ArticlePDF Available

Split versus full-body strength training workouts in untrained people. A randomised study

Authors:
  • Fundación Canaria Instituto de Investigación Sanitaria de Canarias

Abstract and Figures

Introduction: There are numerous scientific studies in which the components of resistance training load have been analyzed, as well as many variables that condition the development of muscular strength. However, only a few studies compared the effectiveness of full body workouts and split body routines. The purpose of the present investigation was to determine which of them is more effective in increasing both muscular strength levels and kinanthropometric parameters. Methods: 28 male university students without previous experience in strength training were finally included in the present study. They were randomly assigned to two different training groups: Full body workout group (GECC) and split body routine group (GERD). Intra-and inter-group differences in percentage changes (pre-post) were assessed using non-parametric tests. Results: After the completion of an 8-week intervention period, significant improvements in body fat percentage (p = 0.028), levels of muscular strength on the upper body (p=0.008) and on the lower body (p=0.043) were observed in the GECC. Similarly, significant improvements in body fat percentage (p=0.006), lean body mass (p=0.011) and upper body (p=0.031) and lower body levels of muscular strength (p=0.048) were reported in the GERD. However, no significant differences between groups were found neither in the strength tests performed, nor in the Kineanthropometric parameters evaluated. Conclusion: Both split and full body routines are useful to improve strength levels and kinanthropometric parameters in college students with no previous experience in strength training. However, neither of the two structures is significantly more effective than the other one when it comes to improving the above-mentioned parameters. Resumen Introducción: Existen numerosas investigaciones científicas en las que se han analizado los componentes de la carga del entrenamiento de fuerza, y las numerosas variables que condicionan el desarrollo de esta capacidad. En cambio, son pocos los estudios en los que se ha contrastado la eficacia de los entrenamientos de cuerpo completo frente a las rutinas divididas. El objetivo del presente estudio fue determinar cuál de los dos es más eficaz a la hora de mejorar los parámetros de fuerza y cineantropométricos. Material y métodos: 28 estudiantes universitarios de sexo masculino sin experiencia previa en el entrenamiento de fuerza fueron finalmente incluidos en este estudio y asignados aleatoriamente a dos grupos de entrenamiento de fuerza diferentes: Entrenamiento de cuerpo completo (GECC) y entrenamiento con rutina dividida (GERD). Se compararon los porcentajes de cambio (pre-post) intra e intergrupo mediante pruebas no paramétricas. Resultados: Finalizada la intervención de ocho semanas, el GECC mejoró de forma significativa el porcentaje de grasa (p=0,028), y la fuerza en el tren superior (p=0,008), e inferior (p=0,043). En el GERD se produjeron mejoras significativas en el porcentaje de grasa (p=0,006), en el tejido magro (p=0,011), y en la fuerza en el tren superior (p=0,031), e inferior (p=0,048). Sin embargo, no existieron diferencias significativas entre ambos grupos en ninguna de las mejoras alcanzadas en los parámetros de fuerza y cineantropométricos evaluados. Conclusión: Tanto las rutinas divididas como las de cuerpo completo permiten mejorar los niveles de fuerza y los parámetros cineantropométricos en estudiantes universitarios sin experiencia previa en el entrenamiento de fuerza. Sin embargo, ninguna de las dos estructuras de entrenamiento es significativamente más eficaz que la otra a la hora de mejorar los mencionados parámetros.
Content may be subject to copyright.
Pablo Prieto González,
et al.
78 Arch Med Deporte 2020;37(2):78-83
Original article
Resumen
Introducción: Existen numerosas investigaciones cientícas en las que se han analizado los componentes de la carga del
entrenamiento de fuerza, y las numerosas variables que condicionan el desarrollo de esta capacidad. En cambio, son pocos
los estudios en los que se ha contrastado la ecacia de los entrenamientos de cuerpo completo frente a las rutinas divididas.
El objetivo del presente estudio fue determinar cuál de los dos es más ecaz a la hora de mejorar los parámetros de fuerza
y cineantropométricos.
Material y métodos: 28 estudiantes universitarios de sexo masculino sin experiencia previa en el entrenamiento de fuerza
fueron nalmente incluidos en este estudio y asignados aleatoriamente a dos grupos de entrenamiento de fuerza diferentes:
Entrenamiento de cuerpo completo (GECC) y entrenamiento con rutina dividida (GERD). Se compararon los porcentajes de
cambio (pre-post) intra e intergrupo mediante pruebas no paramétricas.
Resultados: Finalizada la intervención de ocho semanas, el GECC mejoró de forma signicativa el porcentaje de grasa
(p=0,028), y la fuerza en el tren superior (p=0,008), e inferior (p=0,043). En el GERD se produjeron mejoras signicativas en el
porcentaje de grasa (p=0,006), en el tejido magro (p=0,011), y en la fuerza en el tren superior (p=0,031), e inferior (p=0,048). Sin
embargo, no existieron diferencias signicativas entre ambos grupos en ninguna de las mejoras alcanzadas en los parámetros
de fuerza y cineantropométricos evaluados.
Conclusión: Tanto las rutinas divididas como las de cuerpo completo permiten mejorar los niveles de fuerza y los parámetros
cineantropométricos en estudiantes universitarios sin experiencia previa en el entrenamiento de fuerza. Sin embargo, ninguna
de las dos estructuras de entrenamiento es signicativamente más ecaz que la otra a la hora de mejorar los mencionados
parámetros.
Palabras clave:
Entrenamiento. Fuerza. Rutina dividida.
Rutina de cuerpo completo.
Summary
Introduction: There are numerous scientic studies in which the components of resistance training load have been analyzed,
as well as many variables that condition the development of muscular strength. However, only a few studies compared the
eectiveness of full body workouts and split body routines. The purpose of the present investigation was to determine which
of them is more eective in increasing both muscular strength levels and kinanthropometric parameters.
Methods: 28 male university students without previous experience in strength training were nally included in the present
study. They were randomly assigned to two dierent training groups: Full body workout group (GECC) and split body routine
group (GERD). Intra- and inter-group dierences in percentage changes (pre-post) were assessed using non-parametric tests.
Results: After the completion of an 8-week intervention period, signicant improvements in body fat percentage (p = 0.028),
levels of muscular strength on the upper body (p=0.008) and on the lower body (p=0.043) were observed in the GECC. Similarly,
signicant improvements in body fat percentage (p=0.006), lean body mass (p=0.011) and upper body (p=0.031) and lower
body levels of muscular strength (p=0.048) were reported in the GERD. However, no signicant dierences between groups
were found neither in the strength tests performed, nor in the Kineanthropometric parameters evaluated.
Conclusion: Both split and full body routines are useful to improve strength levels and kinanthropometric parameters in
college students with no previous experience in strength training. However, neither of the two structures is signicantly more
eective than the other one when it comes to improving the above-mentioned parameters.
Key words:
Training. Strength. Split body
routine. Full body workout.
Received: 07/11/2018
Accepted: 29/04/2019
Split versus full-body strength training workouts in untrained
people. A randomised study
Pablo Prieto González1, Eneko Larumbe Zabala2, Mehdi Ben Brahim1
1Prince Sultan University, Arabia Saudí. 2Texas Tech University Health Sciences Center. Lubbock, Texas, USA.
Entrenamiento de fuerza mediante rutinas divididas versus rutinas de
cuerpo completo en personas desentrenadas. Un estudio aleatorizado
Correspondence: Pablo Prieto González
E-mail: pabloccjb@gmail.com
Split versus full-body strength training workouts in untrained people. A randomised study
79
Arch Med Deporte 2020;37(2):78-83
Introduction
Strength training is very important in the eld of physical activity.
In elite sport, increases in strength have a positive impact on the per-
formance of athletes by improving their motor skills. They also reduce
the risk of injury1. At a recreational and functional level, strength training
helps improve the health and quality of life, while decreasing the risk
of certain diseases and medical conditions2-4. Such benets have been
veried by numerous studies, which have also established the proper
dose of strength training each population group needs in order to
achieve adaptations which result in improved athletic performance or,
where applicable, health5.
Adequate handling of the components of the training load and
appropriate management of certain variables (contraction regime, se-
lection and order of exercises, speed of execution and weekly training
frequency) determine the strength adaptations which each subject
can achieve. There is a considerable degree of consensus regarding
these parameters in the scientic literature6,7. This makes it possible to
prescribe eective training programmes.
That said, there is one relevant aspect on which consensus is yet
to be reached8 and that is the structuring of the sessions themselves.
This point, which has not been researched in any depth, conditions
variables such as the number of exercises per muscle group performed
in each session, the number of weekly sessions that stimulate a particular
muscle group and the recovery time for each muscle group between
one training session and the next.
Kraemer & Ratamess9 and Heredia et al10 inform us that there are
three ways of structuring strength training sessions:
Full-body workouts: exercises which stimulate the body’s main
muscle groups in the same training session. Normally, one exercise
is carried out for each major muscle group.
Upper-/lower-body split workouts: the muscles of the upper body are
stimulated in one session and those of the lower body in the next.
Muscle-group split workouts: exercises aimed at strengthening
specic muscle groups are performed in each session.
Bodybuilders, and generally those seeking a certain degree of hy-
pertrophy, tend to use split workouts. Fitness enthusiasts, athletes and
weightlifters prefer workouts which address the entire body11.
Various studies have demonstrated that both split and full-body
routines are eective at improving strength levels. It has not, however,
been established which of these is most useful in achieving certain
adjustments. Choosing a specic training structure often responds to
such factors as the personal objectives of each subject, the number
of weekly training sessions devoted to strength training, the length
of those sessions and personal preferences10. Within this context, the
purpose of this study was to verify which of the two ways of structuring
strength training workouts was more eective at improving strength
levels and kinanthropometric parameters, full-body workouts or split
workouts.
Materials and methods
Participants
The initial sample consisted of 39 subjects, all male. They belonged
to Prince Sultan University in Riyadh (Saudi Arabia) and were enrolled in
the “Beginner Weight Training” module. This meant that it was possible
to fully monitor the intervention process, which was carried out in the
tness room at the university. 11 subjects were excluded from the re-
search for failing to keep to the training programme, because they did
not complete 85% of the sessions. The nal sample, therefore, consisted
of 28 subjects. None of them did physical activity in a structured man-
ner and they had no previous experience of strength training. Neither
did they have any injuries or diseases which would prevent them from
carrying out the tests and activities involved normally. Participation in
the study was voluntary and all the subjects were suitably informed of
the benets and risks of taking part. The research project observed the
ethical principles of the Declaration of Helsinki and was approved by
the Institutional Review Board of the Committee for Bioethics at Prince
Sultan University.
Kinanthropometric measurements
A Seca digital column scale (Hamburg, Germany) was used to mea-
sure weight, height and BMI. The weight was recorded to the nearest
0.1 kg and height to an accuracy of 0.1 cm. The measurements were
taken by the same researcher with the subjects barefoot. The body fat
percentage was obtained using the following equation12: % fat = [(Σ of
the abdominal, suprailiac, subscapular, triceps, quadriceps and medial
calf folds) x 0.143] + 4.56. The caliper used to measure the folds of fat
was an FG1056 Harpenden Skinfold Caliper (Sussex, UK). Lean mass was
calculated with the following formula: lean mass = total mass (kg) - fat
mass (kg).
Measuring strength
Before carrying out the tests, the participants in the study did the
following warm-up:
Stage I: Activation: Five minutes of aerobic exercise.
Stage II: Joint muscle mobility: Mobilisation of the main joints in
cephalocaudal order.
Stage III: Specic warm-up. A series of ve repetitions of the fo-
llowing exercises at 50% estimated 1RM: Squat, bench press, hand grips.
Then the following tests were performed:
Lower-body strength: Lower-body strength was measured using a
Takei Strength dynamometer T.K.K. 5402 Back D (Japan). The protocol
was as follows: the participants placed their feet on the platform with
their knees slightly bent (130º-140º). The bar was held with a backhand
grip on the right hand and a forehand grip on the left hand. In this po-
sition, keeping the back straight, the subjects tried to straighten their
knees, applying as much force as possible. Each subject had two tries13.
Bench press: As the study participants had no previous experience
in strength training, 1RM was measured indirectly using the Epley for-
Pablo Prieto González,
et al.
80 Arch Med Deporte 2020;37(2):78-83
mula14,15: 1RM = Weight lifted in the test x [1+ (0.003 x No. of repetitions
to failure)]. This test was used to measure upper body strength. The
muscles involved in this exercise are the pectoralis major (agonist) and
the anterior fascicle of the deltoid and elbow extensors (which act as
synergists). The test was performed using 80% of the estimated 1RM
for each subject, using a Hammer Strength bench, an Olympic bar and
Olympic plates. The participants adopted a supine position on the bench
with head and hips neutral. The bar was held across the shoulders. The
participants were told that they had to do as many repetitions as possible
with a full range of motion, i.e. starting with the elbows fully stretched,
they had to lower the bar until it made contact with the chest and then
lift it back to the starting position. Each subject had one try and only
repetitions performed correctly were recorded16,17.
Hand-grip strength (kg): Hand strength or grip was measured using
a Takei Grip Strength Dynamometer T.K.K. 5401 Grip-D (Japan). The
measuring protocol was as follows: the participants, in standing position
and with arms outstretched along the body, held the dynamometer
with their dominant hand in such a way that the screen was visible to
the researcher at all times. They were then told to apply the greatest
force they could trying to grip their thumb and the rest of their ngers
together without moving their arm. The score obtained was recorded
to an accuracy of 0.1 kg. Each subject had two tries13.
Intervention and design
A randomised test was conducted to compare the changes
between before (pre) and after (post) the two conditions: full-body
workout (FBW group) and split workout (SW group). Before starting
the procedure, the subjects were asked not to alter their diets during
the study. Over the two weeks prior to application of the intervention
design, all the participants did identical strength training twice a week
to familiarise them with the exercises (Table 1). They were then ran-
domly assigned to one of the two experimental groups: FBW group [n
= 12; age = 21.17 (1.70)] and SW group [n = 16; age = 21.12 (1.36)]. The
eight-week intervention period, in which the participants did strength
training workouts twice a week, then began (Table 1). The training
sessions were conducted each week between 9:30 a.m. and 10:30 a.m.
on Monday and Wednesday.
During the intervention, the training methods used and the wee-
kly training load were identical for both groups. On Monday, however,
the SW group only performed exercises to stimulate the muscles of
the upper body and on Wednesday they did exercises to strengthen
the upper body, while the FBW group did full-body workouts in all the
sessions over the period. The strength exercises carried out by both
groups were the same each week (Table 1). The training intensity was
increased every two weeks to prevent stagnation.
The training programme used was designed and supervised by a
sports training specialist. The recommendations of the American College
of Sports Medicine for beginner strength training was followed. In short,
three sets of between 6 and 12 repetitions were completed per exercise
with a rest lasting from 60 seconds to two minutes. Free-weight exercises
and exercises with weight machines were included. In each workout,
the exercises to strengthen the larger muscle groups preceded those
for the smaller muscle groups and the multi-joint exercises preceded
the single-joint ones18.
Table 1. Training methods and strength exercises used with the FBW group and SW group during the familiarisation and intervention
periods.
Training methods used by the two
groups (FBW and SW)
Strength exercises used by the FBW
group
Strength exercises used by the SW group
Familiarisation period I: 56%; S: 3; Rep: 14: R: 1’; EL: Two
repetitions not done.
Vertical press, seated cable row, ab
crunch on machine, back extension on
machine, leg extension on machine, sea-
ted leg curl, seated calf raise on machine,
shoulder press
Vertical press, seated cable row, ab crunch
on machine, back extension on machine,
leg extension on machine, seated leg curl,
seated calf raise on machine, shoulder pres
Intervention period:
1st and 2nd weeks
I: 62%; S: 3; Rep: 12: R: 1’; EL:
Maximum number of repetitions
possible per set
Monday: Bench press, behind the neck
jerk, seated cable row, dumbbell y,
reverse y, dumbbell side lateral raise,
triceps extension with pulley, triceps
kickbacks, dumbbell curl, Scott bench
biceps curl.
Wednesday: Leg press, quadriceps
extension on machine, seated leg curl,
lying leg curl, ab crunch with machine,
pelvic lift, back extension on machine,
back extension on roman chair, seated
calf raise on machine, standing calf raise
on machine.
Monday: Bench press, seated cable row,
quadriceps extension on machine, seated
leg curl, ab crunch with machine, back
extension on machine, seated calf raise on
machine, dumbbell side lateral raise, triceps
extension with pulley, dumbbell curl.
Wednesday: Leg press, behind the neck jerk,
lying leg curl, dumbbell y, pelvic lift, back
extension on roman chair, standing calf raise
on machine, reverse y, triceps kickbacks,
Scott bench biceps curl.
Intervention period:
3rd and 4th weeks
I: 62%-67%-72%; S: 3; Rep: 12-10-8;
R: 1’30’’; EL: Maximum number of
repetitions possible per set
Intervention period:
5th and 6th weeks
I: 72%; S: 3; Rep: 8: R: 2’; EL:
Maximum number of repetitions
possible per set
Intervention period:
7th and 8th weeks
I: 78%-72%-78%; S: 3; Rep: 6-8-8;
R: 2’; EL: Maximum number of
repetitions possible per set
I: Intensity; S: Sets; Rep: Repetitions; R: Rest; EL: Exertion levelperiod.
Split versus full-body strength training workouts in untrained people. A randomised study
81
Arch Med Deporte 2020;37(2):78-83
Statistical analysis
The data are presented with calculation of the arithmetic mean and
standard deviation for all the variables. The distributions of the data were
checked using the Shapiro-Francia test and the D’Agostino K-squared
test. Since the groups were of dierent sizes and some variables showed
irregular variances and non-normal distributions, non-parametric tests
were used. The intragroup dierences between pre-test and post-test
were calculated using the Wilcoxon signed-rank test for related samples.
In order to estimate a measurement of the practical eect adjusted by
the previous values for each subject, the percentage changes were
calculated between pre-test and post-test using the formula: 100 (post-
test – pre-test) / pre-test. 95% condence intervals (CI) were calculated
for the percentage changes and those which did not cross zero were
considered statistically signicant. The percentage changes seen in the
two groups were then compared using the Wilcoxon-Mann-Whitney
test. The signicance level was set at 0.05. All the calculations were made
using Stata 13.1 (Stata Corp, College Station, Texas, USA).
Results
As can be seen in Table 2, the FBW group saw a reduction in
body fat percentage (p = 0.028), indicating a loss of 5.07% (95%
CI = 0.19 to 9.95). Looking at the strength variables, a statistically
significant increase was observed in this group in the bench press
exercise (p=0.008), representing an average improvement of 23.9%
(95% CI = 5.29 to 42.52). Although significant differences were also
observed in lower-body strength between pre-test and post-test
(p = 0.043), the effect size exhibited great variability and did not
confirm improvement in relative values: 24.34% (95% CI = -3.51 to
52.19). Significant differences were not observed in this group for
the other variables analysed.
The SW group, however, not only experienced a slightly higher
reduction in body fat percentage (p = 0.006), indicating a loss of
6.76% (95% CI = 2.75 to 10.77), it also saw a significant increase in
lean body mass (p = 0.011), with a percentage change of 1.94% (95%
CI = 0.68 to 3.21). Looking at the strength variables, there were also
significant differences between pre-test and post-test in the SW
group both on the bench press (p = 0.031) and with the back dy-
namometer (p = 0.048). The improvement seen on the bench press
was 9.22% (95% CI = 1.41 to 17.04) and on the back dynamometer
it was 23.33% (95% CI = -3.85 to 50.5). As with the FBW group, no
significant differences were observed in the SW group on the other
tests performed.
As for intergroup differences, no statistically significant diffe-
rences were found in the relative improvements achieved by each
group for any of the variables analysed and the effect sizes were also
seen to be small (Table 2).
Discussion
The results verify that the two training structures lead to improve-
ments in strength levels and body composition. Both the FBW group
and the SW group signicantly improved their performance on the back
dynamometer and the bench press. They did not, however, achieve any
signicant improvement on the hand grip dynamometer. We unders-
tand that this responds to the specicity of training principle, since the
intervention process did not involve any exercises to strengthen the
forearm muscles (Table 1). As for kinanthropometric variables, only the
SW group showed signicant increases in its lean mass percentage.
The body fat percentage of both groups, however, fell signicantly. The
results of this study, therefore, are consistent with previous research in
Table 2. Comparison of results between the FBW group and SW group
FBW group (n=12) SW group (n=16)
p d
Pre Post p % [CI 95%] Pre Post p % [CI 95%]
Height (cm) 176.6 (4.6) 176.6 (4.6) 178 (6.7) 178 (6.7)
Weight (kg) 80.1 (24.1) 79.6 (23.1) 0.340 -0.23 [-1.67, 1.2] 82.6 (27.6) 82.9 (27.9) 0.283 0.29 [-0.51, 1.1] 0.378 -0.31
BMI (kg/m2) 25.7 (7.3) 25.6 (6.9) 0.705 0.15 [-1.52, 1.81] 25.9 (7.9) 26 (8) 0.278 0.31 [-0.46, 1.08] 0.642 -0.17
Lean mass (kg) 63.6 (12.8) 64.5 (13) 0.103 1.42 [-0.12, 2.96] 65.3 (14.8) 66.8 (16.2) 0.011 1.94 [0.68, 3.21] 0.781 -0.10
Fat (%) 18.6 (7.6) 17.4 (6.5) 0.028 -5.07 [-9.95, -0.19] 18.6 (8) 17.3 (7.5) 0.006 -6.76 [-10.77, -2.75] 0.403 0.34
Hand-grip
strength (kg) 39.2 (7.5) 40.4 (8.4) 0.519 3.91 [-7.14, 14.97] 37.4 (9.5) 38.2 (7.3) 0.522 6.85 [-7.34, 21.03] 0.889 0.05
Lower-body
strength (kg) 108.6 (26.8) 130.2 (36.2) 0.043 24.34 [-3.51, 52.19] 109 (35.8) 124.4 (31.5) 0.048 23.33 [-3.85, 50.5] 0.889 0.05
Bench press (kg) 51.6 (16.1) 61.2 (14.1) 0.008 23.9 [5.29, 42.52] 59.5 (26.9) 63.7 (24.8) 0.031 9.22 [1.41, 17.04] 0.242 0.51
The pre- and post-test data show the mean (standard deviation). The pre- and post-test percentage changes are presented with a condence interval of 95%
Pablo Prieto González,
et al.
82 Arch Med Deporte 2020;37(2):78-83
which strength training led to improvements in body composition, both
in subjects with experience in strength training19 and the untrained20.
Meanwhile, no signicant dierences were observed between the
two groups in either the kinanthropometric parameters analysed or the
strength tests carried out. As for strength levels, these results are consis-
tent with those obtained in the research conducted by Calder et al.21 with
young women and Campbell et al.22 with older people. In both studies,
the subjects had no previous experience in strength training and it was
possible to verify that the two types of workout led to similar increases
in strength. Schoenfeld et al.23, in a study conducted with university
students with previous experience in strength workouts, also found that
the two ways of structuring training sessions led to similar improvements
in strength levels. They also noted that full-body workouts were more
eective than split workouts in increasing muscle mass. In our study,
however, the split workout resulted in a greater increase of lean tissue,
although it is also true that the body fat percentages of both the FBW
and SW groups fell signicantly. This discrepancy should be analysed
in subsequent research.
Be that as it may, according to the results of the present study
and the three studies which analysed the subject before it21-23, it can
be argued that neither of the two ways of organising strength training
sessions is clearly better than the other, irrespective of the subjects’ age,
sex or level of physical activity. We understand that this is because both
types of workout have pros and cons. The advantages of split workouts
are21: a) the training sessions do not have to be too long; b) the fatigue
accumulated from the earlier exercises in the session does not prevent
the exercises at the end of it from being carried out at the desired in-
tensity; c) they result in greater muscle stress, because the number of
sets per muscle group in each workout is high, in turn increasing acute
hormonal secretions, cellular inammation and muscle ischemia; d)
they are less fatiguing. By contrast, the advantages of full-body routines
are: a) they allow you to work each muscle group at least twice a week,
leading to greater strength gains through hypertrophy24; b) the release
of anabolic hormones is directly related to the amount of muscles used
in workouts25,26.
Certain factors which condition the suitability of each type of
workout do, however, need to be borne in mind: individuals who wish
to do more than three strength training sessions a week should not
do full-body workouts. This is because the recovery time between
moderate-intensity training sessions should be no less than 48 hours
and at least 72 hours for intense workouts27,10. Nor is it advisable to do
a very high number of exercises or sets per session, since it has been
shown that shorter strength workouts are more eective in improving
levels of hypertrophy and obtaining neuromuscular adaptations28. The
main advantage of full-body workouts is that they are more suitable if
you want to combine strength training with other physical ability or
motor skill training. Dedicating fewer days per week to building strength
means that other training stimuli can be applied on the recovery days21.
Conversely, with split workouts, the subjects or athletes can do more
than three strength training sessions per week because just a small
number of muscle groups are stimulated in each session. The impor-
tance of respecting the functional unit training principle, however, need
also be remembered29. This means that the number of muscle groups
working in each training session should not be too limited because
human beings are made up of a set of interrelated systems that work
together in synchronisation.
Regarding the limitations of the study, it would have been desirable
to conduct the research with three experimental groups instead of two,
with one group doing full-body workouts, another doing upper/lower-
body split workouts and the third doing split workouts based on muscle
groups. However, this was not possible because workout splits focusing
on muscle groups best involve people with some degree of experience
in strength training and this was not the case with the subjects who
were recruited to take part in this study. Moreover, their schedules
meant that it was not possible for them to do three sessions per week.
Conclusion
Both split workout and full-body workouts over an eight-week
period are useful for improving strength levels in university students
without previous experience of strength training. Both types of workout
help reduce the body fat percentage, the split system being more eec-
tive for increasing lean tissue. Neither of the approaches, however, is
signicantly more eective than the other when it comes to increasing
strength levels or improving kinanthropometric parameters. .
Conict of interest
The authors declare that they are not subject to any type of conict
of interest.
Bibliography
1. Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength:
training considerations. Sport Med. 2018;48:765-85.
2. Silva NL, Oliveira RB, Fleck SJ, Leon AC, Farinatti P. Inuence of strength training varia-
bles on strength gains in adults over 55 years-old: a meta-analysis of dose-response
relationships. J Sci Med Sport. 2014;17:337-44.
3. Kraschnewski JL, Sciamanna CN, Pogera JM, Rovniak LS, Lehman EB, Cooper AB, et al.
Is strength training associated with mortality benets? A 15 year cohort study of US
older adults. Prev Med. 2016;87:121-7.
4. Ambrose KR, Golightly YM. Physical exercise as non-pharmacological treatment of
chronic pain: Why and when. Best Pract Res Clin Rheumatol. 2015;29:120-30.
5. Fisher J, Steele J, Bruce-Low S, Smith D. Evidence-based resistance training recom-
mendations. Med Sport. 2011;15:147-62.
6. Ratamess N, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ. Progression models
in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41:687-708.
7. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to
resistance training. J Strength Cond Res. 2010;24:2857-72.
8. Fleck SJ. Periodized strength training: a critical review. J. Strength Cond. Res. 1999;13:82-9.
9. Heredia JR, Chulvi Medrano I, Isidro Donate F, Soro J, Costa MR. Determinación de
la carga de entrenamiento para la mejora de la fuerza orientada a la salud (Fitness
muscular). PubliCE Standard. 2007;21:17.
10. Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and
exercise prescription. Med Sci Sports Exerc. 2004;36:674-88.
Split versus full-body strength training workouts in untrained people. A randomised study
83
Arch Med Deporte 2020;37(2):78-83
11. Fleck SJ, Kraemer WJ. Designing resistance training programs. 4th Edition. Champaign.
Human Kinetics; 2014. p. 225.
12. González Gallego J, Sánchez Collado P, Mataix Verdú J. Nutrición en el deporte y ayudas
ergogénicas y dopaje. Madrid. Editorial Díaz de Santos; 2006. p. 273.
13. Santana Pérez FJ, de Burgos Carmona M, Fernández Rodríguez EF. Efecto del método
Pilates sobre la exibilidad y la fuerza y resistencia muscular. EFDeportes.com, Revista
Digital. 2010;148.
14. Cummings B, Finn KJ. Estimation of a one repetition maximum bench press for un-
trained women. J. Strength Cond. Res. 1998;12:262-5.
15. Ware JS, Clemens CT, Mayhew JL, Johnston TJ. Muscular endurance repetitions to
predict bench press and squat strength in college football players. J. Strength Cond.
Res. 1995;9:99-103.
16. Chulvi Medrano I, Díaz Cantalejo A. Ecacia y seguridad del press de banca. Revisión.
Rev int med cienc act fís deporte. 2008;32:338-52.
17. Travis TN, Brown V, Cauleld S, Doscher M, McHenry P, Statler T, et al. NSCA Strength
and conditioning professional standards and guidelines. Strength Cond J. 2017;39:1-24.
18. American College of Sports Medicine. American College of Sports Medicine position
stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc.
2009;41:687-708.
19. Orquín Castrillón FJ, Torres-Luque G, Poncede León F. Efectos de un programa de
entrenamiento de fuerza sobre la composición corporal y la fuerza máxima en jóvenes
entrenados. Apunts. Medicina de l'Esport. 2009;44:156-62
20. Lee H, Kim IG, Sung C, Kim JS. The Eect of 12-Week Resistance Training on muscular
strength and body composition in untrained young women: Implications of exercise
frequency. J Exerc Physiol Online. 2017;20:88-95.
21. Calder AW, Chilibeck PD, Webber CE, Sale DG. Comparison of whole and split weight
training routines in young women. Can J Appl Physiol. 1994;19;185-99.
22. Campbell WW, Trappe TA, Jozsi AC, Kruskall LJ, Wolfe RR, Evans WJ. Dietary protein
adequacy and lower body versus whole body resistive training in older humans. J
Physiol. 2002;542:631-42.
23. Schoenfeld BJ, Ratamess NA, Peterson MD, Contreras B, Tiryaki-Sonmez G. Inuence of
resistance training frequency on muscular adaptations in well-trained Men. J Strength
Cond Res. 2015;29:1821-9.
24. Schoenfeld BJ, Ogborn D, Krieger JW. Eects of resistance training frequency on
measures of muscle hypertrophy: A systematic review and meta-analysis. Sports Med.
2016;46:1689-97.
25. Kraemer WJ. Endocrine responses to resistance exercise. Med Sci Sports Exerc.
1988;20:152-7.
26. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise
and training. Sports Med. 2005;35:339-61.
27. McLester JR, Bishop PA, Smith J, Wyers L, Dale B, Kozusko J, et al. A series of studies-a
practical protocol for testing muscular endurance recovery. J Strength Cond Res.
2003;17:259-73.
28. Häkkinen K, K allinen M. Distribution of strength training volume into one or two
daily sessions and neuromuscular adaptations in female athletes. Electromyogr Clin
Neurophysiol. 1994;34:117-24.
29. Granell JC, Cervera VR. Teoría y planicación del entrenamiento deportivo. Badalona.
Paidotribo; 2006. p. 16
... However, controversial results are obtained in studies comparing the effect of split vs. full-body routines on muscle growth and strength gains. For example, similar gains in muscle mass and strength performance have been reported after split and full-body routines between untrained (10,13,25) and trained (12,22) people. By contrast, other studies reported that full-body routines may be more effective at improving cross-sectional area than split routines (34,39) . ...
... Although all studies included in this meta-analysis used valid and reliable methods for quantifying muscle mass, different authors employed methods with varying levels of precision. Ultrasound was the most widely used method, employed by up to 5 studies (2,9,22,34,35,39) followed by dual-energy X-ray absorptiometry (DXA), which was used by 3 studies (5,10,12), anthropometry, used in 2 studies (7,13), and bioelectrical impedance, used only by Pedersen et al. (25). ...
Article
Ramos-Campo, DJ, Benito-Peinado, PJ, Caravaca, LA, Rojo-Tirado, MA, and Rubio-Arias, JÁ. Efficacy of split versus full-body resistance training on strength and muscle growth: a systematic review with meta-analysis. J Strength Cond Res XX(X): 000–000, 2024—No previous study has systematically compared the effect of 2 resistance training routines commonly used to increase muscle mass and strength (i.e., split [Sp] and full-body [FB] routines). Our objective was to conduct a systematic review and meta-analysis following PRISMA guidelines to compare the effects on strength gains and muscle growth in healthy adults. 14 studies (392 subjects) that compared Sp and FB routines in terms of strength adaptations and muscle growth were included. Regarding the effects of the Sp or FB routine on both bench press and lower limbs strength, the magnitude of the change produced by both routines was similar (bench press: mean difference [MD] = 1.19; [−1.28, 3.65]; p = 0.34; k = 14; lower limb: MD = 2.47; [−2.11, 7.05]; p = 0.29; k = 14). Concerning the effect of the Sp vs. FB routine on muscle growth, similar effects were observed after both routines in the cross-sectional area of the elbow extensors (MD = 0.30; [−2.65, 3.24]; p = 0.84; k = 4), elbow flexors (MD = 0.17; [−2.54, 2.88]; p = 0.91; k = 5), vastus lateralis (MD = −0.08; [−1.82, 1.66]; p = 0.93; k = 5), or lean body mass (MD = −0.07; [−1.59, 1.44]; p = 0.92; k = 6). In conclusion, the present systematic review and meta-analysis provides solid evidence that the use of Sp or FB routines within a resistance training program does not significantly impact either strength gains or muscle hypertrophy when volume is equated. Consequently, individuals are free to confidently select a resistance training routine based on their personal preferences.
Article
Full-text available
Актуальність. На сьогодні оздоровчі тренування силової спрямованості є ефективним методом збереження та зміцнення здоровʼя. Успішне планування тренувального процесу вимагає розпізнавання й маніпулювання змінними параметрами силового тренування. Мета дослідження – проаналізувати поточну наукову літературу про різні змінні параметри силових тренувань та їх вплив на гіпертрофію мʼязів і надати практичні рекомендації щодо їх призначення в силових програмах. Методи дослідження – аналіз та синтез – застосовані для виокремлення важливих для дослідження даних і їх узагальнення згідно з реалізацією мети дослідження; системний підхід – використовувався з метою визначення змінних параметрів програми та їх впливу на гіпертрофію мʼязів. Результати роботи. Маніпуляція змінними параметрами силового тренування, як-от: режим роботи мʼязів, тренувальний обсяг, тип вправ, структура тренування, інтенсивність навантаження, інтервали відпочинку та частота тренувань, – є необхідною для подальшого стимулювання морфологічної адаптації. На основі аналізу сучасної літератури встановлено, що поєднання концентричного та ексцентричного режимів роботи мʼязів є оптимальним. У програму тренувань потрібно включати багато- й односуглобові вправи. Структуру занять рекомендовано розглядати, як поєднання спліттренувань і тренувань на все тіло в рамках періодизації. Потрібно віддавати перевагу режиму високої інтенсивності (понад 60 % від повторюваного максимуму). Тренувальний обсяг становить 6–10 підходів на одну групу мʼязів у тиждень при 6–12 повтореннях у рамках одного підходу. Інтервали відпочинку встановлюються на рівні 1–2 хв між виконанням односуглобових вправ і 2–5 хв для багатосуглобових вправ. Три тренування на тиждень матимуть найкращий ефект із погляду посилення адаптаційних механізмів після силового тренування. Висновки. На основі цього дослідження розроблено практичні рекомендації для тренерів щодо застосування змінних параметрів під час розробки програм тренування.
Article
Full-text available
This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete’s training status and the dose–response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete’s training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete’s ability to improve their performance following various training methods.
Article
Full-text available
Background A number of resistance training (RT) program variables can be manipulated to maximize muscular hypertrophy. One variable of primary interest in this regard is RT frequency. Frequency can refer to the number of resistance training sessions performed in a given period of time, as well as to the number of times a specific muscle group is trained over a given period of time. Objective We conducted a systematic review and meta-analysis to determine the effects of resistance training frequency on hypertrophic outcomes. Methods Studies were deemed eligible for inclusion if they met the following criteria: (1) were an experimental trial published in an English-language refereed journal; (2) directly compared different weekly resistance training frequencies in traditional dynamic exercise using coupled concentric and eccentric actions; (3) measured morphologic changes via biopsy, imaging, circumference, and/or densitometry; (4) had a minimum duration of 4 weeks; and (5) used human participants without chronic disease or injury. A total of ten studies were identified that investigated RT frequency in accordance with the criteria outlined. Results Analysis using binary frequency as a predictor variable revealed a significant impact of training frequency on hypertrophy effect size (P = 0.002), with higher frequency being associated with a greater effect size than lower frequency (0.49 ± 0.08 vs. 0.30 ± 0.07, respectively). Statistical analyses of studies investigating training session frequency when groups are matched for frequency of training per muscle group could not be carried out and reliable estimates could not be generated due to inadequate sample size. Conclusions When comparing studies that investigated training muscle groups between 1 to 3 days per week on a volume-equated basis, the current body of evidence indicates that frequencies of training twice a week promote superior hypertrophic outcomes to once a week. It can therefore be inferred that the major muscle groups should be trained at least twice a week to maximize muscle growth; whether training a muscle group three times per week is superior to a twice-per-week protocol remains to be determined.
Article
Full-text available
The purpose of this study was to investigate the effects of training muscle groups 1 day per week using a split-body routine versus 3 days per week using a total-body routine on muscular adaptations in well-trained men. Subjects were 20 male volunteers (height = 1.76 ± 0.05 m; body mass = 78.0 ± 10.7 kg; age = 23.5 ± 2.9 years) recruited from a university population. Participants were pair-matched according to baseline strength and then randomly assigned to 1 of 2 experimental groups: a split-body routine (SPLIT) where multiple exercises were performed for a specific muscle group in a session with 2-3 muscle groups trained per session (n = 10), or; a total-body routine (TOTAL), where 1 exercise was performed per muscle group in a session with all muscle groups trained in each session (n = 10). Subjects were tested pre- and post-study for 1 repetition maximum strength in the bench press and squat, and muscle thickness of forearm flexors, forearm extensors, and vastus lateralis. Results showed significantly greater increases in forearm flexor muscle thickness for TOTAL compared to SPLIT. No significant differences were noted in maximal strength measures. The findings suggest a potentially superior hypertrophic benefit to higher weekly resistance training frequencies.
Book
Full-text available
1. NUTRIENTES Y ALIMENTOS 1.1. CONCEPTO DE NUTRIENTE 1.2. TIPOS DE NUTRIENTES 1.2.1. Visión general 1.2.2. Nutrientes esenciales y condicionalmente esenciales 1.3. OBJETIVOS DE LA NUTRICIÓN 1.3.1. Aporte de energía 1.3.2. Formación de estructuras 1.3.3. Regulación de los procesos metabólicos 1.4. ALIMENTOS 1.4.1. Los alimentos: almacén de nutrientes 1.4.2. Grupos de alimentos 1.4.3. Dieta mixta y equilibrada 1. 5. CONSIDERACIONES APLICADAS RESPECTO A LA INGESTA DE NUTRIENTES Y ALIMENTOS 2. UTILIZACIÓN DIGESTIVA Y METABÓLICA DE LOS NUTRIENTES 2.1. UTILIZACIÓN DIGESTIVA DE LOS NUTRIENTES 2.1.1. Sistema digestivo 2.1.2. Digestión 2.1.3. Microbiota colónica 2.2. UTILIZACIÓN METABÓLICA DE LOS NUTRIENTES. VISIÓN GENERAL 2.3. PRODUCCIÓN DE ENERGÍA 2.3.1. Macronutrientes 2.3.2. Micronutrientes 2.3.2.1. Vitaminas 2.3.2.2. Minerales 2.3.2.3 Calorías vacias 3. HIDRATOS DE CARBONO 3.1. HIDRATOS DE CARBONO GLUCÉMICOS 3.1.1. Tipos de hidratos de carbono glucémicos 3.1.2. Funciones de los hidratos de carbono glucémicos 3.1.3. Utilización digestiva de los hidratos de carbono glucémicos 3.1.4. Utilización metabólica de los hidratos de carbono glucémicos 3.1.4.1. Rutas metabólicas de la glucosa 3.1.4.2. Visión general del metabolismo de la glucosa 3.1.5. El índice glucémico 3.1.6. Fuentes alimentarias de hidratos de carbono glucémicos 3.1.7. Consideraciones aplicadas sobre la ingesta de hidratos de carbono 3.2. FIBRA ALIMENTARIA 3.2.1. Fibra soluble e insoluble 3.2.2. Funciones de la fibra 3.2.3. Consideraciones aplicadas sobre la ingesta de fibra alimentaria 4. LÍPIDOS 4.1. ÁCIDOS GRASOS 4.1.1. Nomenclatura 4.1.2. Series de ácidos grasos 4.2. FUNCIONES DE LOS LÍPIDOS 4.3. UTILIZACIÓN DIGESTIVA DE LOS LÍPIDOS 4.3.1. Digestión y absorción 4.3.2. Transporte y distribución 4.4. UTILIZACIÓN METABÓLICA DE LOS LÍPIDOS 4.5. CONSIDERACIONES APLICADAS SOBRE LA INGESTA DE LÍPIDOS Y ALIMENTOS RICOS EN LÍPIDOS 4.5.1. Recomendaciones nutricionales 4.5.2. Consideraciones sobre ácidos grasos, aceites y grasas 4.5.3. Consideraciones sobre el colesterol 5. PROTEÍNAS 5.1. ESTRUCTURA Y FUNCIÓN 5.2. UTILIZACIÓN DIGESTIVA Y METABÓLICA DE LAS PROTEÍNAS 5.2.1. Utilización digestiva 5.2.2. Utilización metabólica de los aminoácidos absorbidos 5.3. CALIDAD PROTEICA 5.3.1. Índices biológicos 5.3.2. Índices químicos 5.3.3. Cantidad y calidad proteica. El aminoácido limitante 5.4. COMPLEMENTACIÓN PROTEICA 5.5. CONSIDERACIONES APLICADAS SOBRE LA INGESTA DE PROTEÍNA Y ALIMENTOS PROTEICOS 5.5.1. Ingestas recomendadas 5.5.2. Ingestas permitidas 5.6. DEFICIENCIA Y EXCESO PROTEICOS 5.6.1. Deficiencia de proteínas 5.6.2.Exceso de proteína alimentaria 5.7. APORTE DE PROTEÍNA Y COMPARTIMENTO PROTEICO 6. RECOMENDACIONES NUTRICIONALES 6.1. REQUERIMIENTOS NUTRICIONALES 6.2. INGESTAS RECOMENDADAS 6.2.1. Consideraciones generales respecto a las ingestas recomendadas 6.2.2. Consideraciones prácticas respecto a las ingestas recomendadas 6.2.3. Ingestas recomendadas en los grupos vulnerables 6.3. OBJETIVOS NUTRICIONALES 6.3.1. Población española 6.4. GUÍAS ALIMENTARIAS 6.4.1. La pirámide de la alimentación 6.5. TABLA DE COMPOSICIÓN DE ALIMENTOS 6.5.1. Contenido básico 6.5. 2. Otros contenidos de la tabla de composición de alimentos 6.5.3. Utilidad de la tabla de composición de alimentos 7. BASES FISOLÓGICAS DEL EJERCICIO 7.1. INTRODUCCIÓN 7.2. TIPOS DE FIBRAS MUSCULARES. CARACTERÍSTICAS MORFOLÓGICAS, BIOQUÍMICAS Y FISIOLÓGICAS 7.3. LA RESPIRACIÓN DURANTE EL EJERCICIO 7.3.1. Consumo máximo de oxígeno (VO2máx) y umbral anaerobio 7.3.2. Capacidad de difusión del oxígeno en los deportistas 7.3.3. Regulación de la ventilación durante el ejercicio 7.4. ADAPTACIONES CARDIOVASCULARES DURANTE EL EJERCICIO 7.4.1. Riego sanguíneo del corazón y metabolismo cardíaco 7.4.2. Frecuencia cardiaca durante el ejercicio 7.4.3. Volumen sistólico y gasto cardíaco 7.5. RESPUESTAS HEMATOLÓGICAS AL EJERCICIO 7.5.1. Variaciones de los glóbulos rojos 7.5.2. Anemia del deportista 7.5.3. El sistema leucocitario y el ejercicio 7.6. OTRAS ADAPTACIONES 7.6.1. Respuestas y adaptaciones endocrinas al ejercicio 7.6.2. Respuestas y adaptaciones del riñón al ejercicio 8. SISTEMAS ENERGÉTICOS EN EL EJERCICIO 8.1. UTILIZACIÓN DE ENERGIA POR EL MÚSCULO 8.1.1. Combustible energético para la contracción muscular 8.1.2. Cociente respiratorio y liberación de energía 8.1.3. Utilización del combustible energético 8.1.4. Control hormonal de la utilización del combustible energético 8.2. SISTEMAS ENERGÉTICOS UTILIZADOS EN FUNCIÓN DE LA MODALIDAD DEPORTIVA 8.3. METABOLISMO ENERGÉTICO Y TIPOS DE FIBRAS MUSCULARES 8.4. LA FATIGA MUSCULAR 8.4.1. Mecanismos de aparición de la fatiga 8.4.2. Fatiga y rendimiento 9. HIDRATOS DE CARBONO Y EJERCICIO 9.1. UTILIZACION DE LOS HIDRATOS DE CARBONO ALIMENTARIOS 9.2. EFECTOS DE LA INTENSIDAD Y DURACIÓN DEL EJERCICIO SOBRE LA UTILIZACIÓN METABÓLICA DE LOS DEPOSITOS ENERGETICOS 9.3. EFECTOS DE LA DIETA SOBRE LOS DEPOSITOS DE GLUCOGENO 9.3.1. Importancia del aporte de hidratos de carbono 9.3.2. Técnicas de supercompensación 9.4. EFECTOS DEL ENTRENAMIENTO 9.5. RECOMENDACIONES GENERALES EN EL EJERCICIO 9.5.1 Antes del ejercicio 9.5.2. Durante el ejercicio 9.5.3. Después del ejercicio 10. LÍPIDOS Y EJERCICIO 10.1. METABOLISMO DE LOS TRIGLICÉRIDOS 10.2. RESERVAS DE GRASA 10.2.1. Tejido adiposo 10.2.2. Grasa muscular 10.3. INGESTA DE GRASAS 10.3.1. Suplementos de grasa 10.3.2. Digestión de las proteínas 10.4. EL COLESTEROL EN EL DEPORTISTA 10.4.1.Niveles de colesterol en la sangre 10.4.2. El colesterol en la dieta 10.4.3. Influencia del ejercicio sobre el colesterol 11. PROTEINAS Y EJERCICIO 11.1. METABOLISMO DE LOS AMINOÁCIDOS EN EL MÚSCULO DURANTE EL EJERCICIO 11.2. RECOMENDACIONES PROTEICAS EN EL EJERCICIO 11.2.1. Técnicas para el estudio de los requerimientos de proteínas 11.2.2. Requerimientos de proteínas en ejercicios de fuerza 11.2.3. Requerimientos de proteínas en ejercicios de resistencia 11.2.4. Otros factores que influyen en los requerimientos de proteínas 11.3. SUPLEMENTACIÓN PROTEICA 11.4. AMINOÁCIDOS RAMIFICADOS E HIPOTESIS DE LA FATIGA CENTRAL 12. VITAMINAS EN EL EJERCICIO 12.1. VITAMINAS 12. VITAMINAS HIDROSOLUBLES 12.2.1. Vitamina B1 (tiamina, aneurina, cocarboxilasa) 12.2.2. Vitamina B2 (riboflavina) 12.2.3. Vitamina B6 (piridoxina) 12.2.4. Niacina (ácido nicotínico, nicotinamida, vit pp) 12.2.5. Acido pantoténico 12.2.6. Vitamina B12 12.2.7. Acido fólico (folacina) 12.2.8. Biotina (vitamina H) 12.2.9. Vitamina C (ácido ascórbico) 12.3. VITAMINAS LIPOSOLUBLES 12.3.1. Vitamina D 12.3.2. Vitamina E 12.3.3. Vitamina A 12.3.4. Vitamina K 12.4. CONCLUSIONES APLICADAS 13. MINERALES EN EL EJERCICIO 13.1. MINERALES 13.2. HIERRO 13.2.1. Consideraciones generales 13.2.2. Importancia del estado férrico en el deportista 13.3.3. Etiología de la depleción de los almacenes de hierro en deportistas 13.2.4. Recomendaciones para evitar deficits de hierro en el deportista 13.3. CALCIO 13.3.1. Consideraciones generales 13.3.2. Calcio y hormonas reguladoras en el deportista 13.4. MAGNESIO 13.4.1. Consideraciones generales 13.4.2. Magnesio y actividad física 13.5. CINC 13.4.1. Consideraciones generales 13.4.2. Cinc y actividad física 13.6. OTROS MINERALES 13.5.1. Selenio 13.5.2. Cromo 13.5.3. Boro 13.7. CONCLUSIONES APLICADAS 14. HIDRATACIÓN EN EL EJERCICIO 14.1. EQUILIBRIO HÍDRICO 14.1.1. Compartimentos hídricos 14.1.2. Ingesta de agua 14.1.3. Pérdida de agua 14.2. TERMORREGULACIÓN EN RELACIÓN CON EL EJERCICIO 14.2.1. Pérdida de agua con el sudor 14.2.2. Patología por calor 14.3. REHIDRATACIÓN 14.3.1. Vaciamiento gástrico 14.3.2. Absorción intestinal 14.4. INGESTIÓN DE FLUIDOS EN DIFERENTES TIPOS DE ACTIVIDADES DEPORTIVAS 15. EVALUACIÓN NUTRICIONAL EN EL DEPORTE 15.1. INTRODUCCIÓN 15.2. NECESIDAD DE UNA VALORACIÓN NUTRICIONAL EN EL DEPORTE 15.3. ESTRUCTURA Y COMPOSICIÓN CORPORAL 15.4. DETERMINACIÓN DE LA INGESTA DE NUTRIENTES 15.4.1. Estudios prospectivos o técnicas que estudian la ingesta actual 15.4.2. Estudios retrospectivos o técnicas que estudian la ingesta pasada 15.5. EVALUACIÓN DEL GRADO DE DIGESTIÓN, ABSORCIÓN Y UTILIZACIÓN METABÓLICA DEL NUTRIENTE INGERIDO 15.6. GASTO ENERGÉTICO 15.6.1. Componentes del gasto energético 15.6.2. Evaluación del gasto energético 15.7. EVALUACIÓN BIOQUÍMICA DEL ESTADO NUTRICIONAL 15.7.1. Parámetros sanguíneos 15.7.2. Parámetros urinarios 15.8. EVALUACIÓN CLÍNICA Y OTROS SISTEMAS DE EVALUACIÓN 16. AYUDAS ERGOGÉNICAS NUTRICIONALES 16.1. INTRODUCCIÓN 16.2. HIDRATOS DE CARBONO 16.3. LÍPIDOS Y SUSTANCIAS RELACIONADAS 16.3.1. Acidos grasos omega-3 16.3.2. Glicerol 16.3.3. Gamma orizanol y ácido ferúlico 16.3.4. Smilax 16.4. PROTEÍNAS, AMINOÁCIDOS Y OTRAS SUSTANCIAS NITROGENADAS 16.4.1. Proteínas 16.4.2. Ornitina, lisina y arginina 16.4. 3. Aminoácidos ramificados 16.4.4. Creatina 16.4.5. Inosina 16.4.6. Colina y lecitina 16.4.7. Dimetilglicina y ácido pangámico 16.4.8. Acido aspártico 16.4.9. Yohimbina 16.4.10. Beta-hidroxi-beta-metilbutirato 16.5. VITAMINAS Y MINERALES 16.5.1. Vitamina B12 16.5.2. Carnitina 16.6. ANTIOXIDANTES 16.7. BICARBONATO Y OTROS TAMPONES 16.8. OTROS 16.8.1. Cafeína 16.8.2. Piruvato 16.8.3. Ginseng 16.8.4. Octacosanol y aceite de germen de trigo 16.8.5. Polen 17. TRASTORNOS ALIMENTARIOS EN EL DEPORTE 17.1. INTRODUCCIÓN 17.2. CARACTERISTICAS CLINICAS 17.2.1. Características clínicas de la anorexia 17.2.2. Características clínicas de la bulimia 17.3. COMPORTAMIENTOS ALIMENTARIOS PATOLOGICOS EN EL DEPORTE 17.4. TRATAMIENTO Y PREVENCION 17.4.1. Tratamiento 17.4.2. Prevención y educación 18. CONTROL DEL PESO CORPORAL 18.1. CONSTITUCIÓN, TAMAÑO Y COMPOSICIÓN CORPORAL 18.2. PESO CORPORAL Y RENDIMIENTO DEPORTIVO 18.2.1. Masa magra 18.2.2. Porcentaje de grasa corporal 18.2.3. Riesgos de las excesivas pérdidas de peso 18.2.4. Establecimiento de estándares de peso apropiados 18.3. COMPOSICIÓN CORPORAL Y SU VALORACIÓN 18.3.1. Densitometría 18.3.2. Impedancia bioelétrica 18.3.3. Reactancia a la luz infrarroja 18.3.4. Otras técnicas de laboratorio 18.3.5. Mediciones antropométricas 18.4. PESO CORPORAL ÓPTIMO 18.4.1. Porcentaje del peso corporal “ideal” (PCI) 18.4.2. Técnica de la estructura esquelética 181.4. 3. Regla de la “pulgada” (2,54 cm) 18.5. LOGRO DE UN PESO ÓPTIMO 18.5.1. Dieta de choque 18.5.2. Pérdida óptima de peso 19. DIETAS PARA EL ENTRENAMIENTO DE RESISTENCIA Y DE FUERZA 19.1. REQUERIMIENTOS POR DEPORTES 19.2. NUTRICIÓN PARA LA COMPETICIÓN 19.2.1. Dieta de preparación 19.2.2. Dieta para el día previo a la competición 19.2.3. El día de la competición 19.2.4. Alimentación después de la competición 19.3. PLANIFICACIÓN DE UN PROGRAMA NUTRICIONAL INDIVIDUALIZADO 19.3.1. Cálculo del gasto energético y necesidades de los diferentes macronutrientes 19.3.2. Planificación de las comidas 20. DOPAJE 20.1. INTRODUCCIÓN 20.2. ORIGEN DEL TÉRMINO DOPAJE 20.3. ANTECEDENTES HISTÓRICOS 20.3.1. Raices mitológicas y legendarias del dopaje 20.3.2. China 20.3.3. América precolombina 20.3.4. África 20.3.5. Raices del dopaje en las modernas confrontaciones bélicas 20.4. ANTECEDENTES EN EL MUNDO DEPORTIVO 20.4.1. Griegos y Romanos 20.4.2. Edad moderna 20.5. EL CONTROL ANTIDOPAJE 20.6. PROYECCIÓN EN LA SOCIEDAD ACTUAL 20.7. NORMATIVA 20.7.1. Normativa del Comité Olímpico Internacional 20.7.2. Agencia Mundial Antidopaje (AMA/WADA) 20.8. SITUACIÓN ACTUAL DE LAS LISTAS DE SUSTANCIAS Y MÉTODOS DOPANTES 21. PRINCIPALES SUSTANCIAS RECOGIDAS EN LOS LISTADOS DE LA AGENCIA ANTIDOPAJE 21.1. AGENTES DOPANTES QUE ACTUAN SOBRE EL SISTEMA NERVIOSO 21.1.1. Estimulantes 21.1.2. Analgésicos narcóticos 21.1.3. Beta bloqueantes 21.2. ESTEROIDES ANABOLIZANTES 21.3. ENMASCARANTES 21.4. OTROS AGENTES HORMONALES 21.4.1. Eritropoyetina 21.4.2. Hormona de crecimiento 22. MÉTODOS DE DETECCIÓN 22.1. INTRODUCCIÓN 22.2. ORINA COMO FLUIDO DE ELECCIÓN 22.3. NORMATIVA 22.3.1. Controles durante la competición 22.3.2. Motivos de anulación de la muestra 22.3.3. Controles fuera de la competición 22.4. REQUISITOS DE UN LABORATORIO DE CONTROL DE DOPAJE 22.5. PROCEDIMIENTOS TÉCNICOS EN UN LABORATORIO DE CONTROL DE DOPAJE 22.5.1. Recepción y registro de las muestras 22.5.2. Análisis de las muestras A 22.5.3. Análisis de las muestras B 22.5.4. Evaluación e informe de los resultados analíticos
Article
The purpose of this study was to evaluate the effect of resistance training with different workout frequency on muscular strength and body composition in untrained young women. Seventeen female college students without chronic diseases were recruited. Eight of the 17 students were engaged in comprehensive resistance training 3 times·wk⁻¹ (3/wk, Moderate Frequency, MF) while 9 students were engaged in the same resistance training protocol but for only 1 time·wk⁻¹ (1/wk, Less Frequency, LF). As compared to pre-training, post-training 1RM in bench press and lateral pulldown was increased significantly in both LF and MF groups, respectively (LF: 19.55 kg ± 0.85 vs. 24.33 kg ± 1.01, 20.0 kg ± 2.2 vs. 30.0 kg ± 1.62), (MF: 20.62 kg ± 0.32 vs. 23.62 kg ± 0.32, 23.12 kg ± 1.61 vs. 29.37 kg ± 0.77). Post-training 1RM in bench press and lateral pulldown in the LF group were not statistically different compared to the MF group. Body weight, muscle weight, percentage fat mass, and percentage abdominal fat mass were not different between the LF and the MF groups. The findings provide evidence that the strategy for reducing training frequency could be used as positive reinforcement for untrained female beginners with low self-efficacy for fitness and strength.
Article
Background: The relationship between strength training (ST) behavior and mortality remains understudied in large, national samples, although smaller studies have observed that greater amounts of muscle strength are associated with lower risks of death. We aimed to understand the association between meeting ST guidelines and future mortality in an older US adult population. Methods: Data were analyzed from the 1997-2001 National Health Interview Survey (NHIS) linked to death certificate data in the National Death Index. The main independent variable was guideline-concordant ST (i.e. twice each week) and dependent variable was all-cause mortality. Covariates identified in the literature and included in our analysis were demographics, past medical history, and other health behaviors (including other physical activity). Given our aim to understand outcomes in older adults, analyses were limited to adults age 65 years and older. Multivariate analysis was conducted using multiple logistic regression analysis. Results: During the study period, 9.6% of NHIS adults age 65 and older (N=30,162) reported doing guideline-concordant ST and 31.6% died. Older adults who reported guideline-concordant ST had 46% lower odds of all-cause mortality than those who did not (adjusted odds ratio: 0.64; 95% CI: 0.57, 0.70; p<0.001). The association between ST and death remained after adjustment for past medical history and health behaviors. Conclusions: Although a minority of older US adults met ST recommendations, guideline-concordant ST is significantly associated with decreased overall mortality. All-cause mortality may be significantly reduced through the identification of and engagement in guideline-concordant ST interventions by older adults.
Article
Chronic pain broadly encompasses both objectively defined conditions and idiopathic conditions that lack physical findings. Despite variance in origin or pathogenesis, these conditions are similarly characterized by chronic pain, poor physical function, mobility limitations, depression, anxiety, and sleep disturbance, and they are treated alone or in combination by pharmacologic and non-pharmacologic approaches, such as physical activity (aerobic conditioning, muscle strengthening, flexibility training, and movement therapies). Physical activity improves general health, disease risk, and progression of chronic illnesses such as cardiovascular disease, type 2 diabetes, and obesity. When applied to chronic pain conditions within appropriate parameters (frequency, duration, and intensity), physical activity significantly improves pain and related symptoms. For chronic pain, strict guidelines for physical activity are lacking, but frequent movement is preferable to sedentary behavior. This gives considerable freedom in prescribing physical activity treatments, which are most successful when tailored individually, progressed slowly, and account for physical limitations, psychosocial needs, and available resources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Article
This study compared the estimated weight lifted for 1-RM and actual 1-RM bench press weight for untrained women using 3 common regression equations. Regression analysis was also used to develop an equation for estimating max bench press strength using the relationship of a 1-RM bench press measure with performance variables and/or structural dimensions in the same group of women (N = 57), who underwent a submax bench press test (4-8-RM) and a 1-RM for bench press to determine repetitions (Reps) to fatigue and the weight lifted during the submaximal test (SubWt). Also measured were body mass (BM), height (Ht), biacromial breadth (BaB), arm length (AL), triceps skinfold (TS), and upper arm circumference (UAC). Cross-sectional area (CSA) of the upper arm was calculated from UAC and TS. The Reps and SubWt were then entered into regression equations from Bryzcki, Epley, and Landers. Paired t-test comparisons of actual vs. predicted indicated statistical difference (p < 0.001) using the equations by Landers and Brzycki, but none when using the equation by Epley. Stepwise regression analysis showed SubWt, Reps, and BaB as the variables to be used in the prediction equation for this population. This study concluded the Epley equation could be used to estimate 1-RM for untrained women, and that the regression equation for this population provided a good estimate of bench press strength.
Article
The importance of strength training to elderly individuals is well established. However, the dose-response relationship of the benefits of strength training in this population is unclear. The purpose of the study was to use meta-analysis to investigate the dose-response of the effects of strength training in elderly individuals. Fifteen studies with a total of 84 effect-sizes were included. The analyses examined the dose-response relationships of the following training variables 'intensity', 'number of sets', 'weekly frequency', and 'training duration' on strength improvement. The studies selected met the following inclusion criteria: (a) randomized controlled trials; (b) trained healthy subjects of both genders; (c) trained subjects aged 55 years or older; (d) strength increases were determined pre- and post-training; (e) use of similar strength evaluation techniques (strength determined by a repetition maximum test) and training routine (dynamic concentric-eccentric knee extension exercise to train the quadriceps muscle group). The effect-sizes were calculated using fixed and random effect models with the main effects determined by meta-regression. Many combinations of training variables resulted in strength increases. However meta-regression indicated only "training duration" had a significant dose-response relationship to strength gains (p=0.001). Over durations of 8-52 weeks, longer training durations had a greater effect on strength gains compared to shorter duration protocols. Resistive training causes strength gains in elderly individuals, provided the training duration is sufficiently long, regardless of the combination of other training variables.