ChapterPDF Available

Nanotechnology and Its Potential Applications in the Field of Biotechnology

Authors:
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Nano/micro-particle-based drug delivery systems for systemic (i.e. intravenous) applications have significant advantages over their non-formulated and free drug counterparts. For example, nanoparticle systems are capable of delivering therapeutics and treating areas of the body that other delivery methods cannot reach. As such, nanoparticle drug delivery and imaging systems are one of the most investigated systems in preclinical and clinical settings. Here we will highlight the diversity of nanoparticle types, the key advantages these systems have over their free drug counterparts, and discuss their overall potential in influencing clinical care. In particular, we will focus on current clinical trials for nanoparticle formulations that have yet to be clinically approved. Additional emphasis will be on clinically approved nanoparticle systems, both for their currently approved indications and their use in active clinical trials. Finally, we will discuss many of the often overlooked biological, technological, and study design challenges that impact the clinical success of nanoparticle delivery systems. This article is protected by copyright. All rights reserved.
Article
Full-text available
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. Nanotechnology has opened up by rapid advances in science and technology, creating new opportunities for advances in the fields of medicine, electronics, foods, and the environment. Nanoscale structures and materials (nanoparticles, nanowires, nanofibers, nanotubes) have been explored in many biological applications (biosensing, biological separation, molecular imaging, anticancer therapy) because their novel properties and functions differ drastically from their bulk counterparts. Their high volume/surface ratio, improved solubility, and multifunctionality open many new possibilities. The objective of this review is to describe the potential benefits and impacts of the nanobiotechnology in different areas.
Article
Full-text available
The association of stem cells (SCs) with biomaterials promises to be the protagonist for future regenerative medicine in the treatment of tissue and organ lesions. Stem cells were cultivated in scaffolds constructed by the electrospinning technique, using poly-D,L-lactic acid (PDLLA) associated or not with Spirulina biomass (PDLLA/Sp), which has bioactive components of interest for tissue engineering (TE). Physicochemical analyses were performed, such as morphology, fiber diameter, degradability, residual solvent, roughness, contact angle with water, among others. SCs adhesion, proliferation and scaffold cytotoxicity were also evaluated. Nanofibers without beads and with characteristics similar to the natural extracellular matrix (ECM) in terms of mechanical and topographical properties were obtained. In biological tests it was found that SCs adhered more and had greater viability in the PDLLA/Sp molds, when compared with the PDLLA scaffolds. The scaffolds were shown to be atoxic for the SCs. It can be concluded that the scaffolds developed in this work have the characteristics to be a new biomaterial suitable for use in TE.
Article
Nanomedicine is a relatively new and rapidly evolving field combining nanotechnology with the biomedical and pharmaceutical sciences.1-3 Nanoparticles (NPs) can impart many pharmacokinetic, efficacy, safety, and targeting benefits when they are included in drug formulations.1-5 Many nanodrugs have entered clinical practice, and even more are being investigated in clinical trials for a wide variety of indications.2 However, nanopharmaceuticals also face challenges, such as the need for better characterization, possible toxicity issues, a lack of specific regulatory guidelines, cost-benefit considerations, and waning enthusiasm among some health care professionals. 4,5 For these reasons, expectations regarding nanodrugs that are in early stages of development or clinical trials need to remain realistic.4.
Article
The Center for Drug Evaluation and Research (CDER) within the US Food and Drug Administration (FDA) is tracking the use of nanotechnology in drug products by building and interrogating a technical profile of products containing nanomaterials submitted to CDER. In this Analysis, data from more than 350 products show an increase in the submissions of drug products containing nanomaterials over the last two decades. Of these, 65% are investigational new drugs, 17% are new drug applications and 18% are abbreviated new drug applications, with the largest class of products being liposomal formulations intended for cancer treatments. Approximately 80% of products have average particle sizes of 300 nm or lower. This analysis identifies several trends in the development of drug products containing nanomaterials, including the relative rate of approvals of these products, and provides a comprehensive overview on the landscape of nanotechnology application in medicine.
Article
Nanomedicine is a relatively new field that is rapidly evolving. Formulation of drugs on the nanoscale imparts many physical and biological advantages. Such advantages can in turn translate into improved therapeutic efficacy and reduced toxicity. While approximately 50 nanotherapeutics have already entered clinical practice, a greater number of drugs are undergoing clinical investigation for a variety of indications. This review aims to examine all the nanoformulations that are currently undergoing clinical investigation and their outlook for ultimate clinical translation. WIREs Nanomed Nanobiotechnol 2017, 9:e1416. doi: 10.1002/wnan.1416 This article is categorized under: • Therapeutic Approaches and Drug Discovery > Emerging Technologies
Article
Treatment and management of diseases of the posterior segment of the eye such as diabetic retinopathy, retinoblastoma, retinitis pigmentosa, and choroidal neovascularization is a challenging task due to the anatomy and physiology of ocular barriers. For instance, traditional routes of drug delivery for therapeutic treatment are hindered by poor intraocular penetration and/or rapid ocular elimination. One possible approach to improve ocular therapy is to employ nanotechnology. Nanomedicines, products of nanotechnology, having at least one dimension in the nanoscale include nanoparticles, micelles, nanotubes, and dendrimers, with and without targeting ligands, are making a significant impact in the fields of ocular drug delivery, gene delivery, and imaging, the focus of this review. Key applications of nanotechnology discussed in this review include a) bioadhesive nanomedicines; b) functionalized nanomedicines that enhance target recognition and/or cell entry; c) nanomedicines capable of controlled release of the payload; d) nanomedicines capable of enhancing gene transfection and duration of transfection; f) nanomedicines responsive to stimuli including light, heat, ultrasound, electrical signals, pH, and oxidative stress; g) diversely sized and colored nanoparticles for imaging, and h) nanowires for retinal prostheses. Additionally, nanofabricated delivery systems including implants, films, microparticles, and nanoparticles are described. Although the above nanomedicines may be administered by various routes including topical, intravitreal, intravenous, transscleral, suprachoroidal, and subretinal routes, each nanomedicine should be tailored for the disease, drug, and site of administration. In addition to the nature of materials used in nanomedicine design, depending on the site of nanomedicine administration, clearance and toxicity are expected to differ.
Article
Nanotechnology offers a promise to revolutionise the life sciences because it equips biologists with tools and materials that can interact directly with the biomolecules that they study on a daily basis. Both biotechnology and nanotechnology have matured to the point that their convergence offers opportunities for novel solutions to unmet needs in biology. This paper explores the developments that have led to this convergence.Journal of Commercial Biotechnology (2006) 12, 105-110; doi:10.1057/palgrave.jcb.3040156