The coordination chemistry between inorganic and organic species can be optimally exemplified by metal–organic frameworks (MOFs), whose structures and functionalities can be rationally designed from these highly tunable building blocks. The high porosity, stability, and versatile functionalities of MOFs have attracted wide-spread attention from energy-related research and pollution remediation to biomedical applications. A unique and underexplored subset of these materials are MOFs based on actinide nodes; these MOFs have distinguished themselves as a unique platform for investigating the versatile oxidation states, reactivity, and coordination chemistry of actinides. Herein, we will focus on the rational design and synthesis of actinide-based MOFs under the general guidelines of coordination chemistry for their structural and functional explorations. The dimensionality, topology, and structures of actinide-based MOFs can be controlled by selecting pre-designed building blocks of actinide-based nodes and organic linkers with certain desired coordination geometries and functionalities. These unique actinide-based MOFs have shown promise for applications in nuclear waste mitigation, pollution control, and catalysis.