. Bondi, A. 1989. Nutrición Animal. Acribia.
Madrid.
7. Chettri, N, and E. Sharma. 2009. A scientific
assessment of traditional knowledge on
firewood and fodder values in Sikkim, India.
Forest Ecology and Management 257: 2073-
2078.
8. Iraira, S. and R. Saldaña. 2002. ¿Cómo evaluar
su ensilaje de pradera? Instituto de
Investigaciones Agropecuarias. Centro
Regional de Investigación Remehue.
Informativo N°33: 2-3.
9. Jimenez-Ferrer, G., H. Perez-Lopez, L. Soto-
Pinto, J. Nahed-Toral and L. Hernandez-
Lopez. 2008. Livestock, nutritive value and
local knowledge of fodder trees in fragment
landscapes in Chiapas, Mexico. Interciencia
32(4): 274-280.
10. Khalil, J.K., W.N. Sawaya and S.Z. Hyder.
1986. Nutrient composition of atriplex leaves
grown in Saudi Arabia. Journal of Range
Management 39(2): 104-107.
11. Manterola, H., R. Retamal and D. Cerda. 2004.
Uso de hojas de morera (Morus alba) como
suplemento a cabras en lactancia. XXIX
Reunión Soc. Chilena de Producción Animal
(SOCHIPA). Villarrica- Chile. pp. 75-76.
12. Martínez, M.M., R.E. Del Rio, A. Flores, R.E.
Martínez and O.A. Ron. 2012. Enterolobium
cyclocarpum (Jacq.) Griseb.: The
biotechnological profile of a tropical tree.
Boletín Latinoamericano y del Caribe de
Plantas Medicinales y Aromáticas 11(5): 385-
399.
13. Mekoya, A., S.J. Oosting, S. Fernandez-Rivera
and A.J. van der Zijpp. 2008. Multipurpose
fodder trees in the ethiopian highlands:
farmers’ preference and relationship of
indigenous knowledge of feed value with
laboratory indicators. Agricultural Systems 96:
184-194.
14. Nunes, A.T., R. Farias, M.V. Ferreira dos
Santos and U.P. Albuquerque. 2015. Local
knowledge about fodder plants in the semi-
arid region of northeastern Brazil. Journal
of Ethnobiology and Ethnomedicine 11: 12.
15. Peredo, S.F., E. Parada, R. Álvarez and C.
Barrera. 2015. Propagación vegetativa por
estacas de Dasyphyllum diacanthoides
mediante recursos endógenos. Una
aproximación agroecológica. Boletín
Latinoamericano y del Caribe de Plantas
Medicinales y Aromáticas 14 (4): 301-307.
16. Prabhu, R., E. Barrios, J.L. Bayala Diby, J.
Donovan and A. Gyau. 2015. Agroforestry:
realizing the promise of an agroecological
approach. In: Agroecology for Food Security
and Nutrition FAO, Roma. pp. 201-224.
17. Silva, M.P., M.J Martinez, R. Coirini, M.A.
Brunetti and M. Balzarini M. 2000. Valoración
nutritiva del fruto del algarrobo blanco
(Prosopis chilensis) bajo distintos tipos de
almacenamiento. Multequina 9: 65-74.
18. Sotomayor, A. 2010. Sistemas silvopastorales,
alternativa de producción integrada para un
desarrollo sustentable de la agricultura en
Chile. Ciencia e Investigación Forestal 16(1):
19-51.
19. Thorne, P.J., D.B. Subba and D.H. Walker.
1999. The basis of indigenous
knowledge of tree fodder quality and its
implications for improving the use of tree
fodder in developing countries. Animal Feed
Science and Technology 81(1-2): 119-131.
20. Van Soest, P., J. Robertson and B. Lewis.
1991. Methods for dietary fiber, neutral
detergent fiber and nonstarch polysaccharides
in relation to animal nutrition. Journal Dairy
Sciences 74: 3583-3597.
21. Zampini, I.C., N. Cudmani and M.I. Islas.
2007. Actividad antimicrobiana de plantas
medicinales argentinas sobre bacterias
antibiótico-resistentes. Acta Bioquím Clín
Latinoam 41(3): 385-93.
22.Zea, J. and M. Díaz. 1990. Producción de
Carne con Pastos Forrajes. Mundi-Prensa. 389
p. Madrid.
144
Volumen 32 (2020) BIOAGRO N° 2
Annex I
Energy and digestible values of woody forage species used in the world
Species
Family
ME
Mcal·kg-1
DE
Mcal·kg-1
DDM
%
Reference
Species
Family
ME
Mcal·kg-1
DE
Mcal·kg-1
DDM
%
Reference
Acacia amentacea
Fabaceae
2,10
2,66
61,64
6, 7
Picus hispida
Moraceae
2,02
2,46
56,81
5
Aesculus indica
Sapindaceae
8,20
2,97
68,65
31, 34
Picus lacor
Moraceae
1,89
2,30
53,10
5, 20, 33
Ailanthus chinensis
Somaroubaceae
8,58
2,97
68,65
31
Picus roxburghii
Moraceae
2,03
2,48
57,27
5, 18, 25
Albizia chinensis
Fabaceae
1,87
2,27
52,52
33
Picus semicordata
Moraceae
7,70
2,96
68,49
5, 17
Albizia lebbeck
Fabaceae
3,41
2,60
60,18
3, 12, 20
Picus subinisa
Moraceae
N/I
N/I
N/I
5
Artocarpus lakoocha
Moraceae
3,12
2,60
60,18
5, 14, 18, 30
Garuga pinnata
Burseraceae
2,10
2,56
59,14
18, 33
Arundinaria alpina
Poaceae
1,85
2,25
51,90
29
Gliricidia sepium
Fabaceae
8,60
3,29
76,12
10, 22, 24, 36
Azadirachta indica
Meliaceae
N/I
N/I
N/I
2, 8
Gliricidia sepium
Fabaceae
2,43
2,96
68,49
9, 11, 21, 26
Balanite aegyptica
Zygophyllaceae
2,22
2,70
62,57
29
Grewia bicolour
Tiliaceae
2,00
2,43
56,26
23, 29
Bauhinia purpurea
Fabaceae
2,03
2,47
57,19
18
Guazuma ulmifolia
Malvaceae
2,29
2,79
64,44
9
Brassaiopsis hainla
Araliaceae
2,00
2,44
56,39
5
Hay (several species)
---
2,17
2,54
58,79
1
Castanopsis indica
Fagaceae
1,38
1,68
38,64
25
Leucaena leucocephala
Fabaceae
S/I
2,88
66,70
9, 11, 16
Celtis Africana
Cannabaceae
2,46
3,00
69,50
29
Listea monopetala
Lauraceae
1,79
2,18
50,19
5, 33
Celtis australis
Ulmaceae
6,53
2,27
52,36
20, 28, 31
Machilus odoratissima
Lauraceae
N/I
N/I
N/I
5
Celtis caucasica
Cannabaceae
6,07
2,70
62,41
31
Maytenus arbutifolia
Celastraceae
2,46
3,00
69,50
29
Celtis pallida
Cannabaceae
2,71
3,30
76,44
6
Melia azedarach
Meliaceae
8,50
2,90
67,09
20, 31
Chamaecytisus palmensis
Fabaceae
2,45
2,98
69,04
11, 16
Moringa oleifera
Moringaceae
N/I
N/I
N/I
8
Colophospermum mopane
Caesalpiniaceae
2,31
2,81
64,98
19
Olea europea
Oleaceae
2,34
2,85
65,92
29
Combretum apiculatum
Combretaceae
2,47
3,01
69,66
19
Olea ferruginea
Oleaceae
6,11
2,53
58,52
31
Combretum molle
Combretaceae
2,17
2,65
61,25
19
Peltophorum africanum
Caesalpiniaceae
2,52
3,07
71,14
19
Combretum zeyheri
Combretaceae
2,32
2,83
65,37
19
Premia schimperi
Lamiaceae
2,27
2,77
63,97
29
Cordia africana
Ehretiaceae
1,78
2,17
50,03
29
Pygeum africanum
Rosaceae
2,16
2,63
60,86
29
Cordia ovalis
Ehretiaceae
2,18
2,65
61,40
29
Quercus incana
Fagaceae
5,52
2,56
59,30
15, 32
Dichrostachys cinera
Fabaceae
1,85
2,25
51,98
29
Rhus natalensis
Anacardiaceae
2,29
2,80
64,67
29
Diospyros lotus
Ebenaceae
7,74
2,87
66,31
31
Robinia pseudoacacia
Fabaceae
7,03
3,10
71,76
31
Erythrina fusca
Fabaceae
N/I
N/I
N/I
4, 10
Sesbania grandiflora
Fabaceae
N/I
N/I
N/I
11
Ficus carica
Moraceae
N/I
N/I
N/I
8
Sesbania sesban
Fabaceae
2,60
3,17
73,40
11, 16, 35
Ficus cunia
Moraceae
2,02
2,46
56,90
20, 25
Trichanthera gigantea
Acanthaceae
15,00
2,88
66,62
8, 10, 13, 27
Ficus glaberrima
Moraceae
2,06
2,51
58,07
5, 33
Ziziphus mucronata
Rhamnaceae
2,41
2,94
67,94
29
Ficus gnaphalocarpa
Moraceae
1,94
2,36
54,62
29
ME: metabolizable energy; DE: digestible energy, DDM: digestible dry matter, N/I: not indicated
References
1. Anrique et al. 2014. Univ. Austral de Chile-INIA, Valdivia, Chile. 96 p.
2. Atangwho et al. 2009. African J. of Biotechnology 8(18) 4685-4689.
3. Balgees et al. 2011. Pakistan J. of Nutrition 10(12): 1149-1153.
4. Devendra, 1992. FAO, Legume trees and other fodder trees. Kuala Lumpur, Malasia. 339 p.
5. Dhungana et al. 2012. J. Science and Technology 13(2) 39-44.
6. Domínguez et al. 2013. Int. .J. Bio-resource and Stress Management 4(1):1-8.
7. Domínguez et al. 2014. Italian J. Animal Science 13(4): 808-815
8. García. 2006. Zootecnia Tropical 24(4):401-415.
9. Giraldo. 2001. Agroforestería para la Producción Animal en Latinoamérica. FAO-CIPAV.
10. Gómez et al. 2002. CIPAV. Árboles y arbustos forrajeros. Cali, Colombia, 147 p.
11. Gutteridge and Shelton. 1994. CAB International, Tropical Grassland Society of Australia. 389 p.
12. Hassan et al. 2007. American J. Food Technology 2(5): 435-439.
13. Hess and Domínguez. 1998. Pasturas Tropicales 20(3): 11-15.
14. Hossain et al. 2012. J. Animal and Feed Research 2(3): 288-291.
15. Kabi and Bareeba. 2008. Animal Feed Science and Technology 140: 178–190.
16. Kaitho et al. 1997. Agroforestry Systems 39(2): 129-144.
17. Khanal and Subba. 2001. Animal Feed Science and Technology 92(1–2): 17-32
18. Khanal and Upreti. 2008. Pakistan J. Nutrition 7(2): 297-302.
19. Lukhele and van Ryssen. 2000. South African J. Animal Science 30:72-73
20. Mandal and Gautam. 2012. Bibechana 8: 131-138.
21. Masafu. 2006. Doctoral thesis, University of South Africa. 169 p.
22. Mlay et al. 2006. Veterinarski Arhiv 76(1) 53-63.
23. Murray et al. 2001. J. Food Composition and Analysis 14 3-13.
24. Onwuka. 1986. Workshop on potentials of forage legumes. Addis Ababa-Ethiopia, pp. 533-539.
25. Osti et al. 2009. Nepal Agric. Res. J. 9: 94-98.
26. Ríos et al. 2005. Zootecnia Trop. 23(1) 49-60.
27. Rosales and Ríos. 1999. Agroforestería para la Producción Animal en A.L. FAO, Rome. pp. 351-362.
28. Samant et al. 2007. J. Mountain Science 4(3): 259-274.
29. Shenkute et al. 2012. J. Animal & Plant Sciences 22(4): 1126-1132.
30. Singh and Makkar. 2000. FAO Conference on Mulberry for Animal Production, Rome. 147 p.
31. Sultan et al. 2008. Pakistan Journal of Botany 40(6): 2503-2512.
32. Sultan et al. 2009. Pakistan Journal of Botany 46(1): 2765-2776.
33. Upreti and Shrestha. 2006. Nepal Agricultural Research Council. Khumaltar, Lalitpur. 169 p.
34. Ur-Rahim et al. 2011. Research, Policy and Practice 1(2): 2-20.
35. Vitti et al. 2005. Animal Feed Science and Technology 119(3-4): 345-361.
36. Yousuf et al. 2007. Livestock Research for Rural Development, 19(2): Article 23.