Article

Enhancement of anti-acne effect of Scutellaria baicalensis extract by fermentation with symbiotic fungus Penicillium decumbens

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Inflammatory responses stimulated by Propionibacterium acnes have been shown to be major etiological factors in the pathogenesis of acne. Scutellaria baicalensis, a popular traditional Chinese medicine, has been widely shown to have anti-inflammatory effects. In this study, primary component analysis and primary effective component analysis were conducted. The results showed that wogonin (1.15 mg/g S. baicalensis extract) possessed better anti-acne effects than wogonoside (8.71 mg/g S. baicalensis extract) in inhibiting the up-regulation of IL-1β and IL-8 level caused by P. acnes via inactivation of the MAPK and NF-κB signaling pathways. To enhance the anti-acne effects of S. baicalensis extract, an environmentally friendly and healthy plant fermentation strategy was used to efficiently convert glycoside-type constituents into bioactive aglycone. S. baicalensis extract was fermented by symbiotic fungus Penicillium decumbens f3-1 to transform wogonoside into wogonin with a conversion rate of 91.0% after 4 days. Fermented S. baicalensis extract (FSE) showed higher potential anti-acne effects than non-fermented S. baicalensis extract (NSE) by inhibiting the up-regulation of IL-1β and IL-8. Thus, P. decumbens-fermented S. baicalensis Extract may be used for developing new anti-acne cosmetic ingredients.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Acne is one of the most common skin diseases globally, affecting approximately 650 million adolescents and adults [1,2]. Acne is a chronic inflammatory disease which causes skin redness, itching, and inflammation [3]. Although the exact causes of acne remain unclear, environmental factors such as heredity, diet, stress, hormonal imbalance, and a narrow equilibrium between Propioninbacterium acnes (P. ...
... T. sinensis is known to have antibacterial and anti-inflammatory activities, and commonly used as a natural herbal medicine for treating dysentery, enteritis, and itchiness [3]. However, the anti-inflammatory effects of TS on P. acnes-induced inflammation disease remain unknown. ...
Article
Full-text available
Toona sinensis has been traditionally used to treat dysentery, enteritis, flatulence, and itchiness. However, the existence of anti-inflammatory effects of T. sinensis on Propionibacterium acnes-induced skin disease is unknown. In vitro cultures of plant cells and tissues produced under controlled conditions offer a continuous production platform for plant natural products including pigments and anti-inflammatory agents. In this study, we determine the anti-inflammatory activities of an extract of in vitro grown adventitious shoots of T. sinensis on P. acnes, the etiologic agent of skin inflammation. The extract of T. sinensis showed antioxidant and anti-inflammatory activity in LPS-treated RAW264.7 cells. It also had antibacterial activity and anti-inflammatory effects on P. acnes-treated HaCaT cells. In addition, these effects were regulated by suppression of the mitogen-activated protein kinase (MAPK) pathways. These results suggesting the potential application of adventitious shoots of T. sinensis grown with an in vitro proliferation system as a medicine for treating P. acnes-induced inflammatory skin disease.
... More extracellular melanin production by Gliocephalo trichum simplex showed proficient UV absorbance, demonstrating its potential use in the manufacturing of sunscreens (Jalmi et al. 2012). Recently Penicillium decumbens fermented Scutellaria baicalensis, a common Chinese medicine, showed enhanced anti-acne potential than the non-fermented counterpart (Zhu et al. 2020). A list of commercially available mushroom-based cosmetic products and their function is provided in Table 2. ...
Chapter
The utilization of biological systems has been receiving considerable attention in the past couple of decades in the development of bio-based functional materials. This has been largely inspired by the use of green, biodegradable, and environmentally sustainable materials for the development of new functional biomaterials. The utilization of renewable resources for the production of materials introduces fast-growing and biodegradable fungal mycelium-derived materials for various applications. Mycelium secretes enzymes and decomposes the substrate to take nutrients for growth and make an interwoven three-dimensional network. The elastic, porous, stiff, and dense mycelia are rich in antioxidants, antiviral, and anti-inflammatory compounds. The properties of mycelium-derived materials are greatly dependent upon the feeding substrate, fungus type, and processing conditions. Both pure mycelial materials and their composites secure an important position in the race of utilization of renewable resources for material synthesis. This chapter summarizes the utilization of mycelium-based materials for numerous applications like cosmetics, medicine, textile, construction, packaging, and the food industry. It also describes the potential of mycelial-derived materials as an alternative to the traditional insulators, packaging materials, and bovine leather. It further explains the importance of mycelium-based functional foods, cosmetics, and medicines.
... Chemical structure of components of SB can significantly inhibit the up-regulation of IL-1β and IL-8 level caused by Propionibacterium acnes via inactivation of the MAPK and NF-κB signaling pathways. The main effective components are wogonin and wogonoside[65]. Baicalin had a dose-dependent inhibitory effect on the expression of LasA protease, LasB elastase, pyocyanin, rhamnolipid, functional and exotoxin A caused by ...
Article
Full-text available
Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB's toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB's active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.
Article
Full-text available
Screening active natural products, rapid identification, and accurate isolation are of great important for modern natural lead compounds discovery ¹ . We hereby reported the isolation of seven new neotecleanin-type limonoids (1[sbnd]7), seven new limonoids with 5-oxatricyclo[5.4.0.1 1,4 ]hendecane ring system (8[sbnd]14), and two new precursors (15[sbnd]16) together with four known limonoids (17[sbnd]20) from the root barks of Walsura robusta. Their structures, including their absolute configurations, were elucidated based on analyses of HR-ESI-MS, 1D/2D NMR, ECD spectrum calculations and single-crystal X-ray diffraction techniques. Compounds 2, 8, 9, 11, 13, 14, 18 showed significant anti-inflammatory activities in LPS-induced RAW 264.7 cell line, BV2 microglial cells, and Propionibacterium acnes-stimulated THP-1 human monocytic cells. Walrobsin M (11) exhibited anti-inflammatory activity with IC 50 value of 7.96±0.36 μmol/L, and down-regulated phosphorylation levels of ERK and p38 in a dose-dependent manner. © 2019 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
Article
Full-text available
Shuidouchi is a traditionally fermented soybean product in China. Shuidouchi production requires a variety of processes; however, the production process has not been standardized. It can be developed into high-quality products with enhanced health effects by improving the design of its fermentation process and increasing the content of its active ingredients. In this study, a single-factor experiment was conducted that established different process conditions to determine the fermentation conditions that achieve the highest content of active ingredients and the best in vitro antioxidant effect. The effect of Shuidouchi on the prevention of dextran sulfate sodium-induced colitis in mice was also observed. The obtained results indicated that the optimal process conditions involved soaking for 12 h, placement in a glass container, and fermentation at 35 °C for 48 h. Shuidouchi that was fermented under such conditions had the highest level of soybean isoflavones and exerted greater antioxidant effects than if fermented under other conditions. The Shuidouchi extract (soaking twice the quantity of water for 12 h, placing in a glass container, and fermenting at 35 °C for 48 h) obtained by using the optimal fermentation process can prevent the shortening of the colon and increase the weight-to-length ratio of the colon that is caused by colitis. Shuidouchi extraction not only effectively reduces the disease activity index and the levels of serum endothelin (ET), substance P (SP), and interleukin-10 (IL-10), it also increases the levels of somatostatin (SS), vasoactive intestinal peptide (VIP), and interleukin-2 (IL-2) of mice with colitis. In addition, Shuidouchi extraction increased the levels of glutathione (GSH) and superoxide dismutase (SOD) in colitis mice; in contrast, Shuidouchi decreased the levels of myeloperoxidase (MPO) and malondialdehyde (MDA) in the colon of mice with colitis. Further detection of mRNA in colon tissues showed that Shuidouchi extraction can upregulate the expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), c-Kit, and the stem cell factor (SCF). Furthermore, it can downregulate the expression of inducible nitric oxide synthase (iNOS), interleukin-8 (IL-8), and C-X-C chemokine receptor type 2 (CXCR2) in the colon of mice with colitis. Further experimental results showed that Shuidouchi could reduce the protein expression of interleukin 6 (IL-6), IL-12, and tumor necrosis factor-α (TNF-α) in colitic mice. Therefore, the improved processing of Shuidouchi inhibits colitis, which is directly related to the high content of soybean isoflavones.
Article
Full-text available
Propionibacterium acnes (P. acnes) has been implicated in the progression of acne inflammation. Because current acne medications have various side effects, it is necessary to explore alternative medications possessing anti-inflammatory activity against P. acnes. We investigated the inhibitory effects of polyphyllin I (PPI) on P. acnes-induced inflammation in vitro. In this study, we examined the effects of PPI on the production of inflammatory cytokines in HaCaT keratinocytes treated with heat-killed P. acnes. These treated HaCaT keratinocytes showed increased expression of Toll-like receptor 2 (TLR2) and production of inflammatory cytokines. PPI significantly suppressed the secretion of inflammatory cytokines, including interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α, and the expression of TLR2 in P. acnes-treated cells. Moreover, we studied the influence of PPI on the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in P. acnes-treated keratinocytes. PPI diminished the activation of NF-κB. Phosphorylated p38 levels were markedly increased after treatment with heat-killed P. acnes but were decreased after treatment with PPI, while the effect of PPI on ERK phosphorylation was not significant. Heat-killed P. acnes and PPI did not have any effect on JNK phosphorylation. Furthermore, we confirmed that NF-κB p65 inhibitor (BAY11-7082), p38 MAPK inhibitor (SB203580), and PPI blocked the expression of IL-8 in heat-killed P. acnes-treated cells. These results demonstrated that PPI has potential for development as a treatment for acne inflammation. Electronic supplementary material The online version of this article (10.1007/s10753-018-0870-z) contains supplementary material, which is available to authorized users.
Article
Full-text available
Forty-four endophytic fungal isolates obtained from marine sponge, Hyrtios erectus, were evaluated and screened for their hydrolase activities. Most of the isolates were found to be prolific producers of hydrolytic enzymes. Only 11 isolates exhibited maximum cellular contents of lipids, rhamnolipids, and protein in the fungal isolates under the isolation numbers MERVA5, MERVA22, MERVA25, MERVA29, MERVA32, MERVA34, MERV36, MERVA39, MERVA42, MERVA43, and MERVA44. These isolate extracts exhibit the highest reducing activities against carbohydrate-metabolizing enzymes including α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase. Consequently, based on morphological and cultural criteria, as well as sequence information and phylogenetic analysis, these isolates could be identified and designated as Penicillium brevicombactum MERVA5, Arthrinium arundinis MERVA22, Diaporthe rudis MERVA25, Aspergillus versicolor MERVA29, Auxarthron alboluteum MERVA32, Dothiorella sarmentorum MERVA34, Lophiostoma sp. MERVA36, Fusarium oxysporum MERVA39, Penicillium chrysogenum MERVA42, Penicillium polonicum MERVA43, and Trichoderma harzianum MERVA44. The endophytic fungal species, D. rudis MERVA25, P. polonicum MERVA43, Lophiostoma sp. MERVA36, A. alboluteum MERVA32, T. harzianum MERVA44, F. oxysporum MERVA39, A. versicolor MERVA29, and P. chrysogenum MERVA42 extracts, showed significant hepatitis C virus (HCV) inhibition. Moreover, D. sarmentorum MERVA34, P. polonicum MERVA43, and T. harzianum MERVA44 extracts have the highest antitumor activity against human hepatocellular carcinoma cells (HepG2).
Article
Full-text available
Radix Scutellariae (RS) has long been used in the treatment of inflammatory and allergic diseases. Its main flavonoids, baicalin (BG) and wogonoside (WG), can be hydrolyzed into their corresponding aglycones, baicalein (B) and wogonin (W). In this study, we developed a safe and effective method of transforming these glycosides using Peclyve PR. The transformation rate of BG and WG reached 98.5 and 98.1%, respectively, with 10% enzyme at 40 °C for 60 h. Furthermore, we compared the anti-photoaging activity of RS before and after enzyme treatment, as well as their respective main components, in UVB-irradiated HaCaT cells. Results found that enzyme-treated RS (ERS) appeared to be much better at preventing UVB-induced photoaging than RS. ERS significantly inhibited the upregulation of matrix metalloproteinase-1 and IL-6 caused by UVB radiation by inactivating the MAPK/AP-1 and NF-κB/IκB-α signaling pathways. ERS treatment also recovered UVB-induced reduction of procollagen type I by activating the TGF-β/Smad pathway. In addition, ERS exhibited an excellent antioxidant activity, which could increase the expression of cytoprotective antioxidants such as HO-1 and NQ-O1, by facilitating Nrf2 nuclear transfer. These findings demonstrated that the photoprotective effects of RS were significantly improved by enzyme-modified biotransformation.
Article
Full-text available
Inflammatory responses induced by Propionibacterium acnes are a major etiological factor in the pathogenesis of acne vulgaris. Schisandrin A, schisandrin B, and schisandrin C are the representative lignans of Schisandra chinensis (Turcz.) Baill. extract. Although anti-inflammatory effects of the lignans have been shown, their effects on acne-related inflammation caused by P. acnes have not been investigated and compared. We pretreated THP-1 human monocytic cells with 5, 10, and 20 μM schisandrin A, B, and C, and stimulated the cells with P. acnes. Schisandrin B and C inhibited the release of inflammatory cytokines at a concentration of 5 μM, while schisandrin A required a concentration of 10 μM to exert the effects. All of the schisandrins decreased the levels of toll-like receptor 2, and schisandrin B and C reduced the intracellular mRNA expression of the receptor gene. We also studied the influence of schisandrins on the MAPK signaling pathway. Schisandrin A suppressed the P. acnes-induced activation of JNK, while exerting only a weak effect on ERK and p38. Schisandrin B exerted a strong effect on p38, a lesser effect on ERK, and almost no effect on JNK. Schisandrin C inhibited the phosphorylation of all three proteins, especially ERK. Furthermore, the three lignans also prevented the nuclear translocation of NF-κB. These results contribute to our understanding of the mechanisms underlying the effects of the three lignans on P. acnes-induced inflammation and suggest that schisandrins might be developed as pharmacological agents for acne therapy.
Article
Full-text available
Background Ginsenosides, which are bioactive components in ginseng, can be converted to smaller compounds for improvement of their pharmacological activities. The conversion methods include heating; acid, alkali, and enzymatic treatment; and microbial conversion. The aim of this study was to determine the bioconversion of ginsenosides in fermented red ginseng extract (FRGE). Methods Red ginseng extract (RGE) was fermented using Lactobacillus plantarum KCCM 11613P. This study investigated the ginsenosides and their antioxidant capacity in FRGE using diverse methods. Results Properties of RGE were changed upon fermentation. Fermentation reduced the pH value, but increased the titratable acidity and viable cell counts of lactic acid bacteria. L. plantarum KCCM 11613P converted ginsenosides Rb2 and Rb3 to ginsenoside Rd in RGE. Fermentation also enhanced the antioxidant effects of RGE. FRGE reduced 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power; however, it improved the inhibition of β-carotene and linoleic acid oxidation and the lipid peroxidation. This suggested that the fermentation of RGE is effective for producing ginsenoside Rd as precursor of ginsenoside compound K and inhibition of lipid oxidation. Conclusion This study showed that RGE fermented by L. plantarum KCCM 11613P may contribute to the development of functional food materials.
Article
Full-text available
The antioxidant activities and total phenolic content of fermented Salvia miltiorrhiza with fungus Geomyces luteus were investigated. The results revealed that G. luteus fermentation could significantly improve the antioxidant activity and total phenolic content of S. miltiorrhiza. The main antioxidant constituents were characterized by spectroscopic analysis as salvianolic acids. High-performance liquid chromatography (HPLC) quantification also showed the enhanced content of salvianolic acid B after fermentation. The present study suggests that G. luteus fermentations are effective in the S. miltiorrhiza salvianolic acids’ enrichment process.
Article
Full-text available
Scutellariae radix, the root of Scutellaria baicalensis, has long been applied in traditional formulations and modern herbal medications. Propionibacterium acnes (P. acnes) in follicles can trigger inflammation and lead to the symptom of inflammatory acnes vulgaris. This study was aimed at evaluating the effect of Scutellariae radix extract and purified components isolated from it on inflammation induced by P. acnes in vitro and in vivo. The results showed the ethyl acetate (EA) soluble fraction from the partition of crude ethanolic extract from Scutellariae radix inhibited P. acnes-induced interleukin IL-8 and IL-1β production in human monocytic THP-1 cells. Seven flavones were isolated from the EA fraction by repeated chromatographies, and identified as 5,7-dihydroxy-6-methoxyflavone (FL1, oroxylin), 5,7-dihydroxy-8-methoxyflavone (FL2, wogonin), 5-hydroxy-7,8-dimethoxyflavone (FL3, 7-O-methylwogonin), 5,6′-dihydroxy-6,7,8,2′-tetramethoxy flavone (FL4, skullcapflavone II), 5,7,4′-trihydroxy-8-methoxyflavone (FL5), 5,2′,6′-trihydroxy-7,8-dimethoxyflavone (FL6, viscidulin II), and 5,7,2′,5′-tetrahydroxy-8,6′-dimethoxyflavone (FL7, ganhuangenin). They all significantly suppressed P. acnes-induced IL-8 and IL-1β production in THP-1 cells, and FL2 exerted the strongest effect with half maximal inhibition (IC50) values of 8.7 and 4.9 μM, respectively. Concomitant intradermal injection of each of the seven flavones (20 μg) with P. acnes effectively attenuated P. acnes-induced ear swelling, and decreased the production of IL-6 and tumor necrosis factor-α in ear homogenates. Our results suggested that all the seven flavones can be potential therapeutic agents against P. acnes-induced skin inflammation.
Article
Full-text available
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Article
Full-text available
Propionibacterium acnes (P. acnes) has been implicated in the inflammatory phase of acne vulgaris. It has been shown to activate interleukin-8 (IL-8) secretion by interacting with Toll-like receptor 2 (TLR-2) on the surface of keratinocytes. Nicotinamide has been shown to be an effective treatment for skin inflammation in various conditions, including acne vulgaris. To investigate the molecular mechanisms underlying the anti-inflammatory properties of nicotinamide in keratinocytes stimulated by P. acnes. HaCaT cells and primary keratinocyte cell lines were stimulated by P. acnes in the presence of nicotinamide. IL-8 production was monitored by ELISA on the cell culture supernatant and by qRT-PCR on total RNA extract. A luciferase reporter system assay was used to assess nicotinamide activity with the IL-8 promoter in transfected keratinocytes. We used western blotting to analyze the effect of nicotinamide on activation of the NF-kappaB and MAPK pathways. Nicotinamide significantly decreased IL-8 production in a dose-dependent manner, decreasing both mRNA and protein levels for this chemokine in immortalized HaCaT cells and primary keratinocytes. P. acnes-induced IL-8 promoter activation seemed to be downregulated by nicotinamide, which inhibited IkappaB degradation and the phosphorylation of ERK and JNK MAP kinases. Our results indicate that nicotinamide inhibits IL-8 production through the NF-kappaB and MAPK pathways in an in vitro keratinocytes/P. acnes model of inflammation. Keratinocytes involved in the innate immune response may be a suitable target for treatment during the early phase of inflammation.
Article
Full-text available
The involvement of microorganisms in the development of acne has a long and checkered history. Just over 100 years ago, Propionibacterium acnes (then known as Bacillus acnes) was isolated from acne lesions, and it was suggested that P. acnes was involved in the pathology of the disease. The 1960s saw the use of antibiotics to treat acne, and the consequent clinical success combined with reductions in P. acnes gave new impetus to the debate. Over the past two decades, the inevitable emergence of antibiotic-resistant strains of P. acnes as a consequence of acne therapy not only has reopened the debate as to the role of P. acnes in acne, but also has created some serious health care implications.
Article
Citrinin (CTN) is a secondary fungal metabolite produced by several species of Aspergillins and Penicillins, and it is widely found in vegetable-derived foods such as cereals and fermented rice-based food supplements. Previous studies indicated that CTN had immunotoxicity, hepatotoxicity, nephrotoxicity, and reproductive toxicity, which caused severe effects on human and animal health. However, the potential toxicity of CTN on the organelles of mouse oocytes is still unclear. In this study, we showed that the exposure to 30 μM CTN significantly reduced the developmental capacity of mouse oocytes. Our results revealed that mitochondria exhibited abnormal distribution and mitochondrial membrane potential decreased under CTN exposure. And the endoplasmic reticulum (ER) failed to accumulate to the spindle periphery, which is accompanied by the occurrence of ER stress, showing with increased GRP78 expression. We also found that similar with ER, the Golgi apparatus showed homogenous localization pattern after CTN exposure, and the vesicle transport was disturbed, showing with aberrant expression and localization of Rab11a. Moreover, our results indicated that CTN exposure increased the expression of LAMP2, indicating the induction of lysosomal damage. In summary, our study showed that CTN exposure to mouse oocytes was toxic to the distribution and functions of organelles, which further led to a decrease of oocyte quality.
Article
Objectives: Scutellaria baicalensis Georgi. (Lamiaceae) is a plant of the genus Lamiaceae, and its root is the main part used as a medicine. In China, Scutellaria baicalensis is still an important traditional Chinese medicine with the functions of clearing away heat and dampness, purging fire and detoxification. This medicinal plant is widely distributed in China, Russia, Mongolia, North Korea and Japan. The purpose of this paper was to provide a systematic and comprehensive overview on the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of this plant. Furthermore, the possible development trends and perspectives for future research on this medicinal plant are also discussed. Key findings: So far, over 40 compounds have been isolated and identified from Scutellaria baicalensis, including flavonoids, terpenoids, volatile oils and polysaccharides. The compounds and extracts isolated from Scutellaria baicalensis exhibit a wide range of pharmacological activities, including the effects on the nervous system, effects on the immune system, liver protection, antitumour effects, antibacterial and antiviral effects, antioxidant effects and other pharmacological effects. Summary: As a traditional Chinese herbal medicine, Scutellaria baicalensis has shown significant effects on the treatment of various diseases, especially hepatitis, diarrhoea, vomiting and high blood pressure. Numerous traditional uses of Scutellaria baicalensis have been confirmed by current investigations. However, it is also necessary to further study the drug-forming properties and pharmacokinetics of the active constituents of Scutellaria baicalensis, as well as to establish quality control standards for different areas of Scutellaria baicalensis, and to carry out the research at the cellular and molecular levels.
Article
Most published studies on particulate matter (PM)concerning PM 2.5 and PM 10 have focused on PM-induced effects on the respiratory system (particularly lung)and cardiovascular system effects. However, epidemiological and mechanistic studies suggest that PM 2.5 and PM 10 also affects the skin, which is a key health issue. In this study, we first reviewed the current status of PM 2.5 and PM 10 in China, including relevant regulations, concentration levels, chemical components, and emission sources. Next, we summarized the association between PM 2.5 and PM 10 or its representative components, in relation to skin inflammation as well as inflammatory skin diseases, such as atopic dermatitis, acne, eczema, and skin aging. Finally, we determined the mechanism of oxidative stress or programmed cell death induced through PM, which can provide useful information for future research on PM-induced skin inflammation.
Article
Myrica rubra Sieb. et Zucc. (Myricaceae), known as Chinese bayberry, is traditionally used as folk medicine in Asian countries. The interaction of Propionibacterium acnes signalling with sebocytes is considered important in the pathogenesis of acne. In the present study, extracts and active compounds of Chinese bayberry were used to determine chemical antioxidant activity and anti‐inflammatory effects in P. acnes‐stimulated human SZ95 sebocytes. A high‐performance liquid chromatography with electrochemical detection system was used to analyse the phenolic composition of bayberry extracts. Accordingly, the flavonols, myricitrin and myricetin, were found to be abundant in the unhydrolysed and hydrolysed extracts of Chinese bayberry fruits, respectively. The anthocyanin cyanidin‐3‐glucoside was also predominantly found in the unhydrolysed extracts. Quantification of human inflammatory cytokines indicated that cell‐free extracts of P. acnes stimulated IL‐8 and IL‐6 production, which was inhibited by myricetin, rather than its glycoside or anthocyanin. Myricetin also exhibited inhibitory effects in P. acnes‐stimulated gene expression of Toll‐like receptor (TLR) 2 and protein phosphorylation of p70 S6 kinase. In conclusion, myricetin shows a suppressive effect on P. acnes‐induced cytokine production through regulation of the TLR and mammalian target of rapamycin pathways. Myricetin goes beyond previous research findings to potentially modulate inflammatory signalling in human sebocytes. These results will be valuable in developing anti‐inflammatory agents against skin acne.
Article
Acne remains as the most common skin disease in the US even despite multiple approved topical and systemic medications available. These treatments available over the counter and by prescription can be classified based on comedolytic, antibacterial, and anti‐inflammatory activities and are often used in combination. Therefore, understanding of the mechanism of action is critical to achieving the best clinical outcome and synergy. One of the newer acne medications with historical data suggesting both antibacterial and anti‐inflammatory activity is dapsone. In order to gain mechanistic insight into the anti‐inflammatory activity of dapsone in Propionibacterium (a former genus name recently reclassified as “Cutibacterium”) (P. acnes)–driven inflammation we used two human in vitro models: primary human neonatal epidermal keratinocytes and human monocytes (THP‐1). We demonstrate that dapsone suppresses production of specific cytokine signatures interleukin (IL)1α and IL8 in human epidermal keratinocytes and IL1β, IL6, IL8, and tumor necrosis factor‐α in THP‐1 cells in response to P. acnes. Using THP‐1 cell in vitro model we show that IL1β and CASP‐1 are regulated by dapsone independently of NFκB activity at transcriptional and post transcriptional levels respectively. This article is protected by copyright. All rights reserved.
Article
Background Scutellaria baicalensis root is traditionally used for the treatment of common cold, fever and influenza. Flavonoids are the major chemical components of S. baicalensis root. Purpose To evaluate the therapeutic effects and action mechanism of flavonoids-enriched extract from S. baicalensis root (FESR) on acute lung injury (ALI) induced by influenza A virus (IAV) in mice. Methods The anti-influenza, anti-inflammatory and anti-complementary properties of FESR and the main flavonoids were evaluated in vitro. Mice were challenged intranasally with influenza virus H1N1 (A/FM/1/47) 2 h before treatment. FESR (50, 100 and 200 mg/kg) was administrated intragastrically. Baicalin (BG), the most abundant compound in FESR was given as reference control. Survival rates, life spans and lung indexes of IAV-infected mice were measured. Histopathological changes, virus levels, inflammatory markers and complement deposition in lungs were analyzed. Result Compared with the main compound BG, FESR and lower content aglycones (baicalein, oroxylin A, wogonin and chrysin) in FESR significantly inhibited H1N1 activity in virus-infected Madin-Darby canine kidney (MDCK) cells and markedly decreased nitric oxide (NO) production from lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In vitro assays showed that FESR and BG had no anti-complementary activity whereas baicalein, oroxylin A, wogonin and chrysin exhibited obvious anti-complementary activity. Oral administration of FESR effectively protected the IAV-infected mice, increased the survival rate (FESR: 67%; BG: 33%), decreased the lung index (FESR: 0.90; BG: 1.00) and improved the lung morphology in comparing with BG group. FESR efficiently decreased lung virus titers, reduced haemagglutinin (HA) titers and inhibited neuraminidase (NA) activities in lungs of IAV-infected mice. FESR modulated the inflammatory responses by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1), and increasing the levels of interferon-γ (IFN-γ) and interleukin-10 (IL-10) in lung tissues. Although showing no anti-complementary activity in vitro, FESR obviously reduced complement deposition and decreased complement activation product level in the lung . Conclusion FESR has a great potential for the treatment of ALI induced by IAV and the underlying action mechanism might be closely associated with antiviral, anti-inflammatory and anti-complementary properties. Furthermore, FESR resulted in more potent therapeutic effect than BG in the treatment of IAV-induced ALI.
Article
Madecassoside is a major pentacyclic triterpene saponin from Centella asiatica with multiple pharmaceutical activities. In this study, we focused on its Propionibacterium acnes related anti-inflammation and skin hydration activities, both of which play important roles in skin homeostasis and barrier function. Madecassoside significantly inhibited the pro-inflammatory cytokine IL-1β, TLR2 and nuclear translocation of NF-κB in P. acnes stimulated THP-1 human monocytic cells. In addition, madecasssoside exhibited significant effects on enhancement of skin hydration through increasing the key moisturizing contributors of aquaporin-3, loricrin and involucrin in HaCaT keratinocytes as well as hyaluronan (HA) secretion in human dermal fibroblasts. The upregulation of HA synthases (HAS1, HAS2, HAS3) and inhibition to ROS formation accounted for the increment of HA content. Together, the in vitro study implied the potential medical and cosmetic application of madecassoside in skin protection.
Article
Introduction Possibility of a causal influence of emotional stress, on the course of various skin diseases, has been postulated. However, it is still inconclusive about the role of stressful life events in acne. In this background, the present study was carried out to know its role in acne. Methods Consecutive one hundred patients who were diagnosed with acne vulgaris in the age group of 12 to 45 years were included. Age and sex matched controls were taken. A semistructured proforma was used to collect sociodemographic details. Stressful life events were assessed using presumptive stressful life event scale. Anxiety was evaluated using Hamilton Anxiety Rating scale and Depression by Hamilton Depression Rating Scale. Results There was no difference in total stressful life events in past one year between patients and controls. The undesirable life event was present in 65 patients and 50 controls, this difference was statistically significant. Getting married or appearing for exams were the most common stressful life event in patients. Forty patients had comorbid psychiatric illness whereas in controls comorbidity was in 24 and this difference was statistically significant. Discussion The undesirable stressful life events and psychiatric comorbidity were more in acne patients than in controls.
Article
Acne vulgaris, a chronic inflammatory skin disease, affects many adolescents. New therapeutic agents for acne allow for a higher therapeutic activity, but fewer side effects. Tanshinone IIA, a natural product, has been proved to exhibit antibacterial and anti‐inflammatory abilities in many diseases. However, its antibacterial and anti‐inflammatory activities against Propionibacterium acnes have not been described. In the present study, the broth microdilution method was used to evaluate the antibacterial activity of tanshinone IIA and it had an inhibitory effect on the growth of P. acnes. Enzyme‐linked immunosorbent assay and quantitative real‐time PCR were used to investigate the effect of tanshinone IIA on IL‐1β, IL‐8, and TNF‐α expression, and western blot was used to examine TLR2, NF‐κB, and intercellular cell adhesion molecule‐1 (ICAM‐1) protein level induced by P. acnes in THP‐1 cells. Results showed that the expression of inflammatory cytokines and TLR2, NF‐κB, ICAM‐1 protein levels were inhibited by Tanshinone IIA, suggesting that tanshinone IIA appeared to suppress P. acnes‐induced inflammation by blockade of TLR2/NF‐κB signaling pathway. In conclusion, the present study revealed the inhibitory effect of tanshinone IIA on P. acnes‐induced inflammation, providing an evidence to support the mechanism of anti‐acne properties of tanshinone IIA.
Article
While the commensal bacterium Propionibacterium acnes (P. acnes) is involved in the maintenance of a healthy skin, it can also act as an opportunistic pathogen in acne vulgaris. The latest findings on P. acnes shed light on the critical role of a tight equilibrium between members of its phylotypes and within the skin microbiota in the development of this skin disease. Indeed, contrary to what was previously thought, proliferation of P. acnes is not the trigger of acne as patients with acne do not harbour more P. acnes in follicles than normal individuals. Instead, the loss of the skin microbial diversity together with the activation of the innate immunity might lead to this chronic inflammatory condition. This review provides results of the most recent biochemical and genomic investigations that led to the new taxonomic classification of P. acnes renamed Cutibacterium acnes (C. acnes), and to the better characterisation of its phylogenetic cluster groups. Moreover, the latest data on the role of C. acnes and its different phylotypes in acne are presented, providing an overview of the factors that could participate in the virulence and in the antimicrobial resistance of acne‐associated strains. Overall, this emerging key information offers new perspectives in the treatment of acne, with future innovative strategies focusing on C. acnes biofilms and/or on its acne‐associated phylotypes.
Article
There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits
Article
The analysis of the nephrotoxic mycotoxin citrinin in food, feed, and physiological samples is still challenging. Nowadays, liquid chromatography coupled with mass spectrometry is the method of choice for achieving low limits of detection. But matrix effects can present impairments for this method. Stable isotope dilution analysis can prevent some of these problems. Therefore, a stable isotopically labeled standard of citrinin for use in stable isotope dilution analysis was synthesized on large scale. The improved diastereoselective total synthetic strategy offered the possibility to introduce three ¹³C-labels in two steps by ortho-toluate anion chemistry. This led to a mass difference of 3 Da, sufficient for preventing spectral overlap. Additionally, a stable isotopically labeled form of dihydrocitrinone, the main urinary metabolite of citrinin, was synthesized with the same mass difference. This was achieved by a sequence of cyclisation, oxidation, deprotection, and carboxylation reactions starting from a protected intermediate of the labeled citrinin synthesis. Thus, this method also offers a complete way to synthesize dihydrocitrinone from citrinin on large scale.
Article
Context: Baicalin (BL) and baicalein (B) as the major flavonoids of Scutellaria baicalensis Georgi (Lamiaceae) have been investigated intensively, and shown to possess a multitude of pharmacological activities. Objective: This study systematically evaluates the stability of BL and B in monomer and total flavonoid fraction (FSR) form in vitro, and further studies whether the protective measures are effective to make B and BL stable enough to meet the requirement of quantitative analysis in various biological samples. Materials and methods: The stability of BL and B was evaluated by investigating the influence factors such as pH (2.0, 3.0, 4.5, 6.8, 7.4 and 9.0), temperature (4, 25 and 40 °C), antioxidant (vitamin C and Na2SO3) and sunlight. After the protective measures were taken, stability of BL and B in plasma, urine and tissue homogenates was evaluated through post-preparative stability (stored at 4 °C for 24 h), three freeze-thaw cycles stability and long-term stability test (stored in refrigerator at -20 °C for 15 days). In addition, by comparing the degradation parameters of BL and B obtained from the monomer administration group with those of the FSR administration group, drug-drug interaction of coexistent components in FSR on the stability of BL and B was discussed. Results: The degradation of BL and B was both pH- and temperature-dependent with their correlation coefficents for first-order kinetics equation larger than 0.99, and acidic environment (pH 2-4.5), lower temperature (<4 °C) and acidic antioxidant (e.g. vitamin C) were conducive to stabilize B and BL. Furthermore, coexistent components in FSR were proved to have function on inhibiting the degradation of BL and B in our study for the first time, which was characteristic of prolonging their biological half-life (t1/2) significantly, e.g., from 2.89 h to indefinite for BL (pH 6.8, 25 °C), from 2.63 h to 4.48 h for B (pH 6.8, 25 °C) and so on. Antioxidant of Na2SO3 could inhibit the degradation of BL with t1/2 increasing from 1.8 h to 3.5 h, but aggravate the bio-transformation of B with t1/2 decreasing from 0.92 h to 0.29 h. Our research proved that BL monomer, and BL and B in FSR form could be stabilized enough to meet the requirement of biological quantitative analysis under the protection of coexistent components in FSR. Discussion and conclusion: The results obtained indicated that the stability of BL and B was affected not only by its environmental parameters, but also by the coexistent components in the effective total flavonoids fractions.
Article
The mycotoxin citrinin (CTN) is a natural contaminant of various human foods that may produce serious adverse health problems. Several studies demonstrated that citrinin exerts cytotoxic and genotoxic effects in both in vivo and in vitro systems. However, the precise mechanisms of action (MOA), particularly in intestinal cells remain unclear. The aim of the present study was to examine the precise MOA of citrinin in vitro. Data demonstrated that CTN significantly decreased the number of viable human intestinal HCT116 cells and induced apoptotic events including (1) decrease in ΔѰm indicative of mitochondrial membrane permeabilization, (2) activation of caspase 3, (3) elevated production of reactive oxygen species (ROS) and (4) relative persistence of plasma membrane integrity. Further, the genetic deficiency of the pro-apoptotic protein Bax protected cells against CTN-induced apoptosis, indicating that Bax is required for CTN-mediated toxicity. It was also found that CTN triggered endoplasmic reticulum (ER) stress and activated different arms of the unfolded protein response (UPR) as demonstrated by increase in expression of GRP78 (glucose-regulated protein-78), GRP94 (glucose-regulated protein-94), GADD34 (growth arrest and DNA damage-inducible protein-34), the protein disulfide isomerase associated 6 (PDIA6), CHOP (C/EBP-homologous protein) and the splicing of XBP1 (X-Box Binding Protein 1). Pretreatment of cells with the chemical chaperone 4-phenylbutyrate (PBA), known to alleviate ER stress, prevented significantly the apoptotic process triggered by CTN. Taken together, these results suggest that CTN exerts its cytotoxic effects in HCT116 cells by inducing apoptosis, at least in part, through induction of ER stress.
Article
Phenolics, antioxidant and antiproliferative properties of Sea buckthorn berries were evaluated using a simulated in vitro digestion and compared with chemical extraction method. Digested samples were subjected to antiproliferation evaluation against human liver, breast and colon cancer cells. Furthermore, the bioaccessibility of digested berries was conducted using a Caco-2 cell culture model. Results revealed that the phenolic compounds were quite different from chemical extracts, more flavonoid aglycones were released, whereas less total phenolics, phenolic acids and flavonoid glycosides were detected. Althrough the extracellular antioxidant activity of digesta was lower than extracts, the cellular antioxidant activity (CAA) and antiproliferative effects of berries were significantly enhanced by digestion. This was attributed to their higher flavonoid aglycones content and could be verified by individual active compounds test, suggesting that the cellular uptake of samples might be improved, which was also certified by the Caco-2 cell uptake model. The digested samples showed almost 5-fold cellular accumulative amount of isorhamnetin than pure isorhamnetin, which was attributed to the significant down regulation of the mRNA expression level of efflux transporters MRP2 and P-gp. This finding indicated the digestion enhanced the bioaccessibility of berries.
Article
Background: Although acne vulgaris is a common skin disorder, limited epidemiological data exist specifically for European populations. Objective: To determine the prevalence of self-reported acne among young people in Europe and evaluate the effect of lifestyle on acne. Methods: We conducted a cross-sectional population-based online survey in representative samples of individuals aged 15-24 years in Belgium, Czech and Slovak Republics, France, Italy, Poland and Spain (n=10,521), identified by a quota sampling method based on age, geographic location, and socio-professional category. Results: The overall adjusted prevalence of self-reported acne was 57.8% (95% confidence interval 56.9% to 58.7%). The rates per country ranged from 42.2% in Poland to 73.5% in the Czech and Slovak Republics. The prevalence of acne was highest at age 15-17 years and decreased with age. On multivariate analysis, a history of maternal or paternal acne was associated with an increased probability of having acne (odds ratio 3.077, 95% CI 2.743 to 3.451, and 2.700, 95% CI 2.391 to 3.049, respectively; both p<0.0001), as was the consumption of chocolate (OR 1.276, 95% CI 1.094 to 1.488, for quartile 4 versus quartile 1). Increasing age (OR 0.728, 95% CI 0.639 to 0.830 for age 21-24 years versus 15-17 years) and smoking tobacco (OR 0.705, 95% CI 0.616 to 0.807) were associated with a reduced probability of acne. Conclusion: The overall prevalence of self-reported acne was high in adolescents/young adults in the European countries investigated. Heredity was the main risk factor for developing acne. This article is protected by copyright. All rights reserved.
Article
Contact dermatitis (CD) is one of the most common skin diseases in industrialized countries. Chinese medicines (CMs) have been investigated worldwide as complementary and alternative medicines for corticosteroids, which are the first choice for treatment of inflammatory skin diseases owing to their favorable efficacy. This article describes the CMs that have been reported to have anti-dermatitis effects against CD in the last 20 years. © 2016 Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag Berlin Heidelberg
Article
Gumiganghwal-tang (GMT) is a traditional herbal prescription used for treatment of the common cold, pain, and inflammatory diseases. Variations in the amounts of bioactive components of GMT and GMT fermented with 10 Lactobacillus strains were investigated by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Simultaneous qualitative and quantitative analyses of eleven bioactive compounds (prim-O-glucosylcimifugin, liquiritin, cimifugin, baicalin, liquiritigenin, wogonoside, baicalein, wogonin, butylphthalide, imperatorin, and isoimperatorin) were performed, with comparison of their retention times (tR) and UV spectra with those of standard compounds. The amounts of baicalin (8.71 mg/g), liquiritigenin (5.28 mg/g) and butylphthalide (5.10 mg/g) were the major compounds in GMT. We found that L. fermentum KFRI 145 fermented wogonoside and baicalin to their aglycones, wogonin and baicalein, respectively. These results indicated that L. fermentum KFRI 145 has potential as a functional starter culture for manufacturing fermented GMT.
Article
β-Glucuronidase from Penicillium purpurogenum Li-3 (PGUS) can efficiently hydrolyze glycyrrhizin into the more valuable glycyrrhetic acid monoglucuronide. However, a low productivity of PGUS and the lack of an effective separation strategy have significantly limited its industrial applications. Therefore, the production of PGUS has been improved by optimizing both the fermentation and purification strategies. A two-stage fermentation strategy was developed where PGUS was first grown with glucose and then PGUS was produced in the presence of glycyrrhizin as an inducer. By using this strategy, the biomass was increased 1.5 times and the PGUS activity increased 5.4 times compared to that when glycyrrhizin was used as the sole carbon source. The amount of PGUS produced was increased another 16.6% when the fermentation was expanded to a 15-L fermenter. An effective protocol was also established to purify the PGUS using a sequential combination of hydrophobic, strong anionexchange and gel filtration chromatography. This protocol had a recovery yield of 6% and gave PGUS that was 39 times purer than the crude PGUS. The purified PGUS had a specific activity of 350 U·mg–1. [Figure not available: see fulltext.] © 2015, Higher Education Press and Springer-Verlag Berlin Heidelberg.
Article
Propionibacterium acnes has been considered to influence the acne lesions. The present study intended to elucidate the underlying signaling pathways of P. acnes in human sebaceous gland cells relative to the generation of proinflammatory cytokines. Cell-free extracts of P. acnes under stationary growth phase were co-incubated with human immortalized SZ95 sebocytes. Then, cell-free P. acnes extracts-induced cytokine expression was evaluated by measuring mRNA and protein levels using quantitative RT-PCR and ELISA. Changes of phosphorylated cell signaling proteins and transcription factors were measured by Western blots and Milliplex assay. The interactive molecular mechanisms of P. acnes and sebocytes were examined through use of shRNA and the specific inhibitors of signaling pathways. Cell-free extracts of P. acnes significantly stimulated secretion of interleukin (IL)-8 and IL-6 in SZ95 sebocytes. The degradation of IκB-α and increased phosphorylation of IκB-α, p38 mitogen activated protein kinase (MAPK), CREB, and STAT3 were demonstrated. Quantitative RT-PCR measurements revealed that gene expression of IL-8 and Toll-like receptor 2 (TLR2) was enhanced by cell-free extracts of P. acnes. In addition, the NF-κB inhibitor BMS345541, p38 MAPK inhibitor SB203580, or anti-TLR2 neutralizing antibody prevented cell-free P. acnes extracts-induced secretion of IL-8. Knockdown of TLR2 using shRNA exerted similar inhibitory effects on IL-8 expression. Moreover, inhibition of STAT3 activity by STA-21 enhanced P. acnes-mediated secretion of IL-8. Cell-free extracts of P. acnes are capable to activate NF-κB and p38 MAPK pathways and up-regulate secretion of IL-8 through TLR2-dependent signaling in human SZ95 sebocytes. Copyright © 2015 Elsevier Inc. All rights reserved.
Article
This paper describes the in situ bioconversion of glycyrrhizin of Glycyrrhiza glabra root to 18-beta glycyrrhetinic acid by solid state fermentation. Fermentation was carried out with two different fungal strains, Penicillium chrysogenum and Rhizopus oryzae. The solid state fermentation was carried out under stationary state and under rotating state. Penicillium chrysogenum is a better producer of 18-beta glycyrrhetinic acid than Rhizopus oryzae. The induced P. chrysogenum seed culture produces higher 18-beta glycyrrhetinic acid with 2.955 mg g(-1) and maximum beta-glucuronidase activity of 3,583.8 U ml(-1) under stationary solid state fermentation. The mycelium growth and bioconversion rate is highest at pH of 5.5 and 4.5, respectively. G. glabra root supplemented with a solution of dextrose 9 g l(-1), MnSO4 center dot H2O 3 g l(-1) and (NH4)(2)SO4 0.540 g l(-1) produces 48.580 mg of 18-beta glycyrrhetinic acid per gram of G. glabra root, i.e. 86.74 % bioconversion by P. chrysogenum in 96 h under stationary state solid state fermentation.
Article
Propionibacterium acnes is a key pathogen involved in acne inflammation. Wild bitter melon (WBM, Momordica charantia L. var. abbreviate Seringe), is consumed as both a vegetable and as folk medicine in Taiwan. We examined the inhibitory activity of the total phenolic extract (TPE) of WBM leaf on P. acnes-induced inflammatory responses in vivo and in vitro. Our data showed that TPE significantly attenuated P. acnes-induced ear swelling in mice along with microabscess. Flow cytometry analysis revealed that TPE treatment significantly decreased the migration of neutrophils and IL-1β+ populations in vivo. In P. acnes-stimulated human monocytic THP-1 cells, TPE suppressed the mRNA levels and production of interleukin (IL)-8, IL-1β, and tumor necrosis factor (TNF)-α in vitro. In addition, TPE suppressed P. acnes-induced matrix metalloproteinase-9 levels. TPE blocked nuclear factor-κB (NF-κB) activation and inactivated mitogen-activated protein kinases (MAPK), these actions may partially account for its inhibitory effect on cytokine production. The quantitative HPLC analysis revealed gallic, chlorogenic, caffeic, ferulic, and cinnamic acids, myricetin, quercetin, luteolin, apigenin, and thymol in TPE. All these phenolics significantly suppressed P. acnes-induced IL-8 production in vitro. Our results suggest that WBM leaf extract effectively inhibit P. acnes-induced inflammatory responses and may be useful to relieve the inflammation of acne.
Article
Sea squill (Drimia maritima L.) extracts have been used for centuries for the medical treatment of heart diseases. A procedure for the preparation of Drimia extracts applied for such purposes comprising a fermentation step is described in the German Homoeopathic Pharmacopoeia (GHP). However, little is known about the secondary metabolite profile of such extracts and the fate of these components upon processing and storage. Thus, in the present study sea squill extracts were monitored during fermentation and storage by HPLC-DAD-MS(n) and GC-MS to characterise and quantitate individual cardiac glycosides and phenolic compounds. For this purpose, a previously established HPLC method for the separation and quantitation of pharmacologically relevant cardiac glycosides (bufadienolides) was validated. Within 12 months of storage, total bufadienolide contents decreased by about 50%, which was attributed to microbial and plant enzyme activities. The metabolisation and degradation rates of individual bufadienolide glycosides significantly differed, which was attributed to differing structures of the aglycones. Further degradation of bufadienolide aglycones was also observed. Besides reactions well known from human metabolism studies, dehydration of individual compounds was monitored. Quantitatively predominating flavonoids were also metabolised throughout the fermentation process. The present study provides valuable information about the profile and stability of individual cardiac glycosides and phenolic compounds in fermented Drimia extracts prepared for medical applications, and expands the knowledge of cardiac glycoside conversion upon microbial fermentation. Copyright © 2015 Elsevier B.V. All rights reserved.
Article
Inflammation and oxidative stress are two major causes of various life-threatening diseases. Hesperidin (Hsd) and its aglycone, hesperetin (Hst), are two flavonoids from citrus species that have numerous biological properties, particularly antioxidant and anti-inflammatory. New findings showed that the antioxidant activity of Hsd/Hst was not only limited to its radical scavenging activity, but it augmented the antioxidant cellular defenses via the ERK/Nrf2 signaling pathway as well. Various in vitro and in vivo studies have been conducted to evaluate Hsd, its metabolites, or its synthetic derivatives at reducing inflammatory targets including NF-κB, iNOS, and COX-2, and the markers of chronic inflammation. In this review, new findings regarding the molecular targets of Hsd and Hst in the reduction of oxidative stress are discussed. Also, in the anti-inflammatory section, we provide a summary of significant investigations concerning the mechanisms of action based on the studied inflammation models. Copyright © 2014 John Wiley & Sons, Ltd.
Article
Propionibacterium acnes induction of inflammatory responses is a major etiologic factor contributing to the pathogenesis of acne vulgaris. In particular, the IL-1 family of cytokines plays a critical role in both initiation of acne lesions and in the inflammatory response in acne. In this study, we demonstrated that human monocytes respond to P. acnes and secrete mature IL-1β partially via NLRP3 mediated pathway. When monocytes were stimulated with live P. acnes, caspase-1 and caspase-5 gene expression was upregulated; however, IL-1β secretion required only caspase-1 activity. P. acnes induced key inflammasome genes including NLRP1 and NLPR3. Moreover, silencing of NLRP3, but not NLRP1, expression by siRNA attenuated P. acnes-induced IL-1β secretion. The mechanism of P. acnes-induced NLRP3 activation and subsequent IL-1β secretion was found to involve potassium efflux. Finally, in acne lesions, mature caspase-1 and NLRP3 were detected around the pilosebaceous follicles and co-localized with tissue macrophages. Taken together, our results indicate that P. acnes triggers a key inflammatory mediator, IL-1β, via NLRP3 and caspase-1 activation, suggesting a role for inflammasome-mediated inflammation in acne pathogenesis.Journal of Investigative Dermatology accepted article preview online, 24 July 2013. doi:10.1038/jid.2013.309.
Article
Scutellaria baicalensis (SB), a traditional herb with high pharmacological value, contains more than 10% flavone by weight. To improve the biological activity of flavones in SB, we aimed to enhance the bioconversion of baicalin (BG) to baicalein (B) and wogonoside (WG) to wogonin (W) in SB during fermentation using beta-glucuronidase (GUS) produced from Lactobacillus brevis RO1. After activation, L. brevis RO1 was cultured in milk containing SB root extract with various carbon or nitrogen sources at 37°C for 72 h. During fermentation, the growth patterns of L. brevis RO1 and changes in the flavone content were assessed using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). After 72 h of fermentation, the concentrations of B and W in the control group increased by only 0.15 and 0.12 mM, respectively, whereas they increased by 0.57 and 0.24 mM in the fish peptone group. The production of B and W was enhanced by the addition of 0.4% fish peptone, which not only improved the growth of L. brevis RO1 (p<0.001) but also enhanced the bioconversion of flavones. In conclusion, the bioconversion of flavones in SB may provide a potential application for the enhancement of the functional components in SB.
Article
The aqueous extracts of Citrus unshiu peel containing flavonoid glycosides was used as co-substrate with Schizophyllum commune mycelia producing β-glucosidase and its biological activities were studied. β-glucosidase-produced S. commune mycelia converted the glycosides (narirutin and hesperidin) into aglycones (naringenin and hesperetin). The photoprotective potential of fermented C. unshiu peel extract with S. commune (S-CPE) was tested in human dermal fibroblasts (HDFs) exposed to UVA. It was revealed that S-CPE had an inhibitory effect on human interstitial collagenase (matrix metalloproteinase, MMP-1) expression in UVA-irradiated HDFs. The treatment of UVA-irradiated HDFs with S-CPE resulted in a dose-dependent decrease in the expression level of MMP-1 mRNA. The UVA irradiation raised the proportion of senescence-associated β-galactosidase (SA-β-gal) positive cells in comparison with the normal control group. The treatment of UVA-irradiated HDFs with S-CPE was shown to decrease the level of SA-β-gal (by approximately 45% at an S-CPE concentration 0.1%, w/v) compared with the UVA-irradiated HDFs. It was found that S-CPE containing hesperetin has notable collagen biosynthetic activity for fibroblasts, indicating that S-CPE can be promising cosmetic ingredients. Copyright © 2012 John Wiley & Sons, Ltd.
Article
Penicillium decumbens 114-2 is a fast-growing filamentous fungus which secretes a variety of lignocellulolytic enzymes. Its catabolite-repression-resistant mutant JU-A10 with high secretion capacity of cellulolytic enzymes has been used industrially for biomass hydrolysis. Transcription levels of 6 important lignocellulolytic enzymes genes (cel5A, cel6A, cel7A, cel7B, xyn10A, and xyn11A) from both strains were determined on different carbon sources (glucose, sorbose, lactose, cellobiose, cellulose, and cellulose-wheat bran), by means of a real-time quantitative polymerase chain reaction. For both strains, the 6 genes are coordinately regulated at transcriptional level. Glucose and cellobiose repressed whereas cellulose and cellulose-wheat bran induced expression of 6 genes in both strains. Expression levels of all genes tested in the mutant strain JU-A10 were substantially higher than those in wild-type strain 114-2 on all carbon sources. On glucose repression condition, the mutant JU-A10 appeared obviously derepressed. Lactose was first proved to have an inductive effect on lignocellulolytic enzyme genes expression at lower concentration in Penicillium spp.
Article
The root of Scutellaria baicalensis, called Huangqin in Chinese, is one of the most commonly used traditional Chinese medicines for the treatment of hepatitis, tumors, diarrhea, and inflammatory diseases. The major chemical constituents of Huangqin are flavonoids. In the present paper, HPLC-DAD-ESI-MS(n) was used to analyze flavonoids in the roots of S. baicalensis. A total of 26 flavonoids were identified or tentatively characterized, including 5 C-glycosides, 12 O-glycosides, and 9 free aglycones. Two C-glycosides, apigenin-6-C-glucyl-8-C-arabinoside and chrysin-6,8-di-C-glucoside, together with some O-glycosides, are reported from S. baicalensis for the first time. This method is simple, reliable and sensitive, and could be used for the quality control of Huangqin and its related preparations.
Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris
  • Ganceviciene