Conference Paper

Maximum Likelihood Decoding for Channels with Uniform Noise and Signal Dependent Offset

Conference Paper

Maximum Likelihood Decoding for Channels with Uniform Noise and Signal Dependent Offset

If you want to read the PDF, try requesting it from the authors.

Abstract

Maximum likelihood (ML) decision criteria have been developed for channels suffering from signal independent offset mismatch. Here, such criteria are considered for signal dependent offset, which means that the value of the offset may differ for distinct signal levels rather than being the same for all levels. An ML decision criterion is derived, assuming uniform distributions for both the noise and the offset. In particular, for the proposed ML decoder, bounds are determined on the standard deviations of the noise and the offset which lead to a word error rate equal to zero. Simulation results are presented confirming the findings.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
In many channels, the transmitted signals do not only face noise, but offset mismatch as well. In the prior art, maximum likelihood (ML) decision criteria have already been developed for noisy channels suffering from signal independent offset . In this paper, such ML criterion is considered for the case of binary signals suffering from Gaussian noise and signal dependent offset . The signal dependency of the offset signifies that it may differ for distinct signal levels, i.e., the offset experienced by the zeroes in a transmitted codeword is not necessarily the same as the offset for the ones. Besides the ML criterion itself, also an option to reduce the complexity is considered. Further, a brief performance analysis is provided, confirming the superiority of the newly developed ML decoder over classical decoders based on the Euclidean or Pearson distances.
Conference Paper
Full-text available
Data storage systems may not only be disturbed by noise. In some cases, the error performance can also be seriously degraded by offset mismatch. Here, channels are considered for which both the noise and offset are bounded. For such channels, Euclidean distance-based decoding, Pearson distance-based decoding, and Maximum Likelihood decoding are considered. In particular, for each of these decoders, bounds are determined on the magnitudes of the noise and offset intervals which lead to a word error rate equal to zero. Case studies with simulation results are presented confirming the findings.
Article
Full-text available
The Pearson distance has been advocated for improving the error performance of noisy channels with unknown gain and offset. The Pearson distance can only fruitfully be used for sets of $q$-ary codewords, called Pearson codes, that satisfy specific properties. We will analyze constructions and properties of optimal Pearson codes. We will compare the redundancy of optimal Pearson codes with the redundancy of prior art $T$-constrained codes, which consist of $q$-ary sequences in which $T$ pre-determined reference symbols appear at least once. In particular, it will be shown that for $q\le 3$ the $2$-constrained codes are optimal Pearson codes, while for $q\ge 4$ these codes are not optimal.
Article
Full-text available
The performance of certain transmission and storage channels, such as optical data storage and nonvolatile memory (flash), is seriously hampered by the phenomena of unknown offset (drift) or gain. We will show that minimum Pearson distance (MPD) detection, unlike conventional minimum Euclidean distance detection, is immune to offset and/or gain mismatch. MPD detection is used in conjunction with (T) -constrained codes that consist of (q) -ary codewords, where in each codeword (T) reference symbols appear at least once. We will analyze the redundancy of the new (q) -ary coding technique and compute the error performance of MPD detection in the presence of additive noise. Implementation issues of MPD detection will be discussed, and results of simulations will be given.
Conference Paper
Full-text available
Initially used in digital audio players, digital cameras, mobile phones, and USB memory sticks, flash memory may become the dominant form of end-user storage in mobile computing, either completely replacing the magnetic hard disks or being an additional secondary storage. We study the design of algorithms and data structures that can exploit the flash memory devices better. For this, we characterize the performance of NAND flash based storage devices, including many solid state disks. We show that these devices have better random read performance than hard disks, but much worse random write performance. We also analyze the effect of misalignments, aging and past I/O patterns etc. on the performance obtained on these devices. We show that despite the similarities between flash memory and RAM (fast random reads) and between flash disk and hard disk (both are block based devices), the algorithms designed in the RAM model or the external memory model do not realize the full potential of the flash memory devices. We later give some broad guidelines for designing algorithms which can exploit the comparative advantages of both a flash memory device and a hard disk, when used together.
Article
In many channels, the transmitted signals do not only face noise, but offset mismatch as well. In the prior art, maximum likelihood (ML) decision criteria have already been developed for noisy channels suffering from signal independent offset . In this paper, such ML criterion is considered for the case of binary signals suffering from Gaussian noise and signal dependent offset . The signal dependency of the offset signifies that it may differ for distinct signal levels, i.e., the offset experienced by the zeroes in a transmitted codeword is not necessarily the same as the offset for the ones. Besides the ML criterion itself, also an option to reduce the complexity is considered. Further, a brief performance analysis is provided, confirming the superiority of the newly developed ML decoder over classical decoders based on the Euclidean or Pearson distances.
Article
Besides the omnipresent noise, other important inconveniences in communication and storage systems are formed by gain and/or offset mismatches. In the prior art, a maximum likelihood (ML) decision criterion has already been developed for Gaussian noise channels suffering from unknown gain and offset mismatches. Here, such criteria are considered for Gaussian noise channels suffering from either an unknown offset or an unknown gain. Furthermore, ML decision criteria are derived when assuming a Gaussian or uniform distribution for the offset in the absence of gain mismatch.
Book
Since the parameters in dynamical systems of biological interest are inherently positive and bounded, bounded noises are a natural way to model the realistic stochastic fluctuations of a biological system that are caused by its interaction with the external world. Bounded Noises in Physics, Biology, and Engineering is the first contributed volume devoted to the modeling of bounded noises in theoretical and applied statistical mechanics, quantitative biology, and mathematical physics. It gives an overview of the current state-of-the-art and is intended to stimulate further research. The volume is organized in four parts. The first part presents the main kinds of bounded noises and their applications in theoretical physics. The theory of bounded stochastic processes is intimately linked to its applications to mathematical and statistical physics, and it would be difficult and unnatural to separate the theory from its physical applications. The second is devoted to framing bounded noises in the theory of random dynamical systems and random bifurcations, while the third is devoted to applications of bounded stochastic processes in biology, one of the major areas of potential applications of this subject. The final part concerns the application of bounded stochastic processes in mechanical and structural engineering, the area where the renewed interest for non-Gaussian bounded noises started. Pure mathematicians working on stochastic calculus will find here a rich source of problems that are challenging from the point of view of contemporary nonlinear analysis. Bounded Noises in Physics, Biology, and Engineering is intended for scientists working on stochastic processes with an interest in both fundamental issues and applications. It will appeal to a broad range of applied mathematicians, mathematical biologists, physicists, engineers, and researchers in other fields interested in complexity theory. It is accessible to anyone with a working knowledge of stochastic modeling, from advanced undergraduates to senior researchers.
Article
K.A.S. Immink and J.H. Weber recently defined and studied a channel with both gain and offset mismatch, modelling the behaviour of charge-leakage in flash memory. They proposed a decoding measure for this channel based on minimising Pearson distance (a notion from cluster analysis). The paper derives a formula for maximum likelihood decoding for this channel, and also defines and justifies a notion of minimum distance of a code in this context.
Article
Flash, already one of the dominant forms of data storage for mobile consumer devices, such as smartphones and media players, is experiencing explosive growth in cloud and enterprise applications. Flash devices offer very high access speeds, low power consumption, and physical resiliency. Our goal in this article is to provide a high-level overview of error correction for Flash. We will begin by discussing Flash functionality and design. We will introduce the nature of Flash deficiencies. Afterwards, we describe the basics of ECCs. We discuss BCH and LDPC codes in particular and wrap up the article with more directions for Flash coding.
Conference Paper
Multilevel-cell (MLC) storage is the preferred way for achieving increased capacity and thus lower cost-per-bit in memory technologies. In phase-change memory (PCM), MLC storage is hampered by noise and resistance drift. In this paper the issue of reliability in MLC PCM devices is addressed at the array level. The purpose of this study is to identify the dominant reliability issues in PCM arrays and to provide a practical methodology to assess the reliability and predict the retention of multilevel states. Experimental data are used to derive and fit simple empirical models which can be used to assess the device reliability over the course of time.
Article
The temperature dependent tunneling resistance of magnetic tunnel junctions with MgO barriers was characterized. In the junctions prepared by magnetron sputtering, the tunnel magnetoresistance decreases with increasing temperature. Various contributions to the tunnel conductance are discussed using different models. Not only the direct elastic tunneling contributes to the temperature dependence of tunnel magnetoresistance, but also the assisted, spin-independent tunneling plays an important role in determining the temperature dependent behavior in our magnetic tunneling junctions. The process is further investigated assuming magnon and phonon assisted tunneling and compared to junctions with alumina tunnel barrier.
Article
Since DC-offsets can have a large, negative impact on the performance of direct-conversion receivers, it is important to determine the offset performance of a given design. This article discusses one technique that can be used to characterize and measure dc-offsets in DCR circuit applications. DC-offsets are a primary concern in the design of DCRs and must be characterized in determining the performance of a particular receiver design. By measuring the dc level at the output of a DCR front-end in separate steps, the source of the offsets - device mismatches, LO self-mixing, and second order nonlinearities - can be resolved.