ArticlePDF Available

Analysis of death and disability due to golf cart crashes in The Villages, Florida: 2011-2019

  • The Villages Health

Abstract and Figures

Objective More than 18 000 Golf Cart (GC)-related injuries occur in the United States (US) annually. However, very few studies have analyzed the causes of such crashes. This study represents the largest single-center analysis of GC crashes performed within the largest GC community in the US, a community in which they are used extensively for local transportation. We examine the nature of these crashes and present potential preventative measures. Methods All GC crashes reported in The Villages, Florida, from July 1, 2011 to July 1, 2019 were analyzed in this study. Data were obtained from multiple sources to create a comprehensive collection of all recorded GC crashes in the area of study. Sources included The Villages Property Owners’ Association (POA), The Villages Sun Daily Newspaper, The Villages Public Safety Department (VPSD), Police Dispatch records, and the Sumter County Police data base. Results and conclusions During the observation period, a total of 875 GC-related crashes occurred, representing an average of 136 crashes, 65 hospitalizations, and 9 dead or disabled annually. Of all crashes, 48% resulted in hospitalization, severe trauma, or death. Of these, ejection occurred in 27%, hospitalization in 55%, and death or disability in 15% of crashes. Virtually all death and disability occurred within the setting of GC used on streets or road pathways. Death and disability, particularly due to ejection during GC crashes, occur at an alarming rate when GCs are used for local transportation. We believe public awareness and the use of 3-point seatbelts in these vehicles would significantly reduce death and disability caused by these crashes.
Content may be subject to copyright.
Full Terms & Conditions of access and use can be found at
Traffic Injury Prevention
ISSN: (Print) (Online) Journal homepage:
Analysis of death and disability due to golf cart
crashes in The Villages, Florida: 2011-2019
John Edward Castaldo , Brandon Raquet , Mitchel Roberts & Carla
To cite this article: John Edward Castaldo , Brandon Raquet , Mitchel Roberts & Carla
VandeWeerd (2020): Analysis of death and disability due to golf cart crashes in The Villages,
Florida: 2011-2019, Traffic Injury Prevention
To link to this article:
View supplementary material
Published online: 19 Aug 2020.
Submit your article to this journal
View related articles
View Crossmark data
Analysis of death and disability due to golf cart crashes in The Villages, Florida:
John Edward Castaldo
, Brandon Raquet
, Mitchel Roberts
, and Carla VandeWeerd
Neurology, University of South Florida, Tampa, Florida;
Neurosciences, Brownwood Specialty Care Center, The Villages Health, The Villages,
Department of Neurosciences, College of William & Mary, Williamsburg, Virginia;
USF Industrial, Management and Systems
Engineering, University of South Florida, Tampa, Florida
Objective: More than 18 000 Golf Cart (GC)-related injuries occur in the United States (US) annu-
ally. However, very few studies have analyzed the causes of such crashes. This study represents
the largest single-center analysis of GC crashes performed within the largest GC community in the
US, a community in which they are used extensively for local transportation. We examine the
nature of these crashes and present potential preventative measures.
Methods: All GC crashes reported in The Villages, Florida, from July 1, 2011 to July 1, 2019 were
analyzed in this study. Data were obtained from multiple sources to create a comprehensive col-
lection of all recorded GC crashes in the area of study. Sources included The Villages Property
OwnersAssociation (POA), The Villages Sun Daily Newspaper, The Villages Public Safety
Department (VPSD), Police Dispatch records, and the Sumter County Police data base.
Results and conclusions: During the observation period, a total of 875 GC-related crashes
occurred, representing an average of 136 crashes, 65 hospitalizations, and 9 dead or disabled
annually. Of all crashes, 48% resulted in hospitalization, severe trauma, or death. Of these, ejection
occurred in 27%, hospitalization in 55%, and death or disability in 15% of crashes. Virtually all
death and disability occurred within the setting of GC used on streets or road pathways. Death
and disability, particularly due to ejection during GC crashes, occur at an alarming rate when GCs
are used for local transportation. We believe public awareness and the use of 3-point seatbelts in
these vehicles would significantly reduce death and disability caused by these crashes.
Received 26 December 2019
Accepted 20 July 2020
Golf cart; 3-point occupant
restraint; countermeasure;
golf cart crash;
injury prevention
Golf carts (GCs) are engineered to be used primarily on golf
courses but are increasingly being used for transportation on
roadways within the US communities (Passaro et al. 1996).
With speeds limited to 20 mph, they are commonly consid-
ered safe and economical, and an environmentally friendly
means of transportation, and are thus not subject to the state
and federal safety regulations that apply to motor vehicles.
Unfortunately, this departure from their original purpose
as a means of golf course transportation has caused a surge
in GC-related injuries. The Consumer Product Safety
Commission (CPSC) estimated that, nearly 18 000 GC-
related injuries reported nationwide in 2015 required emer-
gency treatment (McGwin et al. 2008). Watson et al., using
the National Electronic Injury Surveillance System (NEISS),
reported a 132% increase in GC injuries during 19902006.
According to Watsons report, 15% of crashes occurred on
streets and only 7.8% required hospitalization, reflecting the
fact that their database was heavily weighted toward GCs
used for recreational purposes (Watson et al. 2008).
Similarly, Sciaretta et al. (2016) reported the data on a
single institution in Myrtle Beach, South Carolina over a 32-
month period. Their report detailed 75 GC crashes that
required admission to a level 2 trauma center, 76% of which
occurred on public streets. The absence of safety features,
such as 3-point seat belts and front-wheel brakes, has been
suggested as a critical factor causing majority of the reported
injuries (Kelly 1996; Watson et al. 2008; Sciaretta
et al. 2016).
The Villages, located in central Florida, at 60 miles west
of Orlando, is the largest GC community in the world and
provides an excellent test ground to assess the safety of GCs
used for transportation in a 55-year-old and older retire-
ment community. The community has approximately 140
000 residents and more than 50 000 GCs as of 2018. The
entire community was designed to be GC-accessible, either
via GC lanes on streets or designated GC paths that run
parallel to streets. Presently, there are approximately 70
smaller GC communities like The Villages in the US that
are also designed to be GC-accessible. Other cities that allow
street-legal GCs to be driven are distinct from these GC
CONTACT John Edward Castaldo Professor of Neurology, University of South Florida, Director of Neurosciences, The
Villages Health, The Villages Florida, Tampa, FL, 33620-9951
Associate Editor Jonathan Rupp oversaw the review of this article.
Supplemental data for this article can be accessed online at
ß2020 Taylor & Francis Group, LLC
communities as they are not designed around the use of
GCs as a primary means of transportation. Florida state law
permits road-use of GCs, provided the drivers are 14 years
of age or older and the GCs are driven in designated lanes
or GC lanes where available. There are no safety require-
ments for these vehicles and a valid motor vehicle (MV)
drivers license is not required to drive them on public
roads. While most GCs in The Villages are fitted with
adjustable lap belts, they are seldom used and virtually none
are equipped with 3-point restraints.
This study analyzes the crash data of the GCs in The
Villages obtained over eight consecutive years (2011-2019). To
our knowledge, this is the first study that comprehensively
examines all GC crashes, with or without injury, which
occurred within the largest GC community in the US. The
objective of this study is to examine the nature, rate, and
injury-related outcomes of GC crashes within this community
between June 1, 2011 and July 1, 2019, to better understand
the means through which GC crashes can be prevented.
Additional references can be found in the bibliography in
the Appendix.
To ensure that robust and accurate GC crash data were
collected in the region and reduce the probability that any
events were missed, the data for the current project were
obtained and abstracted from multiple sources. All reviewed
data were public and de-identified and were therefore
exempt from the need for institutional review board (IRB)
approval. Data sources included crash reports from The
Villages Property OwnersAssociation (POA), The Villages
Public Safety Department (VPSD), the Sumter County
Police Records, and those that were reported in The Villages
Daily Sun newspaper.
Once a crash was identified, the data that were recorded
included the date of the crash, age of the driver, gender of the
driver and the passengers, crash type, ejection status (ejection
occurred: yes/no), location of the crash, GC occupant injury/
severity (assessed on a scale of 05, see Table 1), and drug/
alcohol status when noted (drugs/alcohol involved: yes/no).
The GC crashes were categorized as follows:
1. GC collisions with stationary objects
2. GC collisions with GCs (both in motion)
3. GC collisions with pedestrians
4. GC collisions with bicycles
5. GC collisions with motor vehicles
6. Rollover, not because of the crash
7. Ejection without collision or rollover
GC occupant injury was categorized into three groups:
None or Minor Injury (0 or 1),
Moderate Injury Requiring Hospitalization (2 or 3),
Severe Injury Causing LongTerm Disability or Death (4
and 5).
The data on front, side, or rear impacts in cases involving
collisions between GCs and GCs, and between GCs and
MVs, were also noted from the perspective of the driver
involved in the crash, if the report commented on this par-
ticular information. Stationary objects included curbs, tunnel
walls, buildings, parked cars, parked GCs, light poles, and
trees. Once all incidents were abstracted, the data were veri-
fied for duplication to ensure that each crash was abstracted
only once in the final record. Verification was performed by
collating multiple sources detailing the crash report.
The collected data were entered in a Microsoft Excel
(Version 16.3) spreadsheet. Descriptive statistics were exam-
ined to identify the incidence of GC crashes, along with out-
comes such as injuries and associated factors (e.g., age,
location, and crash type), as applicable across the period
of interest.
Crash totals
Over the 8-year observation period, 1084 GC occupants
were involved in 875 GC-related crashes. Annually, 136 GC
crashes occurred on average, resulting in 65 hospitalizations
and death or disability of 9 persons. Of these crashes, 48%
resulted in hospitalization, disability, or death per year
(Table 2).
Crashes by age, gender and alcohol
Of the 875 crash injury cases, 2.9% were cited as alcohol-
related (Table A in the Appendix). The GC driver age was
established in 391 cases and ranged from 1294, with a
mean age of 68 (median age of 71). Of the 542 cases where
the gender of the driver was identified, 63% were male and
37% were female.
Table 1. GC crash severity score in the scale of 0-5 defined by type of injury.
Level of injury Definition Severity
0 No injury None
I Soft tissue damage not limiting activities of daily living Minor
2 Emergency department visit, hospitalization for less than 3 days, or bone fractures
with recovery
3 Loss of consciousness (LOC) for <30 min, multiple bone fractures, or organ injury that
requires one of the following: Surgery, hospitalization for >3 days or, short term
disability / inpatient rehab.
4 Neurological injury with brain or spinal cord injury, or sufficiently severe to require transfer
to a Level 1 trauma center.
Critically severe with survival
5 Death within 60 days of crash Critically severe resulting in death
Crash location, severity, and type
Out of the 870 cases involving injury, in which the location
of the GC crash was described, 63% of the crashes occurred
on public streets and intersections and 28% occurred on
designated GC paths and lanes along streets. Less than 1%
of crashes occurred on golf courses (Table A in the
Appendix). The type of collision was identified in all 875
crashes. Collisions with MVs occurred in 28% of the cases
(n ¼248), collisions with stationary objects occurred in 19%
of cases (n ¼169), and collisions with other GCs occurred
in 9% of cases (n ¼83). Collisions with pedestrians and
bicycles occurred in 1% (n ¼9) and 2% (n ¼17) of cases,
respectively (Table A in the Appendix). The injury severity
data with respect to the GC crash location are summarized
in Table 3.
Rollover and ejection
At least 27% of all GC crashes involved the ejection of at
least one occupant (Table 4 and Table B in the Appendix).
Of this, 15% resulted in disability or death and another 55%
in hospitalization. On comparison, in cases where ejection
did not occur, only 3% of crashes resulted in death or dis-
ability and 37% required hospitalization.
When GCs collided with stationary objects and at least
one occupant was ejected, 23% of incidents resulted in dis-
ability or death, with an additional 47% requiring hospital-
ization for serious injuries. When GCs were involved in
crashes with MVs resulting in at least one GC occupant
being ejected, 16% of incidents resulted in disability or
death. Overall, among the ejection cases involving MVs,
82% of GC occupants suffered at least moderate injuries
(Table B in the Appendix).
Rollover, not as a result of a crash, was cited as the chief
cause of crashes in 10% of cases (Table A). These crashes
typically occurred when drivers performing an evasive man-
euver turned the GCs at speeds that were too fast for them
to remain in control of the vehicle. Of the 107 rollover
crashes that were reported, 55 resulted in hospitalization,
one in death, and one in disability. Rollover injury as a
function of ejection from the GC is shown in Table 4.
The purpose of this study was to examine GC crashes in
The Villages to better understand the frequency of serious
injury and, where possible, to identify factors that were asso-
ciated with these injuries. While not identifying the root
cause of these crashes, this study illuminated many poten-
tially modifiable risk factors for GC injuries that can raise
community awareness and promote better safety, especially
within environments that promote the use of GCs for local
transportation needs.
Overall, we recognize a number of limitations to this
study. Because this is a retrospective study of crashes per-
formed by examining public reports, our study likely under-
estimates the total number of crashes involving GCs in The
Villages. For example, minor incidents that did not require
police or ambulance involvement would go undetected by
the source records. As a result, our estimates likely suffer
from under-reporting (Simpson et al. 2019). In addition,
The Villages underwent an explosion in population growth
in 2017, which likely affected the database and contributed
to an increase in the number of crashes in 2017.
Death, disability, and serious injury occur in a high per-
centage of GC crashes that occur on roadways. On average,
there were 9 disabled or dead and 65 hospitalized annually
as a result of GC crashes. Of these crashes, 48% resulted in
moderate to critically severe injury, hospitalization, disabil-
ity, or death (Tables 2 and A in the Appendix). In 2019,
Simpson et al. reported similar severity results in a study of
23 GC occupants who presented with a traumatic brain
injury or other cranial trauma over a 5-year period.
Ejection from GC is a serious concern and often results
in severe injury or death for those involved (McGwin et al.
2008). Ejection from a GC, without collision, occurred in
27% of crashes and resulted in 55% of occupants hospital-
ized with 15% left dead or disabled. While potentially the
deadliest outcome, ejection from a GC is perhaps also the
most preventable cause of GC injures. Installation and use
Table 2. GC injuries by severity from July 1, 2011 to July 1, 2019.
(01) (%)
(23) (%)
(45) (%)
Total People
Involved Total injured
Total Number
of GC Crashes
2011 18 (39%) 26 (57%) 2 (4%) 46 28 40
2012 48 (39%) 64 (52%) 10 (8%) 122 74 108
2013 43 (38%) 56 (50%) 14 (12%) 113 70 95
2014 51 (43%) 60 (50%) 9 (8%) 120 69 107
2015 43 (42%) 52 (50%) 8 (8%) 103 60 80
2016 61 (46%) 61 (46%) 12 (9%) 134 73 115
2017 140 (63%) 74 (33%) 7 (3%) 221 81 156
2018 115 (73%) 39 (25%) 3 (2%) 157 42 117
2019 44 (65%) 20 (29%) 4 (2%) 68 24 57
Overall 563 (52%) 452 (42%) 69 (6%) 1084 493 875
Number of GC crashes and severity of injuries suffered by GC occupants involved in crashes from July 1, 2011 to July 1, 2019.
Table 3. Injury severity with respect to GC crash location.
(4-5) Total
Golf course 5 3 0 8
GC Path or Lane 155 140 19 314
Public Street 341 287 46 674
Parking Lot/ Home 58 21 2 81
Total 559 451 67 1077
Injury severity with respect to GC crash location involving a total of 1077
occupants (7 unaccounted because location was unknown).
of 3-point seatbelts would keep riders in their carts during a
collision or rollover and could greatly reduce ejection-related
injury and death.
Virtually all crashes resulting in death or disability
occurred within the setting of a street or paths along a
street. We found that 28% of crashes occurred in GC paths
and 63% on street roadways/intersections. Less than 1% of
crashes occurred on golf courses (Table A). Our study find-
ing that GC-related injuries occurred to a greater degree
outside of the golf course setting is unique to our commu-
nity, where GCs are used extensively for transportation. In
nationwide studies, most crashes involving GCs are reported
on golf courses and result only in minor, personal injuries
(McGwin et al. 2008; Miller et al. 2016).
While lap belts are often sold along with GCs in The
Villages, they are only used 15% of the time. The American
National Standards InstituteNational Golf Car
Manufacturers Association (NGCMA) has stated that seat
belts are more of a safety detriment to the occupant than
beneficial.It was the position of the NGCMA that a vehicle
without a rollover protection system required that the occu-
pants be afforded the ability to jump from a moving cart
during a rollover event.This statement has led to a culture
of GC drivers who feel that seat belts are cumbersome and
unnecessary. Our data would suggest this is specious reason-
ing when applied to GCs used as a mode of transportation
on public roads. Whereas ejection accounted for the greatest
number of dead and disabled occupants, rollover crashes,
despite representing 15% of all crashes, resulted in only 2
dead or disabled within the 8-year period. Miller support
our findings in their research, which showed that, in relation
to rollovers and stationary object collisions, ejections
resulted in more severe injuries to the head and neck region
of GC occupants (Miller et al. 2011;2016).
In 1997, The National Highway Traffic Safety
Administration (NHTSA) indicated that it did not intend to
regulate GCs primarily because they were lowspeed vehicles
and were thought to be used primarily on golf courses
where they were believed to be safe for use. The administra-
tion concluded that a GC with a maximum speed that does
not exceed 15 mph is a vehicle that is not primarily manu-
factured for use on public roads and is therefore is not a
motor vehicle.For this reason, GCs (many of which now
have a maximum speed of 20 mph), are not required to be
fitted with the safety systems that have been commonly used
in all motor vehicles since 1968. As a result, safety features
such as front brakes, windshield wipers, rearview mirrors,
head restraints, crash resistant bumpers, and 3-point occu-
pant restraints are not standard issue in most GCs despite
their use on public roads in many communities across the
US. Moreover, the use of GCs on public roads does not
require a valid MV drivers license in many states. The
NHTSA has, however, designated that low-speed vehicles
capable of speeds greater than 20 mph, but less than 35 mph,
need to be equipped with standard MV safety systems
(Seluga et al. 2005). Given this recommendation and the
high rate of injury, disability, and death that results annually
from GCs being used as secondary (and in some cases pri-
mary) means of transportation on public roads in retirement
communities and neighborhoods like The Villages, we
believe a change in policy is warranted.
In 2005, Long et al. (2005) studied the stability character-
istics of GCs using the Alderson 50
percentile anthropo-
metric crashdummy in a variety of real-life maneuvers on
roadways. The authors concluded that the potential for ejec-
tion was significantly higher in unbelted occupants during
cornering maneuvers as opposed to rollover events, even at
speeds of only 11 mph. Observations made by testing the
vehicles as they made a rapid turn, similar to what would
occur in avoidance maneuvers, demonstrated that even hip
restraint belts were ineffective at protecting the occupants.
The results of these tests showed that forward and lateral
accelerations during these maneuvers pulled the occupant
up and over the hip restraint lap belts, ejecting the occupant
into a head first dive toward the ground, even without loss
of control of the vehicle. Further, they found that the speed
of these ejection events was so high as to make the possibil-
ity of jumping from the vehicle virtually untenable. Our
real-life data for crashes occurring in The Villages, as well as
the field data of others, support these research conclusions
and provide a strong argument for the use of 3-point
restraints in GCs used on public roads (Passaro et al. 1996;
McGwin et al. 2008; Miller et al. 2011; Sciaretta et al. 2016;
Miller et al. 2016).
According to the NHTSA and the Center for Disease
Control and Prevention (CDC), seat belts have saved nearly
300 000 lives in the US since 1975. Even with the availability
of 3-point restraints, seat belt laws and stricter enforcement
are required to effectively ensure their use and decrease GC-
related fatalities (Dinh-Zarr et al. 2001; Seluga et al. 2005;
Beck and West 2011). Despite state seat-belt laws, of all pas-
senger vehicle occupants killed in 2017, 47% were not wear-
ing seat belts. Amongst GC drivers, where there is even
more of a pervasive culture of eschewing even the use of lap
Table 4. Injury Severity of GC Crashes with respect to Ejection with and without Rollover Injury Severity.
Ejection total
Minor (0-1) Hospitalization (2-3) Disabled/Dead (4-5) Total
Yes 90 (31%) 161 (55%) 43 (15%) 294 (27%)
No 474 (60%) 290 (37%) 26 (3%) 790 (73%)
Total 564 (52% 451 (42%) 69 (6%) 1084
Yes 14 (44%) 17 (53%) 1 (3%) 32 (30%)
No 36 (48%) 38 (51%) 1 (1%) 75 (70%)
GC crashes showing numbers of people injured by ejection from the vehicle during the observation period of July 1, 2011
to July 1, 2019.
GC crashes as a result of rollover showing severity of injury and ejection from the vehicle.
Injury severity depicted as a function of crash ejection and rollover from July 1, 2011 to July 1, 2019.
belts, enforcement of installation and the use of 3-point
restraints in GCs is likely to be particularly difficult. In the
US, an increasing number of retirement communities are
being built with GC use in mind; access to this form of
transportation offers senior people a low-cost and conveni-
ent transportation to local shops, restaurants, and other
activities/engagementsall of which have the potential to be
beneficial to health in later life (Lane 2015). According to
the International Light Transportation Vehicle Association,
a trade group representing GC manufacturers, there are
more than 350 cities and counties in the US where GCs are
used on roads for transportation (American National
Standards Institute (ANSI) 2020). Annually, Americans drive
more than 65 million miles on roadways by GCs, with 45%
of drivers being 65 years of age and older (Poncy et al.
2011). As such, it is important that policies be instituted to
minimize risk and facilitate safe use. Given that the average
price of aftermarket seatbelt installation in a GC is
$90$160, the use of a 3-point restraint is not cost-prohibi-
tive, especially when factored against the typical cost of a
new GC ($6,000 to $10,000). Considering the potential for
reduction in injury, disability, and death if a 3-point
restraint is installed as part of the required safety features in
an original GC build, this cost is likely to be even less, fur-
ther strengthening the cost/benefit argument.
John Edward Castaldo
American National Standards Institute (ANSI) 2020. SDO International
Light Transportation Vehicle Association. [accessed 2020 May 1].
Beck LF, West BA. 2011. Vital Signs: Nonfatal, Motor
VehicleOccupant Injuries (2009) and Seat Belt Use (2008) Among
AdultsUnited States. MMWR. 59(51):16811686.
Dinh-Zarr TB, Sleet DA, Shults RA, Zaza S, Elder RW, Nichols JL,
Thompson RS, Sosin DM. 2001. Reviews of evidence regarding
interventions to increase the use of safety belts. Am J Prev Med.
21(4):4865. doi:10.1016/S0749-3797(01)00378-6
Kelly EG. 1996. Major injuries occurring during use of a golf cart.
Orthopedics. 19(6):519523. doi:10.3928/0147-7447-19960601-09
Lane CA. 2015. Golf cart needs assessment in a census-designated
community [applied dissertation]. Missouri (US): College of
Graduate Health Studies A.T. Still University.
Long TJ, Fugger TF, Randles B. 2005. Vehicle performance characteris-
tics and seat belt effectiveness in low speed vehicles and golf cars:
paper number 05-0431. Washington, DC: National Highway Traffic
Safety Administration.
McGwin G, Zoghby JT, Griffin R, Rue LW. 2008. Incidence of golf
cart-related injury in the United States. J Trauma. 64(6):15621566.
Miller BL, Waller JL, McKinnon BJ. 2011. Craniofacial injuries due to
golf cart trauma. Otolaryngol Head Neck Surg. 144(6):883887. doi:
Miller B, Yelverton E, Monico J, Replogle W, Jordan JR. 2016.
Pediatric head and neck injuries due to golf cart trauma. Int J
Pediatr Otorhi. 88:3841. doi:10.1016/j.ijporl.2016.06.041
Passaro KT, Cole TB, Morris PD, Matthews DL, MacKenzie WR. 1996.
Golf car related injuries in a North Carolina island community,
1992-4. Injury Prev. 2(2):124125. doi:10.1136/ip.2.2.124
Poncy AT, Twaddel H, Renaissance Planning Group, Lynott J, AARP
Public Policy Institute. 2011. Policy and design consideration for
accommodation low-speed vehicles and golf carts in community
transportation networks. Insight on the Issues 54, September, 2011
AARP Public Policy Institute, 601 E Street, NW, Washington, DC
Sciaretta JD, Taylor H, Romano A, Davis B, Pepe A. 2016. Golf cart-
related injuries: A community at risk. Am Surg. 82(1):3637.
Seluga KJ, Ojalvo IU, Obert RM. 2005. Low speed vehicle passenger
ejection restraint effectiveness. Accid Anal Prev. 37(4):801806. doi:
Simpson B, Shepard S, Kitagawa R. 2019. Golf cart associated traumatic
brain injury. Brain Inj. 33(11):14761478. doi:10.1080/02699052.
Watson DS, Mehan TJ, Smith GA, McKenzie LB. 2008. Golf cart-
related injuries in the U.S. Am J of Prev. Med. 35(1):5559. doi:10.
Objective: Golf carts are increasingly being used as a means of transportation for travel in neighborhoods, city areas, and unpaved surfaces. The catchment area of our regional trauma center has seen an increase in golf cart use for transportation. In fact, Georgia has recently changed legislation to support the growing need for more defined laws around golf cart use. This study aims to further evaluate injury and outcome patterns in the adult population of northeast Georgia. Methods: We performed a retrospective review of adult golf cart injured patients from 2018 to 2022. We evaluated key demographics, such as age and gender, along with the length of stay, Glasgow Coma Scale (GCS), and Injury Severity Score (ISS). Outcomes included the injury type. Results: The results showed that orthopedic injuries were the most common (n = 24). Most patients were in the driver's seat (76%). Ejection from the golf cart was common (82%). Geriatric patients, 65 and older, had an increased length of stay compared to patients under the age of 65 (10 vs 3.9 days). Conclusion: Based on these results, future work includes injury prevention, increased awareness of injury patterns in prehospital and hospital settings, and communities updating their ordinances.
Full-text available
To characterize craniofacial injuries due to golf cart trauma. Case series with chart review. Level 1 trauma center. A tertiary academic medical center's trauma database was queried for golf cart-related trauma from 2000 to 2009 and returned 68 patients. Data were obtained from the trauma database and by individually reviewing patient charts. Of the 68 patients identified, 55% were male, with a median age of 13.4 years. Sixty-nine percent had head injuries, with 32% sustaining skull or facial fracture and 20.6% intracranial hemorrhage. The highest Abbreviated Injury Scale (AIS) by region was the head and neck. The average Glasgow Coma Scale score was 14.2, Injury Severity Score (ISS) 9.0, hospital stay 4.5 days, and intensive care unit (ICU) stay 2.8 days; 36.8% were admitted to the ICU. Ejection and rollover were the most common mechanisms of injury, with ejection having a significantly higher head and neck AIS compared with rollover and hitting a stationary object (P = .0055). Alcohol was detected in 59.2% of patients older than 16 years; the average blood alcohol concentration was 182.6 mg/dL. Children were involved 60.3% of the time, with an average age of 9.2 years, and children were passengers in the golf cart 69.2% of the time. Golf cart trauma can cause significant craniofacial injuries, particularly in the pediatric population and in adults who consume alcohol.
Full-text available
Current golf carts and LSV's (Low Speed Vehicles) produce a significant number of passenger ejections during sharp turns. These LSV's do not typically possess seatbelts, but do provide outboard bench seat hip restraints that also serve as handholds. However, many current restraint designs appear incapable of preventing passenger ejections due to their low height and inefficient handhold position. Alternative handhold and hip restraint designs may improve passenger safety. Accordingly, this paper examines minimum size requirements for hip restraints to prevent passenger ejection during sharp turns and evaluates the effectiveness of a handhold mounted at the center of the bench seat. In this study, a simulation of a turning cart supplies the dynamic input to a biomechanical model of an adult male seated in a golf cart. Various restraint combinations are considered, both with and without the central handhold, to determine the likelihood of passenger ejection. It is shown that only the largest restraint geometries prevent passenger ejection. Adequate hip restraints should be much larger than current designs and a central handhold should be provided. In this way, golf cart and LSV manufacturers could reduce passenger ejections and improve fleet safety by incorporating recommendations provided herein.
Object: Although contact sport-related head injuries are frequently reported, golf cart accidents may have significant consequences including severe traumatic brain injury (TBI) or head injury. As no standardized regulations exist, this mechanism may be underreported. Methods: A retrospective review of TBI or cranial trauma after a golf cart accident at a level I trauma center over 5 years were performed. Data regarding age, sex, race, initial Glasgow Coma Scale score, alcohol status, type and location of the injury, and outcomes were analyzed and reported in terms of Modified Rankin Scale (MRS). Results: A total of 23 patients with TBI or cranial trauma following golf cart accident were identified. The mean age was 36 years old with the most common injury being skull fracture followed by acute subdural hematoma. Most patients had good outcomes, MRS 0–3, at discharge, but like most forms of TBI, surgical interventions, intracranial pressure monitoring, post-traumatic seizures, hydrocephalus, and death did occur. Conclusions: Head injuries sustained by golf cart accidents are not insignificant and may be underreported. More awareness of these injuries and safety guidelines are needed.
Introduction: Golf carts are increasingly used off the golf course and are often viewed as innocuous modes of transportation. However, research has shown they can cause significant injuries, particularly to children. Objectives: Analyze golf cart related head and neck injuries in children and adults from a national database. Methods: The National Electronic Injury Surveillance System (NEISS) was queried for golf cart injuries. The NEISS tracks consumer product related injuries from a sampling of approximately 100 emergency departments across the United States. Age, general diagnosis (concussion, fracture, laceration), body-part injured, disposition (hospitalized, discharged), location injury occurred, and mechanism of injury were analyzed. Results: Over an 11-year period, a total of 3433 total patients were identified. There were 1471 children (16 years old or younger), which compromised 42.9% of the cohort. Children were injured at home or on the road 44.7% of the time compared to only 16.6% of adults (p < 0.003). Children injured their head or neck 42.6% of the time compared to 28.6% of adults (p < 0.0001). Adults who were hit by a car while riding a golf cart or were ejected from the golf cart 44.6% of the time compared to 61.7% of children (p < 0.0001). There were 3.9% of children with a face, head, or neck fracture compared to only 2.4% of adults (p = 0.01). Conclusion: Children are more vulnerable to golf cart related injuries, specifically to the head and neck.
Background: Motor vehicle crashes are the leading cause of death in the United States among persons aged 5--34 years. Seat belts have been shown to be the most effective method for reducing injuries among adults in the event of a crash. Methods: CDC used 2009 data from the National Electronic Injury Surveillance System--All Injury Program (NEISS-AIP) to provide U.S. estimates of the number and rate of nonfatal, motor vehicle--occupant injuries treated in emergency departments among adults aged ≥18 years. In addition, CDC used 2008 data from the Behavioral Risk Factor Surveillance System (BRFSS) to estimate the prevalence of self-reported seat belt use among adults in the United States. Seat belt use was examined further by type of state seat belt enforcement law. Results: In 2009 in the United States, an estimated 2.3 million adult motor vehicle--occupants had nonfatal injuries treated in emergency departments. The nonfatal, motor vehicle--occupant injury rate declined 15.6% from 1,193.8 per 100,000 population in 2001 to 1,007.5 per 100,000 population in 2009. In 2008, self-reported seat belt use was higher in states with primary enforcement laws (88.2%), compared with states with secondary enforcement laws (79.2%). If the secondary law states had achieved 88.2% seat belt use in 2008, an additional 7.3 million adults would have been belted. From 2002 to 2008, self-reported seat belt use increased overall from 80.5% to 85.0%. Conclusions: Nonfatal, motor vehicle--occupant injuries treated in emergency departments have declined in recent years but still affect a substantial proportion of the adult U.S. population each year. Self-reported belt use increased from 2002 to 2008, and was higher in states with primary enforcement laws compared with states with secondary enforcement laws. Implications for Public Health Practice: Seat belt use is a proven method to reduce motor vehicle--occupant injuries, and the results of this analysis demonstrate that states with primary enforcement laws have higher prevalence of self-reported seat belt use. To help reduce the number of motor vehicle--occupant injuries, 19 states without primary enforcement laws should consider enacting them.
Major trauma following a mishap with a golf cart is an unreported problem. This study details injury types and the various mechanisms by which the accidents occurred. Recommendations are made regarding preventive measures that should be observed for safe operation of a golf cart. Two hundred eighty orthopedic surgeons from 37 states were polled concerning their experience with injuries directly resulting from use of a golf cart. One hundred nineteen surgeons reported a total of 111 injuries with adverse outcomes including death, spinal cord injury, and various chronic disabilities of an extremity. The use of a golf cart has the potential to cause serious trauma. The mechanisms of the accident indicate that obvious measures may be observed to lessen the likelihood of an injury.
The use of electric golf carts for roadway transportation is increasing in many regions of the United States, but injuries associated with the operation of these vehicles have not been previously described. In response to reports of golf cart related injuries in a North Carolina island community, we reviewed ambulance call report (ACR) information to identify and describe all injuries related to golf cart operation in this community in 1992-4. We also conducted telephone interviews with the subset of injured people who consented to be contacted. Bald Head Island, North Carolina. Twenty two people were included in the case series, and 55% of these provided interview information to supplement ACR data. Fifty nine per cent of the 22 injured people were injured when they fell from a moving golf cart; of those injured in this manner, all with available information on seating position were passengers (rather than drivers). Eighty six per cent received immediate medical treatment at a mainland hospital. Thirty two per cent of injury incidents occurred among children aged 10 or younger. Forty per cent of injured adults were known to have been drinking alcohol before their injuries occurred, while alcohol was not known to have been involved in any of the children's injuries (in terms of drinking either by children or by accompanying adults). In settings where golf carts are used for road transportation, their users and traffic safety officials should be aware of potential safety hazards associated with the use of these vehicles, and installation of appropriate occupant restraints should be considered seriously.
The use of safety belts is the single most effective means of reducing fatal and nonfatal injuries in motor vehicle crashes. If all motor vehicle occupants consistently wore safety belts, an estimated 9553 deaths would have been prevented in 1999 alone. The Guide to Community Preventive Services's methods for systematic reviews were used to evaluate the effectiveness of three interventions to increase safety belt use. Effectiveness was assessed on the basis of changes in safety belt use and number of crash-related injuries. Strong evidence was found for the effectiveness of safety belt laws in general and for the incremental effectiveness of primary safety belt laws relative to secondary laws. Strong evidence for the effectiveness of enhanced enforcement programs for safety belt laws was also found. Additional information is provided about the applicability, other effects, and barriers to implementation of these interventions. These reviews form the basis of the recommendations by the Task Force on Community Preventive Services presented elsewhere in this supplement. They can help decision makers identify and implement effective interventions that fit within an overall strategy to increase safety belt use.