ArticlePDF Available

Abstract

Por su continuidad espacial y su relativa homogeneidad ecológica y biofísica, las ecorregiones son un nivel de organización apropiado para discutir y planificar iniciativas de conservación del ambiente a escala regional y nacional. Las interacciones complejas entre las características ecológicas de las ecorregiones, los cambios socioeconómicos locales y globales, y los cambios en el uso de la tierra ocasionan que las amenazas y la oportunidades para conservar dentro y entre ecorregiones se distribuyan de manera heterogénea. En este artículo realizamos un diagnóstico actualizado de las presiones de conservación asociadas al uso de la tierra en las distintas ecorregiones terrestres de la Argentina. Entendemos por presiones a las actividades antrópicas que modifican el estado de los recursos naturales e impactan sobre su funcionamiento. Luego de identificar las principales presiones por ecorregión realizamos un análisis de agrupamiento para identificar grupos de ecorregiones en función de la similitud de sus presiones. La ganadería comercial y la agricultura estuvieron dentro de las principales presiones asociadas al uso de la tierra en ocho y siete de las ecorregiones terrestres de la Argentina, respectivamente. Otras presiones de incidencia más específicas fueron muy relevantes en algunas ecorregiones, en especial en aquellas con limitantes para las actividades agropecuarias orientadas a los mercados globales. Identificamos cuatro grupos en función de la incidencia de las presiones asociadas al uso de la tierra: 1) Monte, Puna y Altos Andes; 2) Bosques Patagónicos; 3) Selva Paranaense y Selva de las Yungas, y 4) Campos y Malezales, Chaco Húmedo, Chaco Seco, Delta e Islas del Paraná, Espinal, Esteros del Iberá, Estepa Patagónica y Pampa. Este agrupamiento por presiones comunes de ecorregiones distantes en el espacio contribuiría a organizar geográficamente políticas de gestión de los recursos naturales integradas a nivel regional.
304 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 305
Ecología Austral 30:304-320
Ecología Austral 30:304-320 Agosto 2020
Asociación Argentina de Ecología


*







1 Instituto de Ecología Regional (UNT-CONICET), Tucumán. **
,

      








    
  



 

.
      

      
     
  
    
      
      


  


   






   

Recibido: 31 de Octubre de 2019
Aceptado: 27 de Abril de 2020
* 
Editor asociado: Germán Baldi
304 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 305
Ecología Austral 30:304-320
INTRODUCCIÓN
,








 











    







   land
science
    







    

 


 

  
 




     

 
   












 





 


  




,




,
**2 Latinamerika-Institut, Frei Univesität Berlin, Alemania. 3 Geography Department, Humboldt Universität zu Berlin. 4
IADIZA (CONICET), Mendoza. 5 FCA-UNCuyo, Mendoza. 6 IBIGEO (CONICET), Universidad Nacional de Salta. 7
Universidad Católica de Salta, Salta. 8 Fundación Vida Silvestre Argentina, Buenos Aires. 9 Laboratorio de Análisis Regional
y Teledetección (IFEVA-CONICET), FAUBA, Buenos Aires. 10 Parque Nacional Nahuel Huapi. CENAC (APN/CONICET),
Río Negro. 11 Facultad de Ciencias Naturales, Universidad Nacional de Salta. 12 IBS (CONICET-UNaM) y Centro de
Investigaciones del Bosque Atlántico (CeIBA), Misiones. 13 Grupo de Estudios en Agroecosistemas y Paisajes Rurales, Facultad
de Ciencias Agrarias, Universidad de Mar del Plata, Buenos Aires. 14 Centro Austral de Investigaciones Cientícas (CADIC-
CONICET), Tierra del Fuego. 15 Instituto de Diversidad y Ecología Animal y Centro de Zoología Aplicada, UNC-CONICET,
Córdoba. 16 Centro de Estudios Territoriales Ambientales y Sociales, Universidad Nacional de Jujuy, Jujuy. 17 Instituto de
Investigaciones Marinas y Costeras (UNMdP-CONICET), Instituto de Geología de Costas y del Cuaternario (UNMdP-
CIC), Mar del Plata, Buenos Aires. 18 Instituto Multidisciplinario de Biología Vegetal (CONICET), Córdoba. 19 Instituto
de Investigación e Ingeniería Ambiental (IIIA) CONICET-Universidad Nacional de San Martín, Buenos Aires. 20 Centro
de Ecología y Recursos Naturales Renovables (UNC-CONICET), Córdoba. 21 Parque Nacional Campos del Tuyú (APN). 22
INECOA (UNJu-CONICET), Jujuy.
306 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 307
Ecología Austral 30:304-320

,  ,


  
 







 .



 









per cápita
  




  








 


   


 










.

  



 Sin embargo,
otros tipos de usos de la tierra de incidencia







   





      
  








 





 
 





    


 







306 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 307
Ecología Austral 30:304-320




 




  
           


      



 



 










 
,




   
 
   










   Gl ob al Land
Programme
  












 



  

Elaboración de diagnósticos de presiones sobre la
conservación asociadas al uso de la tierra en las
distintas ecorregiones terrestres de la Argentina



  










  
   

    
  

   


  









Estos documentos sirvieron de base para
luego discutir y categorizar las presiones
308 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 309
Ecología Austral 30:304-320
asociadas al uso de la tierra en las ecorregiones
terrestres de la Argentina durante la reunión
presencial. A su vez, constituyen documentos
de síntesis y actualización de las presiones para
la conservación asociadas al uso de la tierra en
las respectivas ecorregiones (Anexo 1).

  

            




 

,
,
.







  

  





 

GHS Settlement Model Grid
Global Human Settlement, 2014







Global
Cropland Area Database
,









 








Identificación y jerarquización de presiones
asociadas al uso de la tierra en las ecorregiones
terrestres de la Argentina
En una primera etapa, identificamos y
categorizamos las presiones asociadas al
uso de la tierra siguiendo la definición de
presiones propuesta por el marco conceptual
DPSIR (Driving-Forces-Pressures-State-Impacts-
Responses) (Kristensen et al. 2004). Así,
entendemos en este trabajo a las presiones
como “las actividades antrópicas vinculadas
a la demanda de una necesidad, que
modifican el estado de los recursos naturales
causando una serie de impactos sobre su
funcionamiento” (Kristensen et al. 2004).
Establecimos 11 presiones específicamente
asociadas al uso antrópico de la tierra
(excluyendo aquellas originadas por otros
factores como cambio climático o desastres
naturales) cuya incidencia consideramos
relevante sobre los recursos naturales de
las ecorregiones terrestres de la Argentina:
1) Extracción de Recursos Naturales no
Renovables; 2) Cacería; 3) Aprovechamiento
Forestal de Bosques Nativos; 4) Fuegos
por Actividades Antrópicas; 5) Ganadería
Comercial; 6) Turismo; 7) Plantaciones
Forestales; 8) Agricultura; 9) Invasiones
Biológicas; 10) Urbanización e Infraestructura,
y 11) Ganadería de Subsistencia. Luego, cada
grupo de trabajo cuantificó la influencia
de cada presión en la ecorregión asignada
aplicando un todo semicuantitativo de
jerarquización de presiones modificado
del software Miradi v.4.3.1 (Miradi 2017).
Este método requiere evaluar cuatro
dimensiones de presiones: probabilidad de
ocurrencia, extensión geográfica, severidad
e irreversibilidad (ver definiciones de las
cuatro dimensiones en Miradi 2017). Cada
una de estas dimensiones permite una
asignación categórica de mayor a menor
incidencia (e.g., extensión geográfica cuenta
con cinco categorías, desde “una muy pequeña
parte del área geográfica” a “la totalidad del
área geográfica”), que se convierte en una
asignación numérica como proporción de
308 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 309
Ecología Austral 30:304-320
100 (siendo 100 el valor máximo posible para
cada dimensión) (e.g., en el caso de “extensión
geográfica”, la categoría “la totalidad del área
geográfica” obtiene un puntaje de 100 para esa
dimensión). El valor resultante de incidencia
de cada presión sobre cada ecorregión es
producto de la multiplicación de los valores
asignados a sus cuatro dimensiones, dividido
en 1000000 para que varíe entre 0 y 100 (Anexo
2). Cabe destacar que buscamos identificar
las presiones que en la actualidad se ejercen
en cada ecorregión. Esto quiere decir que
algunas presiones que en el pasado fueron
muy relevantes y configuraron la ecorregión
pueden quedar relegadas en la consideración
debido a que hoy se encuentran relativamente
estabilizadas o decrecientes. La expansión
agrícola, por ejemplo, fue muy importante
para la ecorregión Selva de las Yungas, al
afectar casi en su totalidad el pedemonte de
la región; sin embargo, los procesos actuales de
expansión agrícola son pocos y localizados en
los escasos remanentes de selva de pedemonte,
lo que lleva al proceso a tener un bajo valor en
extensión geográfica, y por ello queda relegada
en comparación con otras presiones.


   



    











  
 
  

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     









 .
Tabla 1. Porcentaje de cobertura modificada o transformada y natural/semi-natural en las distintas ecorregiones
terrestres de la Argentina (recopilación generada por Fundación Vida Silvestre en base a INTA 2009[1], Monitoreo de
desmontes realizado por LART, FAUBA, INTA y Redaf colección 7.0[2], Monitoreo de bosques de UMSEF periodo 2006-
2016 [3]) y porcentaje de superficie protegida en cada ecorregión (recopilación generada por Fundación Vida Silvestre
en base a WDPA[4] agosto 2019 teniendo en consideración áreas protegidas terrestres nacionales y subnacionales).
Table 1. Percentage of modified and/or transformed land-cover, and natural/semi-natural land-cover in the terrestrial
ecoregions of Argentina (compilation generated by Fundación Vida Silvestre based on INTA 2009[1], Deforestation
monitoring by LART, FAUBA, INTA and Redaf collection 7.0 [2], UMSEF Forest monitoring for 2006-2016 [3]) and
percentage of protected area in each ecoregion (compilation generated by Fundación Vida Silvestre based on WDPA[4]
august 2019, considering national and subnational terrestrial protected areas).
310 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 311
Ecología Austral 30:304-320




 







Agrupamiento de ecorregiones en función de la
incidencia de las presiones asociadas al uso de la
tierra

  


clustering





   


a priori 





    




average
linkage












a posteriori







 

 
   


 
  





   




 

 

RESULTADOS




.
      

,




    

 

   



Identificación y jerarquización de presiones
asociadas al uso de la tierra en las ecorregiones
terrestres de la Argentina
Las presiones Ganadería Comercial y
Agricultura fueron identificadas como
las de mayor incidencia relativa entre las
ecorregiones terrestres de la Argentina.
Ambas presiones alcanzaron los valores más
elevados considerando la sumatoria de los
310 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 311
Ecología Austral 30:304-320
valores obtenidos en todas las ecorregiones
(Figura 1). Además, se encontraron dentro
de las presiones principales en ocho y siete
ecorregiones, respectivamente (Figuras 1
y 2). Por su parte, las presiones asociadas
al uso de la tierra con menor incidencia
regional relativa, tomando como criterio
aquellas presiones cuya sumatoria es menor
Figura 1. Incidencia de las presiones en base a la sumatoria del puntaje de cada presión (eje Y) en todas las ecorregiones
terrestres de la Argentina. Ganad. Comercial: Ganadería Comercial; Urbanización: Urbanización e Infraestructura;
Ganad. Subsistencia: Ganadería de Subsistencia; Extracción RNNR: Extracción de Recursos Naturales No Renovables;
Aprov. Forestal BN: Aprovechamiento Forestal de Bosques Nativos; Fuegos: Fuegos de Origen Antrópico. Por su
incidencia regional, la Ganadería Comercial y la Agricultura constituyen las principales presiones sobre la conservación
asociadas al uso de la tierra en la Argentina.
Figure 1. Incidence of the threats based on the sum of each threat (axis y) in all the terrestrial ecoregions of Argentina.
Ganad. Comercial: Commercial Livestock Production; Agricultura: Agriculture; Invasiones Biológicas: Biological
Invasions; Urbanización: Urbanization and Infrastructure; Ganad. Subsistencia: Subsistence Livestock Ranching;
Plantaciones Forestales: Forestry Plantations; Extracción RNNR: Extraction of Non-Renewable Resources; Cacería:
Hunting; Aprov. Forestal BN: Native Forest Harvesting; Fuegos: Anthropic Fires: Turismo: Tourism. Based on their
regional incidence, Commercial Livestock Production, and Agriculture are the main threats on conservation associated
to land-use in Argentina.
Figura 2. Representación de las tres presiones
principales y su incidencia relativa, y de la sumatoria
de las incidencias relativas de las presiones restantes
(“Otras”, representadas en rosa pálido) en cada una
de las ecorregiones terrestres de la Argentina. Ganad.
Comercial: Ganadería Comercial; Urbanización:
Urbanización e Infraestructura; Ganad. Subsistencia:
Ganadería de Subsistencia; Extracción RNNR:
Extracción de Recursos Naturales No Renovables;
Aprov. Forestal BN: Aprovechamiento Forestal de
Bosques Nativos; Fuegos: Fuegos de Origen Antrópico.
Proyección Geográfica: proyección cónica equivalente
de Albers para Sudamérica.
Figure 2. Representation of the three main threats and
their relative incidence, and of the sum of the relative
incidences of the other threats (“Otras”, in pale pink),
in each of the terrestrial ecoregions of Argentina.
Ganad. Comercial: Commercial Livestock Production;
Agricultura: Agriculture; Invasiones Biológicas:
Biological Invasions; Urbanización: Urbanization
and Infrastructure; Ganad. Subsistencia: Subsistence
Livestock Ranching; Plantaciones Forestales: Forestry
Plantations; Extracción RNNR: Extraction of Non-
renewable Resources; Cacería: Hunting; Aprov.
Forestal BN: Native Forest Harvesting; Fuegos:
Anthropic Fires: Turismo: Tourism. Geographic
Projection: South America Albers Equal Area Conic.
312 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 313
Ecología Austral 30:304-320
a 100, fueron Aprovechamiento Forestal de
Bosques Nativos, Fuegos por Actividades
Antrópicas y Turismo (Figura 1). A pesar de
estas diferencias, las 11 presiones identificadas
se encontraron dentro de las tres principales en
al menos una de las 13 ecorregiones analizadas
(Figuras 1 y 2; Anexo 2).
Análisis de similitudes entre ecorregiones
en función de la incidencia de las presiones
asociadas al uso de la tierra








 










  












Fi gur a 4. Valores promedio de las presiones dentro de cada grupo derivado del análisis de
agrupamiento. Grupo 1 (Monte, Puna y Altos Andes): rojo; Grupo 2 (Boques Patagónicos): azul; Grupo
3 (Selva Paranaense y Selva de las Yungas): verde; Grupo 4 (Campos y Malezales, Chaco Húmedo,
Chaco Seco, Delta e Islas del Paraná, Estepa Patagónica Espinal, Esteros del Iberá, Pampa): amarillo.
Figure 4. Mean values of the threats within each group derived from the cluster analysis. Group 1 (Monte, Puna and
Altos Andes): red; Group 2 (Boques Patagónicos): blue; Group 3 (Selva Paranaense y Selva de las Yungas: green; Group
4 (Campos y Malezales, Chaco Húmedo, Chaco Seco, Delta e Islas del Paraná, Estepa Patagónica, Espinal, Esteros del
Iberá, Pampa): yellow.
312 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 313
Ecología Austral 30:304-320
DISCUSIÓN
Las presiones asociadas al uso de la
tierra con mayor incidencia relativa en las
ecorregiones terrestres de la Argentina, en
base a su extensión geográfica, probabilidad
de ocurrencia, severidad e irreversibilidad,
fueron la Ganadería Comercial y la Agricultura
(Figuras 1 y 2). Las mismas se encontraron
dentro de las principales presiones en ocho
y siete de las 13 ecorregiones terrestres de la
Argentina, respectivamente. En particular,
cinco presentaron una influencia conjunta
de la Ganadería Comercial y la Agricultura
como principales presiones asociadas al uso
de la tierra (Campos y Malezales, Esteros del
Iberá, Chaco Húmedo, Chaco Seco y Pampa).
De hecho, el agrupamiento realizado en este
trabajo separó a las ecorregiones terrestres
argentinas en grupos principalmente en
función de la incidencia de estas dos presiones
(i.e., ecorregiones agrícolas [grupo 4], y no-
agrícolas [grupos 1, 2 y 3]). Estos resultados
son concordantes con la situación mundial
actual, en la que ambos usos de la tierra se
reportan como la principal presión sobre la
conservación de los ecosistemas terrestres
(Díaz 2019; IPBES 2019).
      







,
     
,


    




 




 
   






  

 
,



, 



 
  




   













1. Monte, Puna y Altos Andes

     



 







  
  







      
314 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 315
Ecología Austral 30:304-320


,
 

  


   



 







 
.


    





 





 


2. Bosques Patagónicos



 

   












 
 




     
,
 



3. Selva Paranaense y Selva de las Yungas
 


 


   







  


 

 
   
,


  



      


  
   
 


,

(


314 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 315
Ecología Austral 30:304-320





4. Campos y Malezales, Chaco Húmedo,
Chaco Seco, Delta e Islas del Paraná, Estepa
Patagónica, Esteros del Iberá y Pampa
Las ecorregiones agropecuarias del país
conformaron un mismo grupo en el análisis
de agrupamiento, sobre todo por sus altos
valores de Ganadería Comercial o Agricultura
(en seis de estas ecorregiones ambas presiones
se encontraron dentro de las tres principales)
(Figuras 2 y 4; Anexo 2). En consecuencia,
estas ecorregiones se caracterizan también por
altos valores de superficie transformada, en
general asociados a bajos valores de superficie
protegida (Tabla 1). La Estepa Patagónica
constituye una excepción, con bajos niveles
de superficie transformada debido a que la
ganadería comercial se practica de forma
extensiva y con una dominancia de ganado
ovino (Anexo 1).





 


 

,
,   







 


 



 

,












         

    






  
 














 


   
,,

 












     

  

316 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 317
Ecología Austral 30:304-320


 

 




 

 

Consideraciones y alcance del diagnóstico


           
 






 












.
1) El método seleccionado de jerarquización
de presiones asigna igual ponderación a
las cuatro dimensiones de las mismas (i.e.,
probabilidad de ocurrencia, severidad,
extensión e irreversibilidad), asumiendo
que cada dimensión influye de igual manera
sobre la magnitud de la presión. A su vez, la
relevancia de cada presión cobra sentido en
relación a su posición relativa con respecto
a las otras presiones analizadas dentro
de una ecorregión determinada, pero no
necesariamente entre ecorregiones. Por otra
parte, cabe señalar que hay ecorregiones
donde aún las principales presiones detectadas
son bajas. La Urbanización, por ejemplo,
representa menos del 2% del área en todas
las ecorregiones, de modo que aunque es
identificada como una de las tres presiones
principales, su efecto al menos en términos de
superficie afectada es bajo.
      





   ,
,ranking,
,









    




,

3) Las presiones no actúan de manera
aislada, sino que son dinámicas en el tiempo
y el espacio, y existen interacciones positivas
y negativas entre ellas que no fueron
consideradas de manera explícita en esta
evaluación. Por ejemplo, la urbanización,
la agricultura intensiva, la minería o el
crecimiento del turismo pueden significar
presiones localmente intensas e importantes
para algunas ecorregiones, pero a su vez
pueden derivar en la disminución de otras
presiones, como la agricultura en tierras
marginales, la ganadería de subsistencia
o la cacería, en esa misma ecorregión u
otra. La acción conjunta de la presión y sus
interacciones requieren trabajos específicos
para evaluar las consecuencias sobre la
conservación a escala regional y en sistemas
tele-acoplados, lo cual excede el alcance de este
trabajo y de los métodos utilizados.

 , 







316 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 317
Ecología Austral 30:304-320
 





,
CONCLUSIONES
    








 










     
  

    
 






     
          




   







   


REFERENCIAS
Adamoli, J., E. Sennhauser, J. M. Acero, and A. Rescia. 1990. Stress and disturbance: vegetation dynamics in the dry
Chaco region of Argentina. Journal of Biogeography 17(4/5):491-500. https://doi.org/ 10.2307/2845381.
Aguiar, S., M. E. Mastrangelo, M. A. G. Collazo, G. H. C. Sans, C. E. Mosso, L. Ciuffoli, M. Schmidt, M. Vallejos, L.
Langbehn, M. Brassiolo, D. Cáceres, G. Merlinsky, J. M. Paruelo, L. Seghezzo, L. Staiano, M. Texeira, J. N. Volante, and
S. R. Verón. 2018. ¿Cuál es la situación de la Ley de Bosques en la Región Chaqueña a diez años de su sanción? Revisar
su pasado para discutir su futuro. Ecología Austral 28(2):400-417. https://doi.org/10.25260/EA.18.28.2.0.677.
Aide, T. M., M. L. Clark, H. R. Grau, D. López�Carr, M. A. Levy, D. Redo, M. Bonilla�Moheno, G. Riner, M. J.
Andrade�Núñez, and M. Muñiz. 2013. Deforestation and Reforestation of Latin America and the Caribbean (2001-
2010). Biotropica 45(2):262-271. https://doi.org/10.1111/j.1744-7429.2012.00908.x.
Baldi, G., S. Schauman, M. Texeira, S. Marinaro, O. A. Martin, P. Gandini, and E. G. Jobbágy. 2019. Nature representation
in South American protected areas: country contrasts and conservation priorities. PeerJ 7:e7155. https://doi.org/
10.7717/peerj.7155.
Ballari S. A., C. B. Anderson, and A. E. Valenzuela. 2016. Understanding trends in biological invasions by introduced
mammals in southern South America: a review of research and management. Mammal Review 46(3):229-240. https:
//doi.org/10.1111/mam.12065.
Baumann M., I. Gasparri, M. Piquer�Rodríguez, G. Gavier Pizarro, G. Grifths, P. Hostert, and T. Kuemmerle. 2017.
Carbon emissions from agricultural expansion and intensication in the Chaco. Global Change Biology 23(5):1902-
1916. https://doi.org/10.1111/gcb.13521.
Blundo, C., L. R. Malizia, J. G. Blake, and A. D. Brown. 2012. Tree species distribution in Andean forests: inuence of
regional and local factors. Journal of Tropical Ecology 28(1):83-95. https://doi.org/10.1017/S0266467411000617
Brondizio, E. S., J. Settele, S. Díaz, and H. T Ngo. 2019. Global assessment report on biodiversity and ecosystem services
of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat.
Brown, A., U. Martínez Ortiz, M. Acerbi, and J. F. Corcuera. 2006. La situación ambiental Argentina 2005. Fundación
Vida Silvestre Argentina, Buenos Aires.
Burkart, R., N. O. Bárbaro, R. O. Sánchez, and D. A. Gómez. 1999. Eco-regiones de la Argentina. Presidencia de la
Nación-Secretaría de Recursos Naturales y Desarrollo Sustentable-Administración de Parques Nacionales.
Cabrera, Á. L. 1976. Regiones togeográcas argentinas. Pp. 1-85 en W. F. Kugler (ed.). Enciclopedia Argentina de
Agricultura y Jardinería. Fascículo 1. Tomo 2, 2a ed. Acme. Buenos Aires. Argentina.
318 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 319
Ecología Austral 30:304-320
Cajal, J. L., and S. M. Bonaventura. 1998. Densidad poblacional y dinámica de los grupos familiares de guanacos y
vicuñas en la Reserva de Biosfera de San Guillermo. Pp. 161-167 en J. L. Cajal, J. J. García Fernández and R. Tecchi
(eds.). Bases para la conservación y manejo de la puna y cordillera frontal de la Argentina: El rol de las reservas de
biosfera. UNESCO (Uruguay)-FUCEMA, Montevideo. Uruguay.
Campanello, P. I., J. von Below, N. I. Hilgert, K. Cockle, M. Villagra, D. di Francescantonio, D. S. García, M. Jaramillo,
O. A. Gauto, and G. Goldstein. 2019. Is sustainable forest harvesting possible in Misiones? The need for multi-scale
management, research, high-impact interventions, and funding. Ecología Austral 29(01):122-137. https://doi.org/
10.25260/EA.19.29.1.0.756.
CBD, U. 2010. Strategic plan for biodiversity 2011-2020 and the Aichi targets. In Report of the Tenth Meeting of the
Conference of the Parties to the Convention on Biological Diversity.
Costanza R., R. d’Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo,
R. G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital.
Nature 387(6630):253. https://doi.org/10.1038/387253a0.
Daily G. C. 1997. Introduction: what are ecosystem services? Pp. 1-10 in G. C. Daily (ed.). Nature’s Services: Societal
Dependence on Natural Ecosystems. Island Press, Washington DC.
S. Díaz, J. Settele, E. Brondízio, H. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. Brauman, S. Butchart, K. Chan,
L. Garibaldi, K. Ichii, J. Liu, S. Subrmanian, G. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A.
Purvis, J. Razzaque, B. Reyers, R. Chowdhury, Y. Shin, I. Visseren-Hamakers, K. Wilis, and C. Zayas. 2019. Summary
for policymakers of the global assessment report on biodiversity and ecosystem services-unedited advance version.
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Bonn, Germany.
Dinerstein E., C. Vynne, E. Sala, A. R. Joshi, S. Fernando, T. E. Lovejoy, J. Mayorga, D. Olson, G. P.
Asner, J. E. M. Baillie, N. D. Burgess, K. Burkart, R. F. Noss, Y. P. Zhang, A. Baccini, T. Birch, N.
Hahn, L. N. Joppa, and E. Wikramanayake. 2019. A global deal for nature: Guiding principles,
milestones, and targets. Science Advances 5(4):eaaw2869. https://doi.org/10.1126/sciadv.aaw2869.
Dormann, C. F., and R. Strauss. 2014. A method for detecting modules in quantitative bipartite networks. Methods
in Ecology and Evolution 5(1):90-98. https://doi.org/10.1111/2041-210X.12139.
Dormann, C. F., J. Fruend, and B. Gruber. 2019. Visualising Bipartite Networks and Calculating Some (Ecological)
Indices. R-Package. URL: https://github.com/biometry/bipartite.
Edwards, P. J., and C. Abivardi. 1998. The value of biodiversity: where ecology and economy blend. Biological
Conservation 83(3):239-246. https://doi.org/10.1016/S0006-3207(97)00141-9.
Ellis, E. C., and N. Ramankutty. 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in
Ecology and the Environment 6(8):439-447. https://doi.org/10.1890/070062.
Fróna D., J. Szenderák, and M. Harangi-Rákos. 2019. The Challenge of Feeding the World. Sustainability 11(20):5816.
https://doi.org/10.3390/su11205816.
Gasparri N. I., and H. R. Grau. 2009. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972-2007).
Forest Ecology and Management 258(6):913-921. https://doi.org/10.1016/j.foreco.2009.02.024.
Gasparri, N. I., and Y. L. P. de Waroux. 2015. The coupling of South American soybean and cattle production frontiers:
new challenges for conservation policy and land change science. Conservation Letters 8(4):290-298. https://doi.org/
10.1111/conl.12121.
Gasparri, N. I., H. R. Grau, and L. V. Sacchi. 2015. Determinants of the spatial distribution of cultivated land in the
North Argentine Dry Chaco in a multi-decadal study. Journal of arid environments 123:31-39. https://doi.org/
10.1016/j.jaridenv.2015.05.005.
Grau, H. R., N. I. Gasparri, and T. M. Aide. 2005. Agriculture expansion and deforestation in seasonally dry forests
of north-west Argentina. Environmental Conservation 32(2):140-148. https://doi.org/10.1017/S0376892905002092.
Grau, H. R., N. I. Gasparri, and T. M. Aide. 2008. Balancing food production and nature conservation in the
Neotropical dry forests of northern Argentina. Global Change Biology 14(5):985-997. https://doi.org/10.1111/
j.1365-2486.2008.01554.x.
Grau, H. R., R. Torres, N. I. Gasparri, P. G. Blendinger, S. Marinaro, and L. Macchi. 2015. Natural grasslands in the
Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies. Journal
of Arid Environments 123:40-46. https://doi.org/10.1016/j.jaridenv.2014.12.006.
Grau, H. R., A. Izquierdo, J. Babot, and A. Grau. 2018. La Puna Argentina: naturaleza y cultura. Serie Conservación
de la Naturaleza, Fundación Miguel Lillo, Tucumán.
Hansen, A. J., R. S. DeFries, and W. Turner. 2012. Land use change and biodiversity. Pp. 277-299 in G. Gutman, A. C.
Janetos, C. O. Justice, F. F. Moran, J. F. Mustard, R. R. Rindfuss, D. Skole, B. L. Turner II and M. A. Cochrane (eds.).
Land change science. Springer, Dordrecht.
INTA. 2009. Informe Técnico Unicado PNECO 1643. Cobertura del suelo de la República Argentina. Año 2006-2007
(LCCS-FAO). INTA, Buenos Aires.
IPCC. 2014. Synthesis Report. Contribution of working groups I. ii and iii to the fth assessment report of the
intergovernmental panel on climate change. Pp. 138.
Izquierdo, A. E., and H. R. Grau. 2009. Agriculture adjustment, land-use transition and protected areas in Northwestern
Argentina. Journal of Environmental Management 90(2):858-865. https://doi.org/10.1016/j.jenvman.2008.02.013.
Izquierdo, A. E., J. Foguet, and H. R. Grau. 2015. Mapping and spatial characterization of Argentine High Andean
peatbogs. Wetlands ecology and management 23(5):963-976. http://dx.doi.org/10.1007/s11273-015-9433-3.
Izquierdo, A. E., H. R. Grau, C. J. Navarro, E. Casagranda, M. C. Castilla, and A. Grau. 2018. Highlands in Transition:
318 AS NANNI ET AL
ECORREGIONES TERRESTRES DE LA ARGENTINA 319
Ecología Austral 30:304-320
Urbanization, Pastoralism, Mining, Tourism, and Wildlife in the Argentinian Puna. Mountain Research and
Development 38(4):390-401. https://doi.org/10.1659/MRD-JOURNAL-D-17-00075.1.
Jabbour, J., and C. Flachsland. 2017. 40 years of global environmental assessments: A retrospective analysis. Environmental
Science and Policy 77:193-202. https://doi.org/10.1016/j.envsci.2017.05.001.
Kristensen P. 2004. The DPSIR framework. National Environmental Research Institute, Denmark, 10.
Lantschner M. V., V. Rusch and J. P. Hayes. 2013. Do exotic pine plantations favor the spread of invasive herbivorous
mammals in Patagonia? Austral Ecology 38(3): 338-345. https://doi.org/10.1111/j.1442-9993.2012.02411.x.
Le Polain de Waroux Y., M. Baumann, N. I. Gasparri, G. Gavier-Pizarro, J. Godar, T. Kuemmerle, R. Müller, F.
Vázquez, J. Norberto Volante, and P. Meyfroidt. 2018. Rents, actors, and the expansion of commodity frontiers
in the Gran Chaco. Annals of the American Association of Geographers 108(1):204-225. https://doi.org/10.1080/
24694452.2017.1360761.
Licata, J. A., J. E. Gyenge, M. E. Fernández, T. M. Schlichter, and B. J. Bond. 2008. Increased water use by ponderosa
pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. Forest Ecology and
Management 255(3):753-764. https://doi.org/10.1016/j.foreco.2007.09.061.
Luque, S., G. M. Pastur, C. Echeverría, and M. J. Pacha. 2011. Overview of biodiversity loss in South America: a
landscape perspective for sustainable forest management and conservation in temperate forests. Pp. 352-379 in C.
Li, R. Lafortezza and J. Chen (eds.). Landscape Ecology in Forest Management and Conservation. Springer, Berlin,
Heidelberg. https://doi.org/10.1016/j.foreco.2007.09.061.
Mace, G. M. 2014. Whose conservation? Science 345(6204):1558-1560. https://doi.org/10.1126/science.1254704.
Mastrangelo, M. E., and P. Laterra. 2015. From biophysical to social-ecological trade-offs: integrating biodiversity
conservation and agricultural production in the Argentine Dry Chaco. Ecology and Society 20(1):20. https://
dx.doi.org/10.5751/ES-07186-200120. Matteucci, S. D. 2012. Ecorregión Bosques Patagónicos. Pp. 489-547 in J. Morello,
S. D. Matteucci, A. F. Rodríguez and M. Silva (eds.). Ecorregiones y complejos ecosistémicos argentinos. Orientación
Gráca Editora. Buenos Aires, Argentina.
Matteucci, S. D. 2012. Ecorregión Campos y Malezales. Pp. 247-263 in J. Morello, S. D. Matteucci, A. F. Rodríguez
and M. Silva (eds.). Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráca Editora. Buenos Aires,
Argentina.
Matteucci, S. D. 2012. Ecorregión Espinal. Pp. 349-390 in J. Morello, S. D. Matteucci, A. F. Rodríguez and M. Silva (eds.).
Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráca Editora. Buenos Aires, Argentina.
Menzel, S., and J. Teng. 2010. Ecosystem services as a stakeholder�driven concept for conservation science. Conservation
Biology 24(3):907-909. https://doi.org/10.1111/j.1523-1739.2009.01347.x.
Meyfroidt, P., T. K. Rudel, and E. F. Lambin. 2010. Forest transitions, trade, and the global displacement of land use.
Proceedings of the National Academy of Sciences 107(49):20917-20922. https://doi.org/10.1073/pnas.1014773107.
Miradi. 2017. Adaptive Management Software for Conservation Projects. URL: https://www.miradi.org/.
Morello, J., W. Pengue, and A. Rodríguez. 2005. Etapas de uso de los recursos y desmantelamiento de la biota del
Chaco. Fronteras 4:1-17.
Neiff, J., and A. Poi de Neiff. 2005. Situación ambiental en la ecorregión Iberá. Pp. 177-184 en A. Brown, U. Martínez
Ortiz, M. Acerbi and J. Corcuera. La Situación Ambiental Argentina 2005. Fundación Vida Silvestre Argentina,
Buenos Aires.
Ojeda, R. A, C. E. Borghi, and V. G. Roig. 2002. Mamíferos de la Argentina. Biodiversidad y conservación de mamíferos
neotropicales. Pp. 23-64 en G. Ceballos and J. Simonetti (eds.). Diversidad y conservación de los mamíferos
neotropicales. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (México) Universidad Nacional
Autónoma de México.
Olson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. Powell, E. C. Underwood, J. A. D’Amico, I.
Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wettengel,
P. Hedao, and K. R. Kassem. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth. A new global
map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11):933-938. https:
//doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.
Ostrom, E. 2007. Sustainable social-ecological systems: an impossibility? Available at SSRN 997834. https://doi.org/
10.2139/ssrn.997834.
Paviolo, A., Y. E. Di Blanco, C. D. De Angelo, and M. S. Di Bitetti. 2009. Protection affects the abundance and activity
patterns of pumas in the Atlantic Forest. Journal of mammalogy 90(4):926-934. https://doi.org/10.1644/08-MAMM-
A-128.1.
Pesaresi, M., A. Florczyk, M. Schiavina, M. Melchiorri, and L. Maffenini. 2019. GHS settlement grid, updated and rened
REGIO model 2014 in application to GHS-BUILT R2018A and GHS-POP R2019A, multitemporal (1975-1990-2000-2015),
R2019A. European Commission, Joint Research Centre (JRC). https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-
BF9E64DA5218. URL: http://data.europa.eu/89h/42e8be89-54ff-464e-be7b-bf9e64da5218.
Piquer-Rodríguez, M., S. Torella, G. Gavier-Pizarro, J. Volante, D. Somma, R. Ginzburg, and T. Kuemmerle. 2015.
Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landscape Ecology 30(5):
817-833. https://doi.org/10.1007/s10980-014-0147-3.
Piquer-Rodríguez, M., V. Butsic, P. Gärtner, L. Macchi, L. M. Baumann, C. G. Pizarro, J. N. Volante, I. N. Gasparri, and
T. Kuemmerle. 2018. Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Applied
geography 91:111-122. https://doi.org/10.1016/j.apgeog.2018.01.004.
Politi, N., M. Hunter, and L. Rivera. 2012. Assessing the effects of selective logging on birds in Neotropical piedmont and
320 AS NANNI ET AL Ecología Austral 30:304-320
cloud montane forests. Biodiversity and Conservation 21(12):3131-3155. https://doi.org/10.1007/s10531-012-0358-3.
Politi, N., and L. Rivera. 2019. Limitations and advances to attain sustainable forest management in Southern Yungas
of Argentina. Ecología Austral 29(01):138-145. https://doi.org/10.25260/EA.19.29.1.0.753.
Quiroga, V. A., G. I. Boaglio, A. J. Noss, and M. S. Di Bitetti. 2014. Critical population status of the jaguar Panthera
onca in the Argentine Chaco: camera-trap surveys suggest recent collapse and imminent regional extinction. Oryx
48(1):141-148. https://doi.org/10.1017/S0030605312000944.
Quiroga, V. A., A. J. Noss, A. Paviolo, G. I. Boaglio, and M. S. Di Bitetti. 2016. Puma density, habitat use and conict with
humans in the Argentine Chaco. Journal for Nature Conservation 31:9-15. https://doi.org/10.1016/j.jnc.2016.02.004.
Redo, D. J., H. R. Grau, T. M. Aide, and M. L. Clark. 2012. Asymmetric forest transition driven by the interaction of
socioeconomic development and environmental heterogeneity in Central America. Proceedings of the National
Academy of Sciences 109(23):8839-8844. https://doi.org/10.1073/pnas.1201664109.
R Team. 2018. R: A language and environment for statistical computing.
Salafsky, N., R. Margoluis, K. H. Redford, and J. G. Robinson. 2002. Improving the practice of conservation: a conceptual
framework and research agenda for conservation science. Conservation Biology 16(6):1469-1479. https://doi.org/10.1046/
j.1523-1739.2002.01232.x.

,,   
   
.
,,
  

  



.
,.,


,,

.
,.,.


,,

.

.

..



,



... Estas producciones intensivas requieren la construcción de obras para el manejo del agua tales como endicamientos, canalizaciones y obstrucciones de cursos de agua, entre otras, con la consiguiente modificación del régimen hidrológico (Blanco y Méndez, 2010;Minotti, 2019;Nanni et al., 2020), y son realizadas por actores con altos niveles de capital y que en su mayoría no conocen el territorio y poseen una concepción ligada a los negocios y el mercado (Figura 4). Estas obras originan fuertes impactos negativos sobre las dinámicas y pulsos relacionados a los movimientos del agua y, por consiguiente, sobre la integridad de los humedales del Delta y su biodiversidad (Bó et al., 2010;Sica et al., 2016Sica et al., , 2018Magnano et al., 2019;Aquino et al., 2021a, 2021b, Nanni et al., 2021. ...
Article
Full-text available
Since the last three decades, the Argentinean productive model has been under a deep transformation with the consequent impacts on its natural ecosystems due to land use changes. In particular, the Delta of the Paraná River, a wetland socio-ecosystem which shapes an hydric, ecological, economic, cultural and population unit, has been strongly affected. In consequence, many socio-environmental conflicts have arisen because of the arrival of external stakeholders with different conceptions about the environmental features of wetlands and the ways of carrying out productive activities in them. In this paper we analyze these conflicts in the framework of commons, in order to understand values in dispute and power asymmetries related to use and management of complex socio-ecosystems. In addition, we discuss how a Wetland Law could help to solve these conflicts and the necessity to include the islanders´ perspectives for considering the territorial postures and visions.
... The current study site is located within the Pampa ecoregion where the original plant composition corresponds to the temperate grassland and its species composition varies according to the characteristics of the local climate and the soil. However, almost 96% of this ecoregion was modified by humans, mainly with the intensification of agricultural and livestock activities (Nanni et al., 2020). ...
Article
Evaluation of the diet of the pig (Sus scrofa) in natural settings may provide new views on diet optimization for growth and development of commercially raised piglets under farm conditions. A field study was conducted to gain insight in the diet and stomach characteristics of feral piglets. Forty animals (body weight: 4.6 ± 1.37 kg) were collected from the Bahía Samborombón (Buenos Aires, Argentina). Stomachs were weighed after storage in formalin and the particle size distribution of their contents was determined by wet sieving. Diet items present in their stomachs were classified and their proportional weight and relative abundance was calculated. Based on their dentition, 5, 16 and 19 piglets were approximately 1, 3–6 and 6–16 weeks of age respectively. Vegetable matter (mainly ‘leaves and stems’) was predominantly present in 39 animals. It represented on average 83 ± 36.4% of total stomach contents by weight. The stomachs of 12 piglets contained curd and represented on average 16 ± 35.1% by weight. Other diet items were less abundant or absent. The proportion of stomach particles retained were 24%, 13%, 22%, 13% and 28% for sieves with mesh sizes of 2000, 1000, 420, 210 and <210 µm respectively. For comparison, we used data of farmed piglets of similar age and fed a nutrient‐dense, finely ground diet. Feral piglets' relative empty stomach weights increased with age (p < 0.050), whereas this was not the case for farmed piglets. Relative stomach contents weight increased significantly with age only for farmed piglets (p < 0.050). We infer from our data that feral suckling piglets consumed a variety of non‐milk items, mainly consisting of vegetable material with a coarse particle size from their first week in life onwards. Their diet is associated with an enhanced stomach development compared to those of farmed piglets.
... The current study site is located within the Pampa ecoregion where the original plant composition corresponds to the temperate grassland and its species composition varies according to the characteristics of the local climate and the soil. However, almost 96% of this ecoregion was modified by humans, mainly with the intensification of agricultural and livestock activities (Nanni et al., 2020). ...
Thesis
Full-text available
Research with weaned piglets has provided information that dietary fibre (DF) is implicated in gastrointestinal (GIT) maturation and health. Dietary fibre can mitigate the risk for intestinal infections and diarrhoea occurring in pigs that are weaned at 3 to 4 weeks of age, which is common practice on most farms. There is a paucity of scientific information, however, on the role of DF in the diet of suckling pigs. A pig is born with a relatively immature gastrointestinal tract able to digest and absorb nutrients from sow milk. To attain capacity to digest diets containing high levels of vegetable feedstuffs the GIT needs to go through a process of maturation. In a natural setting, a large part of a pig’s diet consists of vegetable fibrous feedstuffs, such as leaves, roots, tubers, fruits, and seeds. Wild boar and feral piglets are anticipated to start consuming non-milk feed items already early in life, including vegetable material. This allows gradual adaptation of the GIT and its harbouring intestinal microbiota to the solid diet before weaning, which is completed in nature at 10-17 weeks of age. The diet of farmed pigs also contains a high proportion of vegetable material, with varying levels of DF. Commercial pre-weaning diets , on the other hand, are formulated to be highly digestible and nutrient-dense, using sow milk as the benchmark. In this regard, there seems to be a major difference in diet characteristics between the natural diet and a typical commercial low-fibre, nutrient dense piglet diet. The implications of this difference for the maturation of the GIT are not known. Chapter 1 provides a literature overview of the significant maturational changes in dentition and the GIT after birth. For this thesis, it was decided to focus on the stomach, small and large intestine, as these organs play a central role in feed digestion and absorption. The available information shows that early nutrition of piglets modulates many aspects of the maturational processes of the GIT and the residential microbiota. The microbiota, mostly bacteria, are starting to colonize the GIT of the piglet from the immediate prenatal period onwards, especially in the large intestine where they are most abundant. Its composition develops with age of the pig in a complex coexistence with the host and the diet. The microbiota thrive on undigested nutrients, sloughed off intestinal cells and secretions (e.g., mucus, enzymes) through a process called fermentation. From the fermentation of carbohydrates, mostly volatile fatty acids are produced, such as acetate, propionate and butyrate. Volatile fatty acids are an energy source for the intestinal mucosa and the host. Furthermore, they play a role in many body processes, such as immune modulation, mineral and water absorption in the hind gut among many others. The end- products from protein fermentation, such as ammonia and branched-chain fatty acids and biogenic amines are mostly regarded as a risk for intestinal health. It is generally accepted that the intestinal microbiota play a pivotal role in GIT maturation and general health of animals, but the underlying mechanisms are still largely unclear. Dietary fibres are characterized by the fact that the pig’s own enzymes are unable to digest them. Consequently, they pass through the stomach and small intestine to subsequently arrive at the level of the large intestine as substrate for the microbiota. For the older pig, the large intestines are well developed, and the microbiome herein capable to digest and ferment DF to a large extent (up to 70%), provided it is well adapted (‘primed’) to the DF. A well-developed microbiome possesses a wide array of enzymes capable of digesting and fermenting DF. Dietary fibres consist of an array of chemical compounds, such as cellulose, hemicellulose, oligosaccharides, lignin, and pectin. Collectively, these compounds determine the physicochemical characteristics of DF and their effect in the GIT. Solubility, in this respect, is relevant as it is associated with the fermentability of the DF by the intestinal microbiota. On the other hand, an insoluble DF may exert maturational effects too, for instance through its bulking and abrasive effects in the GIT. However, a paucity of data exists on how, next to sow milk, DF in supplemental diet affects GIT maturation in suckling piglets. For this thesis we hypothesized that DF is important for early-life GIT maturation. Hence, the aim of this PhD was to evaluate the impact of DF enriched supplemental diets on GIT maturation in suckling pigs, including the capacity and functionality of stomach, small and large intestine, and the priming of GIT microbiota to ferment a typical post-weaning diet with plant-derived carbohydrates. The research questions deduced from this hypothesis were formulated in Chapter 2. A first study was performed to answer the question whether feral piglets start to ingest vegetable material from early life onwards and how this may be associated with GIT maturation (Chapter 3). To this aim, feral piglets were collected, and their age was estimated based on body size and their dentition. Stomachs were weighed and contents were examined to determine particle size distribution and to classify the diet items. Vegetable matter (mainly ‘leaves and stems’) was predominantly present in most piglets, representing a large part of their diet (on average 83% of total stomach contents by weight). This was reported earlier for older wild boars and feral pigs. Approximately 25% of the stomachs of piglets contained curd (clotted sow milk) representing on average 16 % by weight. Other diet items (e.g., insects, fruits, seeds, mammals), were less abundant or absent. The data also indicated that a large proportion of their diets consisted of larger feed particles. The stomach development of the feral pigs appeared to be advanced when compared to stomach of farmed piglets of similar age fed a nutrient-dense, finely ground diet. We inferred from these data that feral suckling piglets consume a variety of non-milk items, mainly consisting of vegetable material with a coarse particle size from their first week of life onwards. Moreover, their diet is associated with an enhanced stomach development compared to those of farmed piglets. In a next experiment (Chapter 4), the effect of DF on GIT maturation in suckling piglets was studied. From day two of life onwards, sow suckled piglets were fed either a nutrient dense, low fibre control diet or diets enriched with two types of DF: a diet with a soluble fermentable DF from wheat; a diet with a largely non-fermentable purified cellulose, or a diet containing both DF sources. Piglets consumed the fibre-containing milk supplements and creep diets well. Upon weaning at 25 days of age, their GIT and large intestinal microbiota composition were evaluated. Stomach size and small intestinal maturation were not affected by diet. Large intestinal fill was increased with the soluble DF only. Large intestinal weight and length was increased in piglets consuming the fibrous diet; length mainly by the insoluble cellulose. Cellulose also decreased ileal pH and tended to increase ileal DM content compared to the control diet. Moreover, the concentration of volatile fatty acids tended to increase in the caecum and especially in the large intestine by supplementation with cellulose. The soluble DF source stimulated caecal propionate only. The microbiota composition showed a high individual variation and only limited dietary impact. Nonetheless, cellulose induced minor shifts in specific genera, with notable reductions of putative pathogens. It was concluded that the DF altered large intestinal morphology with little effect on the small intestine and stomach. Moreover, changes in the large intestine were associated with greater fermentation and changes of the microbiota, with more prominent effects from the low-fermentable cellulose. In Chapter 5, it was investigated whether piglets consuming fibrous supplemental diets prior to weaning were more resilient when exposed to an oral infection with enterotoxigenic E. coli (ETEC) one week after weaning. The suckling piglets were fed the same four supplemental diets as described for chapter 4. Upon weaning at approximately 25 days, piglets were fed the same low-fibre diet. Feed intake and body weight gain did not differ between treatments. Overall, indicators of GIT and general health of the piglets were similar between groups. Therefore, it was concluded that neither the supplementation of the soluble nor the insoluble DF source to the pre-weaning diet improved post-weaning growth or GIT health of piglets. In Chapter 6, the effect of inclusion of fine and coarsely ground oat hulls on gastrointestinal development of suckling pigs was studied. Piglets were fed one of three experimental diets. A finely ground low-fibre, nutrient dense diet served as control diet. For the high-fibre diets, heat-treated starch in the control diet was exchanged with finely or coarsely ground oat hulls. Oat hulls are a source of insoluble, slowly fermentable DF. The suckling piglets were fed the diets for approximately 3.5 weeks with their individual feed intake being recorded two times per day when separated from their dam. Feeding oat hulls did not impede clinical health or production performance of the piglets. The full stomach weights tended to be greater for the coarsely ground oat hulls compared to the finely ground oat hulls, whereas CON was intermediate. The coarse oat hulls increased GIT full weight and the weight of the caecum contents compared to piglets fed the control diet and the diet with finely ground oat hulls. Supplementing oat hulls increased villus height in the small intestines and dry matter concentration of the caecal contents. For the colon, inclusion of oat hulls increased its length, contents weight, short-chain fatty acid concentration and reduced total bacterial count as well as γ-proteobacteria count and proportion. Furthermore, feeding the coarse oat hulls reduced colonic crypt depth when compared to the finely ground oat hulls. It was concluded that supplementing oat hulls to a diet for suckling piglets exerted subtle developmental effects on gastrointestinal morphology and colonic microbial community. These effects were largely independent from the particle size of the oat hulls. In the last experiment (Chapter 7), the growth performance and faecal consistency of piglets from birth to eight weeks of age was recorded with the objective to evaluate the inclusion of oat hulls in the diet during suckling and in the nursery period. From two weeks prior to weaning until two weeks after weaning (phase 1), the same diets were fed as described in chapter 6. For phase 2 of the study (day 14-28 after weaning), the inclusion level of oat hulls was decreased from 15% to 5%. The inclusion of oat hulls resulted in a reduction of the dietary net energy concentration by 12% and 4% for phase 1 and 2, respectively. The general health of all piglets remained good, based on the low morbidity and mortality rates. Pre-weaning feed intake and growth were not affected by diet. Overall, faeces score, body weight gain, feed intake and feed efficiency were similar across treatments. The overall net energy efficiency for weight gain was improved for pigs fed the oat hull diets. It was concluded that diluting pre- and post-weaning diets with oat hulls did not significantly influence performance in piglets. In summary, with DF supplementation of diets for suckling piglets it was possible to alter the maturation of the gastrointestinal tract and large intestinal microbiota. This was associated with greater fermentation activity in the large intestine. The magnitude of the observed changes were, however, subtle. Early feeding of DF may represent a ‘window of opportunity’, but its relevance for post-weaning resilience of the piglet needs to be further elucidated. Still, the work described in this thesis shows that young pigs can adapt to fibrous diets, even before weaning, confirming data in grower-fattener pigs and sows. Further work is warranted to optimize DF nutrition in the youngest category of pigs, both with respect to inclusion level as well as for the period during which fibrous diets are fed. Increasing our understanding of the diet of pigs in nature may advance the development of healthy diets as part of a sustainable pig production system with high welfare standards.
... In addition, Argentina has an agriculture-oriented economy, with food production being a major driver of natural resources' use and depletion, and environmental degradation (Nanni et al. 2020;Jobbágy et al. 2021). Agriculture is well established and developed in the central part of the country, mainly in the Pampas, and it has expanded in the last decades, particularly towards the warmer and generally drier North (Viglizzo et al. 2011). ...
Article
Full-text available
Diets link human health with environmental sustainability, offering promising pressure points to enhance the sustainability of food systems. We investigated the health, environmental, and economic dimensions of the current diet in Argentina and the possible effects of six dietary change scenarios on nutrient adequacy, dietary quality, food expenditure, and six environmental impact categories (i.e., GHG emissions, total land occupation, cropland use, fossil energy use, freshwater consumption, and the emission of eutrophying pollutants). Current dietary patterns are unhealthy, unsustainable, and relatively expensive, and all things being equal, an increase in income levels would not alter the health dimension, but increase environmental impacts by 33-38%, and costs by 38%. Compared to the prevailing diet, the six healthier diet alternatives could improve health with an expenditure between + 27% (National Dietary Guidelines) to -5% (vegan diet) of the current diet. These dietary changes could result in trade-offs between different environmental impacts. Plant-based diets showed the lowest overall environmental impact, with GHG emissions and land occupation reduced by up to 79% and 88%, respectively, without significant changes in cropland demand. However, fossil energy use and freshwater consumption could increase by up to 101% and 220%, respectively. The emission of eutrophying pollutants could increase by up to 54% for all healthy diet scenarios, except for the vegan one (18% decrease). We conclude that the health and environmental crisis that Argentina (and other developing countries) currently face could be mitigated by adopting healthy diets (particularly plant-based), bringing in the process benefits to both people and nature. Supplementary information: The online version contains supplementary material available at 10.1007/s11625-021-01087-7.
... Cattle-ranching and agriculture are considered in this region to be the main causes of land-use change (Fehlenberg, 2015) and these activities have the greatest relative impact, based on its geographical extension, probability of occurrence, severity and irreversibility, even higher than fires, forest plantation and other uses (Nanni et al., 2020). ...
Article
Logging, grazing, wood extraction, and anthropogenic fires are pervasive throughout the subtropical dry vegetation of South America leading to changes in woodlands structure and ultimately its degradation. The Chaco region encompasses the second-largest forest in South America and has a long history of intensive use. We sought to characterize structure and heterogeneity of its woodlands across biogeographic subunits and climatic gradients, and evaluate structure controls. We quantified canopy height, cover, vertical complexity, vegetation amount above 3 m and total vegetation amount over 58 woodlands along the Chaco region by means of Terrestrial Laser Scanner. We assessed the relationship between three groups near the maximum, average and minimum values of each structural variables and precipitation, temperature and temperature of the coldest month using quantile regressions. We found a large variability in structural attributes within each biogeographical subunit, evidencing that woodland areas with similar structure across broad gradients of climate. This suggests a considerable impact of current and past land use in shaping woodland structure across the Chaco. Overall, structural variables were positively associated with precipitation and temperature, albeit more strongly to the former, except for canopy height, which showed a strong association with mean temperature of the coldest month. We hypothesize that land-use impact on woodland structure decreases with increasing precipitation, as the lack of water may limit the recovery of vegetation structure. Our results contribute to a better understanding of variation in key structural variables of Chaco woodlands in relation to climate and land use.
... Flooding Pampa grasslands and the forage they provide are the principal support of extensive livestock production in Argentina (Viglizzo et al., 2011). Nonetheless, this activity threatens this poorly conserved region (Nanni et al., 2020) because livestock grazing (Chaneton et al., 2002) and nutrient enrichment (Molina et al., 2021) affect plant diversity and composition. These grasslands comprise a diverse species-mix of cool-and warmseason forbs, legumes, and C3 and C4 graminoids (Perelman et al., 2001). ...
Article
Changes in livestock loads and eutrophication associated with human activities can modify the stability of grassland's aboveground net primary productivity (ANPP), by modifying the mean (μ) and/or standard deviation (σ) of ANPP. The changes in attributes of the plant community (i.e., species richness, species asynchrony, dominance) might in turn explain the ecosystem temporal (inter-annual) stability of grassland production. Here, we evaluated the interactive effects of changes in livestock loads and chronic nutrient addition on the temporal stability of ANPP (estimated as μ/σ) in temperate grasslands. We also assessed the role of different attributes of the plant community on ecosystem stability. We carried out a factorial experiment of domestic livestock exclusion and nutrient addition (10 g.m⁻².year⁻¹ of nitrogen, phosphorus, and potassium; n = 6 blocks) during five consecutive years in a natural grassland devoted to cattle production (Flooding Pampa, Argentina). Domestic livestock exclusion reduced ANPP stability by 65%, regardless of nutrient load, mainly by the increase of ANPP standard deviation. This reduction in ANPP stability after livestock exclusion was associated mostly with higher plant species dominance and also with reductions in plant effective richness and in the asynchrony of grassland's species. Despite not finding direct negative effects of eutrophication on ANPP stability, chronic nutrient addition decreased effective species richness and asynchrony, which may translate into reductions in ANPP stability in the future. Our findings highlight that the presence of livestock maintains the temporal stability of ANPP mainly by lowering the dominance of the plant community. However, increases in nutrient loads in grasslands devoted to livestock production may threaten grassland's stability.
Preprint
Full-text available
The relationship between humans, wildlife and disease transmission can be complex and context-dependent, and disease dynamics may be determined by idiosyncratic species. Therefore, an outstanding question is how general is the finding that species with faster life histories are more probable hosts of zoonoses. Ecological knowledge on species, jointly with public health data, can provide relevant information on species that should be targeted for epidemiological surveillance or management. We investigated whether mammal species traits can be good indicators of zoonotic reservoir status in an intensified agricultural region of Argentina. We find support for a relationship between reservoir status and the pace of life syndrome, confirming that fast life histories can be a factor of zoonotic risk. Nonetheless, we observed that for certain zoonosis, reservoirs may display a slow pace of life, suggesting that idiosyncratic interactions can occur. We conclude that applying knowledge from the life history-disease relationship can contribute significantly to disease risk assessment. Such an approach may be especially valuable in the current context of environmental change and agricultural intensification.
Technical Report
Full-text available
(Ver español abajo) The growing loss of native grasslands is a worldwide challenge, not only in terms of addressing the agents of change but also in terms of accurately tracking their loss across landscapes. Having started less than 10 years ago, Plowprint and MapBiomas are two leading initiatives that have been successfully applied to track land-use changes in North America´s Great Plains and South American Pampas, respectively.// La creciente pérdida de pastizales nativos es un desafío mundial, no solo en términos de abordar los agentes de cambio, sino también en términos de rastrear con precisión su pérdida en los paisajes. Habiendo comenzado hace menos de 10 años, Plowprint y MapBiomas representan dos iniciativas líderes que se han aplicado con éxito para rastrear los cambios en el uso de la tierra en las Grandes Planicies de América del Norte y las Pampas de América del Sur, respectivamente.
Article
Full-text available
The livestock sector contributes significantly to the resource-use and pollution from food systems. Therefore, assessing the current and future environmental impacts of livestock production under different systems in different countries, has become an important area of solution-oriented research in sustainability science. We performed a cradle-to-farm-gate life cycle analysis to quantify biomass consumption (edible and non-edible for humans), land occupation (including cropland), greenhouse gas (GHG) emissions, and the use of fossil energy, synthetic fertilizers and pesticides related to beef, chicken, pork, milk and egg production in Argentina, a major producer and consumer of animal foods. We found that in 2016 the livestock sector consumed a total of 157 Mt of biomass (87% non edible for humans), required 66.2 Mha of land, of which 7.01 Mha were cropland, and emitted 157 Mt CO2-eq to the atmosphere (46 Mt CO2-eq from land-use change). In addition, 83 PJ of fossil energy were used, including that for the manufacture of 534 kt of N–P–S synthetic fertilizers and 59.6 kt of active ingredients of synthetic pesticides. However, the relative participation of each livestock group on the total environmental footprints was different, being beef the dominant one for all the indicators. When footprints per unit of protein weight were analyzed, all products had similar values regarding edible-biomass consumption, fossil energy use and pesticide use. However, delivering proteins from beef required between 12 and 28 times more land, and emits 6–34 more GHGs than the rest of the livestock products. The options for reducing such impacts are briefly discussed, emphasizing that solutions have to be tailored based on the management traditions and associated with the country's high ecological heterogeneity.
Book
Full-text available
Prologo Altura donde el tiempo parece detenerse entre llanuras y valles, donde parece acelerarse. Sol intenso, viento helado; plantas, animales y bacterias que para sobrevivir han desarrollado formas de vida y asociaciones únicas. Comunidades criollas e indígenas, empresas mineras, turistas, montañistas. Mirar al llano, mirarse desde el llano. Uno de los sitios más tempranos de asentamiento humano en América de Sur. El borde sur del desarrollo preeuropeo de la agricultura, la ganadería y el temprano imperialismo. Fronteras que separan Argentina, Chile y Bolivia; tal vez demasiado respetadas por gobiernos y académicos. Una de las primeras regiones más “desarrolladas” del pasado; una de las más marginales del presente. Una de las únicas ecorregiones donde la biomasa de animales nativos compite con la de los domesticados. Suelo desnudo y erosión, que desnuda fósiles de millones de años y minerales valiosos; oro, plata, cobre; ayer gran fuente de sal de mesa, hoy la principal reserva de litio de un mundo ávido de litio. Volcanes (los más altos del mundo), salares enormes, lagunas azules y verdes, puestos, restos arqueológicos, choiques, vicuñas, zorros, pumas, pastores, aguas calientes o muy frías, nieve. Archipiélago de vegas verdes donde florece la biodiversidad que sirvió de puerto a los arrieros navegantes del desierto. Todo eso es la Puna, y más. Cerca de 80 autores de las más variadas disciplinas, en 23 capítulos y casi 30 recuadros se juntan en este libro para tratar de compilar mucho de lo que se sabe de todo esto. Y mostrar, por acción u omisión, lo que no se sabe: preguntas que, como los caminos de la Puna —por lo común solitarios, extensos, inhóspitos, bellísimos— presagian un hallazgo, una llegada, un retorno. Más caminos y más preguntas. Los Editores, julio 2018
Article
Full-text available
Background. South America faces strong environmental pressures as a result of agriculture and infrastructure expansion and also of demographic growth, demanding immediate action to preserve natural assets by establishing protected areas. Currently, 7.1% of the (sub)continent is under strict conservation categories (I to IV, IUCN), but the spatial distribution of these 1.3 × 10 6 km 2 is poorly understood. We evaluated the representation of nature within the networks of protected areas, map conservation priorities and assess demographic, economic or geopolitical causes of existing protection patterns. Methods. We characterized nature representation by looking at two components: the extent and the equality of protection. The first refers to the fraction of territory under protection, while the second refers to the homogeneity in the distribution along natural conditions of this protected fraction. We characterized natural conditions by either 113 biogeographical units (specifically, ecoregions) or a series of limited and significant climatic, topographic and edaphic traits. We analyzed representation every ten years since 1960 at national and continental levels. In the physical approach, histograms allowed us to map the degree of conservation priorities. Finally, we ranked the importance of different economic or geopolitical variables driving the observed distributions with a random forest technique. Results. Nature representation varied across countries in spite of its priority in conservation agendas. In Brazil, Peru and Argentina there are still natural conditions with no formal protection, while in Bolivia and Venezuela, protected areas incorporate the natural diversity in a more balanced manner. As protected networks have increased their extent, so did their equality across and within countries over time. Our maps revealed as top continental priorities the southern temperate, subhumid and fertile lowland environments, and other country-specific areas. Protection extent was generally driven by a low population density and isolation, while other variables like distance to frontiers, were relevant only locally (e.g., in Argentina).
Article
Full-text available
The aim of the present research is to provide a comprehensive review about the current challenges related to food security and hidden hunger. Issues are presented according to major factors, such as growing population, changing dietary habits, water efficiency, climate change and volatile food prices. These factors were compiled from reports of major international organizations and from relevant scientific articles on the subject. Collecting the results and presenting them in an accessible manner may provide new insight for interested parties. Accessibility of data is extremely important, since food security and its drivers form a closely interconnected but extremely complex network, which requires coordinated problem solving to resolve issues. According to the results, the demand for growing agricultural products has been partly met by increasing cultivated land in recent decades. At the same time, there is serious competition for existing agricultural areas, which further limits the extension of agricultural land in addition to the natural constraints of land availability. Agricultural production needs to expand faster than population growth without further damage to the environment. The driving force behind development is sustainable intensive farming, which means the more effective utilization of agricultural land and water resources. Current global trends in food consumption are unsustainable, analyzed in terms of either public health, environmental impacts or socio-economic costs. The growing population should strive for sustainable food consumption, as social, environmental and health impacts are very important in this respect as well. To this end, the benefits of consuming foods that are less harmful to the environment during production are also to be emphasized in the scope of consumption policy and education related to nutrition as opposed to other food types, the production of which causes a major demand for raw materials.
Article
Full-text available
Sustainability science recognizes the importance of the integrated assessment of the ecological and social systems in land-use planning. However, most studies so far have been conceptual rather than empirical. We developed a framework to characterize the social-ecological systems heterogeneity according to its functioning through the identification of social–ecological functional types (SEFT). The SEFT framework builds on the plant, ecosystem and agent functional type approaches, taking a step forward to integrate the dimensions of social–ecological systems into an operational product to characterize administrative units in a hierarchical way. To illustrate this novel framework, we described the heterogeneity of SEFT in the Argentine Chaco by clustering administrative entities. This area is a global deforestation hotspot and has diverse social actors that harness ecosystem services in multiple, and sometimes contrasting and conflictive, ways which determines an urgent need for land-use planning. We combined data from national census and remote sensing to identify SEFT by clustering census tracts based on 17 input variables that integrate key human, ecological and interaction processes across landscapes. We identified three classes and eight subclasses of SEFT. Ecological variables defined the first level of heterogeneity (classes), while human variables and the variables of interactions between the human and ecological components defined a second level of heterogeneity (subclasses). The degree of anthropization and mean annual productivity were important variables to explain the first two axes in the ordination (32% of the total variance). This framework offers a conceptually novel and comprehensive approach to understand the spatial heterogeneity of social–ecological systems functioning, which could play a pivotal role to support conservation or land-use planning in rural areas.
Article
Full-text available
Hasta la actualidad, los bosques de las Yungas Australes se manejaron sólo para proveer madera de unas pocas especies arbóreas con alto valor económico. Extracciones sucesivas sin respetar los tiempos de recuperación del sistema llevaron a que una gran proporción de esta ecorregión se encuentre empobrecida y simplificada, lo que hace que estos bosques sean más propensos a ser transformados a otros usos de la tierra. Por esta razón es necesario una pronta adopción de lineamientos de manejo forestal sostenible en las que se incluya el amplio rango de valores que estos bosques proveen (e.g., biodiversidad y servicios ecosistémicos). Actualmente, existen lineamientos para mantener una producción sostenible de madera y disminuir los efectos negativos de la intervención silvícola, y también se dispone de una cantidad de información que permite empezar a delinear pautas de manejo forestal ecológicamente sostenible para otros valores del bosque de las Yungas Australes. Sin embargo, en esta ecorregión, dichos lineamientos fueron en su mayoría ignorados. Opinamos que esto puede deberse a la falta de un adecuado escenario socio-económico y político, enmarcado en una política forestal a largo plazo. Es necesario contar con compensaciones económicas que permitan mejorar la rentabilidad del bosque al incentivar a los propietarios a cambiar a prácticas de manejo forestal sostenible. Otra posibilidad debería ser reconocer y pagar por los diversos servicios ecosistémicos que las Yungas Australes proveen. La implementación de un esquema de manejo forestal sostenible permitirá que estos bosques puedan seguir brindando distintos bienes y servicios que benefician a distintos actores sociales que dependen de las Yungas Australes.
Article
Full-text available
The Global Deal for Nature (GDN) is a time-bound, science-driven plan to save the diversity and abundance of life on Earth. Pairing the GDN and the Paris Climate Agreement would avoid catastrophic climate change, conserve species, and secure essential ecosystem services. New findings give urgency to this union: Less than half of the terrestrial realm is intact, yet conserving all native ecosystems—coupled with energy transition measures—will be required to remain below a 1.5°C rise in average global temperature. The GDN targets 30% of Earth to be formally protected and an additional 20% designated as climate stabilization areas, by 2030, to stay below 1.5°C. We highlight the 67% of terrestrial ecoregions that can meet 30% protection, thereby reducing extinction threats and carbon emissions from natural reservoirs. Freshwater and marine targets included here extend the GDN to all realms and provide a pathway to ensuring a more livable biosphere.
Article
Full-text available
Land use change is a key component of regional environmental change. In mountain regions, where conditions for agriculture and human life are often difficult, land use trends are dominated by changes in the population's distribution across rural and urban areas and shifts in the main human activities. In the Argentinian puna—a high-elevation subtropical plateau of about 95,000 km2 situated above 3200 masl—land is chiefly used for grazing, mining, and tourism. In this article, we analyze trends in these land uses over the last 57 years in the context of climatic changes toward drier and warmer conditions. Since 1960, the human population grew from 80,000 to 130,000; but this increase largely occurred in the scattered urban centers, while the rural population decreased. The main livestock— sheep—showed a net decrease of around 100,000 animals (–18.5%), with numbers increasing between 1960 and 1980 and then dropping markedly. The number of mining operations declined during the 1970s and 1980s and then rose sharply, reaching a 30% increase since the 1990s. Simultaneously, structural wild vicuña populations increased from a few thousand to around 130,000. These results show that environmental changes over the past half century involved a major wildlife recovery associated with a change from widespread extensive grazing to intensive but spatially limited impacts around mining operations and growing urban centers. Tourism emerged as a new activity over the last decades, but the environmental impacts have been poorly studied. To promote local development and regional conservation, research priorities should include (1) empirical assessments of the ecological consequences of land use changes, such as grazing regimes shifting from domestic to wild herbivores, as well as the impacts of mining, tourism, and urbanization on wetlands and hydrological regimes; (2) modeling of future scenarios of mining and tourism expansion and resulting conflicts with environmental conservation; and (3) coproduction of knowledge about interactions among land uses, climate change, and the different decision-making agents.
Article
Full-text available
En un complejo escenario ambiental, productivo y socioeconómico, el 28 de noviembre de 2007 fue sancionada en Argentina la Ley Nacional Nº 26.331 de “Presupuestos Mínimos de Protección Ambiental de los Bosques Nativos" (conocida como "Ley de bosques") con el propósito de proteger los bosques nativos a escala nacional. En este artículo nos proponemos realizar una síntesis crítica de la información disponible acerca de esta ley a diez años de su sanción, con una aproximación que toma en cuenta aspectos ambientales, económicos y sociales. Caracterizamos el desempeño de esta ley en la Región Chaqueña en cuanto a diferentes dimensiones, identificamos sus principales desafíos y describimos una serie de propuestas que desde el sector de Ciencia y Técnica pueden contribuir a su (re)diseño e implementación en el contexto de las actualizaciones de los Ordenamientos Territoriales de Bosques Nativos provinciales. Para ello, integramos información disponible proveniente de distintas fuentes, tales como normativas (nacionales y provinciales), literatura científica, informes de organismos estatales y de ONG y artículos periodísticos. La Ley de Bosques instaló en la opinión pública de nuestro país la problemática vinculada a la pérdida de bosques nativos y se ha posicionado como el principal instrumento de política forestal nacional para su protección. Si bien hubo una reducción en las tasas de deforestación en la región Chaqueña, no existen evidencias certeras de que esta reducción se deba a su aplicación. La Ley de Bosques en la Región Chaqueña presenta una serie de desafíos para mejorar su desempeño en cuanto a su efectividad, equidad y legitimidad social. En este trabajo se presentan diez observaciones que emergen de la revisión realizada. Por otro lado, se esbozan una serie de propuestas de investigación y acción en torno a la ley vinculadas a esas observaciones.
Article
Agricultural expansion and intensification in South America's dry forests and grasslands increase agricultural production, but also result in major environmental trade-offs. The Pampas and Chaco regions of Argentina have been global hotspots of agricultural land-use change since the 2000s, yet our understanding of what drives the spatial patterns of these land-use changes remains partial. We parameterized a net returns model of agricultural land-use change to estimate the probability of agricultural expansion (conversions of woodlands to either cropland or grazing land) and agricultural intensification (conversion of grazing land to cropland) at the 1-km scale for the years 2000 and 2010. Uniquely, our model allowed us to quantify the importance of underlying causes (i.e., changes in agricultural profit) and spatial determinants (i.e., soil fertility, distance to markets, etc.), for Argentina's prime agricultural regions as a whole. We found that cropland and grazing land expansion into woodlands was much less sensitive to changes in profit-related factors than agricultural intensification. Profit-related variables, were a particularly strong cause of intensification in the Pampas, where cropland profits rose by 29% (compared to 18% in the Chaco). This suggests that further conversions of grazing land to cropland in the Pampas and Chaco is likely as long as agricultural demand, and thus returns to agriculture, continue to be high. The moderate impact of profit-related factors on affecting woodland conversion rates also suggests a limited potential of economic policies that affect marginal profits (e.g., taxes or subsidies) to alter deforestation rates and patterns in major ways. Policies that target socioeconomic variables not included in our profit-focused framework (e.g., capital availability), area-based interventions (e.g., land zoning), or less-profit oriented actors (e.g., via community-based management) might be more effective in addressing deforestation rates in the Chaco.
Article
Theories of frontier expansion in the last four decades have been mostly shaped by studies of state-driven smallholder colonization. Modern-day agricultural frontiers, however, are increasingly driven by capitalized corporate agriculture operating with little direct government intervention. The expansion of contemporary frontiers has been explained by the existence of spatially heterogeneous “abnormal” rents, which can be caused by cheap land and labor, technological innovation, lack of regulations, and a variety of other incentives. Here, we argue that understanding the dynamics of these frontiers requires considering the differential ability of actors to capture such rents, which depends on their access to production factors and their information, preferences, and agency. We propose a new conceptual framework drawing on neo-classical economics and political economy, which we apply to the South American Gran Chaco, a hotspot of deforestation for soy and cattle production. We divide the region into a set of distinct frontiers based on satellite data, field interviews, and expert knowledge, to review the drivers and actors of agricultural expansion in these frontiers. We show that frontier expansion in the Chaco responded to the rents created by new agricultural technologies, infrastructure, and rising producer prices, but that the frontier dynamics were strongly influenced by actors’ ability to capture or influence these rents. Our findings thus highlight that understanding contemporary commodity frontiers requires analyzing the novel ways by which the agency of particular groups of actors shapes land-use outcomes.