ArticlePDF Available

Plant Responses to UV Blocking Greenhouse Covering Materials: A Review

Authors:

Abstract and Figures

Pure polyethylene (PE) is enriched with several additives to make it a smart application material in protected cultivation, as a cover material for either greenhouses or screenhouses. When this material completely or partially absorbs ultraviolet (UV) solar radiation, then it is called UV blocking material. The current work presents a review on the effects of the UV blocking covering materials on crop growth and development. Despite the passage of several years and the evolution of the design technology of plastic greenhouse covers, UV blocking materials have not ceased to be a rather interesting technique for the protection of several vegetable and ornamental species. Much of the research on UV blocking materials focuses on their indisputable effect on reducing the activity of pests and viral-related diseases, rather than on the effects on the crop physiology itself. In the present paper, representative studies dealing with the effect of the UV blocking materials on the agronomic factors of different crops are presented and discussed. The results reveal that UV blocking materials have mainly positive effects on the different plant physiological functions, such as photosynthesis and transpiration rate, and on growth characteristics, while they might have a negative effect on the production and content of secondary compounds, as anthocyanins and total phenolics.
Content may be subject to copyright.
Agronomy2020,10,1021;doi:10.3390/agronomy10071021www.mdpi.com/journal/agronomy
Review
PlantResponsestoUVBlockingGreenhouse
CoveringMaterials:AReview
Nikolaos
Katsoulas
1,
*,AnastasiaBari
1
andChrysoulaPapaioannou
2,
*
1
DepartmentofAgricultureCropProductionandRuralEnvironment,SchoolofAgriculturalSciences,
UniversityofThessaly,FytokouStr,38446Volos,Greece;nkatsoul@uth.gr
2
DepartmentofAgrotechnology,SchoolofAgriculturalSciences,UniversityofThessaly,
41500Larisa,Greece
*Correspondence:nkatsoul@uth.gr(N.K.);chpapa@uth.gr(C.P.);
Tel.:+302421093249(N.K.);+302410684524(C.P.)
Received:01June2020;Accepted:12July2020;Published:15July2020
Abstract:Purepolyethylene(PE)isenrichedwithseveraladditivestomakeitasmartapplication
materialinprotectedcultivation,asacovermaterialforeithergreenhousesorscreenhouses.When
thismaterialcompletelyorpartiallyabsorbsultraviolet(UV)solarradiation,thenitiscalledUV
blockingmaterial.ThecurrentworkpresentsareviewontheeffectsoftheUVblockingcovering
materialsoncropgrowthanddevelopment.Despitethepassageofseveralyearsandtheevolution
ofthedesigntechnologyofplasticgreenhousecovers,UVblockingmaterialshavenotceasedtobe
aratherinterestingtechniquefortheprotectionofseveralvegetableandornamentalspecies.Much
oftheresearchonUVblockingmaterialsfocusesontheirindisputableeffectonreducingtheactivity
ofpestsandviralrelateddiseases,ratherthanontheeffectsonthecropphysiologyitself.Inthe
presentpaper,representativestudiesdealingwiththeeffectoftheUVblockingmaterialsonthe
agronomicfactorsofdifferentcropsarepresentedanddiscussed.TheresultsrevealthatUV
blockingmaterialshavemainlypositiveeffectsonthedifferentplantphysiologicalfunctions,such
asphotosynthesisandtranspirationrate,andongrowthcharacteristics,whiletheymighthavea
negativeeffectontheproductionandcontentofsecondarycompounds,asanthocyaninsandtotal
phenolics.
Keywords:polyethylene;ultravioletradiation;cropresponse;fruitcolorpigmentation;vegetative
growth
1.Introduction
Theconcernforsaferfoodandenvironmentalprotectionisincreasingamongconsumers.
Regulationsonmaximumresiduelimitsincropproductsarebecomingstricter.Growers’/retailers’
commercialcontractsoftendemandminorpesticideusewithincultivationprocedure.Inaddition,
theproductioncostofvegetablescouldbereducedbyadoptingtechniqueswithlimitedchemicaluse
andalternativemethodsforsufficientpestsanddiseasescontrol.Inthisdirection,theuseofUV
blockinggreenhousecoveringmaterialsisalignedwiththecreationofanunfavorableenvironment
forgreenhousecrops’enemies.Manyauthors[1–4]pointedoutthattheuseofUVblockingfilmsas
greenhousecoverleadstodecreasedinsectpopulationandfungaldiseases.Thus,asignificant
numberofgreenhousegrowersindeedusessuchtypeoffilms.However,thesematerialsalsohave
severaleffectsoncropgrowthanddevelopment.PlantresponsestoUVBcanbephotomorphogenetic
andprotective[5].
Growthanddevelopmentofplantsdependsonthepresenceofphotoreceptors(phototropins,
cryptochromeandphytochrome).Phototropinshavetheabilitytomediatelightresponsesand
Agronomy2020,10,10212of17
optimizethephotosyntheticyield.TheUVA/bluelightsensingcryptochromesandthered/farred
sensingphytochromescoordinatelycancontrolseedlingestablishment,entrainmentofthecircadian
clock,andthetransitionfromvegetativetoreproductivegrowth.Moreover,phytochromesarethe
mainphotoreceptorstocontrolseedgerminationandshadeavoidanceresponses[6].
RedandFarRedlightisabsorbedbyphytochromesthatarerelatedtophotomorphogenetic
reactionsoftheplants.However,photomorphogeneticresponseshavebeenalsoreportedasplant
reactiontoUVlightregion[7].
PhotomorphogeneticresponsestoUVradiationaremediatedbythephotoreceptorUV
ResistanceLocus8(UVR8).Transcriptomeanalysesinmanyspecieshavedemonstratedthat
exposuretoUVBradiationdifferentiallyregulatestheexpressionofhundredsofgenesindiverse
functionalcategories.UVradiationcanchangecellmembranecharacteristicsthatmaynotonlyresult
inchangesinmembranepermeabilityandionicbalance,butmayalsobeultimatelyresponsiblefor
thepartialinhibitionofphotosynthesisandrespiratorychanges[8].Respirationdependsprimarily
onphotosynthesis,astherespirationprocessconsumesthecarbonsthatareproducedfrom
photosynthesis[9].
RegardingthegreateraccumulationofsecondarycompoundsinthepresenceofUVradiation,
ithasbeenreportedthatthesecompoundsaccumulateinleavesofhigherplantstoscreenout
harmfulUVradiation[10].UVabsorbingpigmentssuchasflavonoidsprotecttheplantby
specificallyabsorbinginthe280–340nmwavelengthregion,thusdecreasingUVpenetrationinto
underlyingtissue[11].UVradiationalsohasanindirectdamagingeffectonthechlorophyllaandb
contentsofplants[12],andthusahigherphotosynthesisratemaybeexpectedunderabsenceofUV
light.PlantsecondarymetabolitesthatareaffectedbyUVlight,areimportantduetotheirhealth
promotingproperties.UseofUVblockingcoveringmaterialscanleadtoareductioninsecondary
plantcompounds,suchasphenolics,flavonoidsandcarotenoids.
StomatalbehaviorisalsoaffectedbyUVradiation,althoughitisanintegratedresponsetoa
largenumberofenvironmentalfactorsincludingCO2,humidity,radiation,temperatureandwater
supply.IthasbeenfoundthatUVradiationcanaffectstomatalbehaviorinawavelengthdependent
manner.UVAwavelengthsstimulatetheopeningofstomata,whileUVCmayinducestomatal
closure[11].
Whenreviewingtherelevantscientificfindings,itwasobservedthatmostoftheresearchwork
conductedusuallyhadthestudyoftheeffectsofUVblockinggreenhousecoveringmaterialsonpests
anddiseasesasaprimaryobjective,whiletheeffectsonthegreenhouseenvironmentandoncrop
growthanddevelopmentareusuallyasecondaryobjective.
Theaimofthisworkistopresentareviewoftheresearchcarriedoutinrelationtotheeffectsof
UVblockinggreenhousecoveringfilmsoncropgrowthanddevelopment.Thereviewincludessome
definitionsforsolarradiationandapresentationofthedifferenttypesofgreenhousecovering
materialstestedfortheirUVradiationpropertiesaroundtheworld.Itmakesanassessmentofthe
effectsoftheUVblockingcoveringmaterialsonplantfunctions,asphotosynthesis,respiration,
transpiration,germination,seedlingsandpigmentsynthesis.Plantsgrowthcharacteristicsasroots,
leavesandstemsgrowth,floweringandfruitsetting,butalsoplantperformance,yieldandearliness,
havebeenstudied.Moreover,thisreviewpresentstheinstrumentationandthemethodologyneeded
toidentify,quantifyandevaluatetheeffectsoftheUVblockingcoveringmaterialsoncropgrowth
anddevelopment.Finally,adiscussiononthedifferencesobservedbetweenthedifferentregionsand
cropsstudiedisgiven.
Thesolarradiationthatentersinagreenhouseisrangingmainlybetween280nmand3000nm
[13].Takingintoaccounttheeffectsofsolarradiationonplantgrowthanddevelopment,theabove
rangecanbedividedinthreebasicwavebands,namely:Ultravioletradiation(UV:280–400nmthat
isalsodividedinUVB:280–320nmandUVA:320–400nm),PhotosyntheticallyActiveRadiation
(PAR:400–700nm),andNearInfraredRadiation(NIR:700–1400nm)[14].ThepercentageofUV,PAR
andNIRpartsofsolarenergyincidentinopenfieldduringacleardayvariesfrom2.8%to7%,42.7%
to71%,and30%to54%,respectively[15],whiletheUVradiationisfurtherdividedintoUVA(95%)
andUVB(5%)[16].
Agronomy2020,10,10213of17
Sincethecoverisexposedtodifferentambientconditions,itusuallyconsistsofmanylayersin
ordertoimproveitsstrength,durability,antidripping,etc.,aswellasitsradiometricproperties.
Manytypesofplasticareusedinprotectedcultivationascoveringmaterials.Themostcommon
plasticmaterialispolyethylene(PE),butmanyotherssuchaspolyvinylchloride(PVC),ethylene
vinylacetate(EVA),polyester,etc.arealsoused.Therightcoverhastohavemanypropertiesnot
onlytoaddressharshenvironmentalconditionsbutalsotoconserveresources(energy,water,capital,
etc.).Forallthesereasons,differentadditivesareincludedinacovermaterialinordertotransform
ittoaclever‘greenhousecoveringmaterial’.Theseadditivesintendtoleadmainlytooptimallight
transmission,provideUVstabilization(UVadditives),reduceheatlosses(IRadditives)andreduce
condensation(AFadditives)andformationofdroplets(ADadditives).Thedifferenttypesofplastics
usedindifferentresearchstudiesworldwideinrelationtotheUVblockingeffectongreenhouse
coveringmaterialsinclude:
PEfilms,testedinFinland[17],Israel[18],Spain[19–22],UK[10,23–25],Greece[26–28],Serbia
[29],Germany[30],USA[31]andAustralia[32];
PolyestertestedinUSA[33],Finland[17],India[34–36],Italy[37]andChina[38];
PVCfilmstestedinJapan[39];
PlexiglastestedinBelgium[40]andGermany[41];
Ethylenetetrafluorethylene(ETFE)filmstestedinGermany[42,43];
EVAfilmstestedinJapan[44]andinEthiopia[45];
CellulosediacetatetestedinUSA[33],China[38],inJapan[46],andBangladesh[47,48];
Teflonandpolycarbonate(PC)filmstestedinUSA[49].
Thecountryofstudy,theyearofthestudyandtheUVradiationregionthatisblockedbythe
differentUVblockingmaterialsreferredinthecurrentreview,arepresentedinTable1.
Table1.Country,yearandUVblockingregionofthematerialsstudiedintheliteraturethatisreferred
inthecurrentreview.
ReferenceCountryYearUVBlockingMaterialsStudied
[4]US20022materialsblockingradiation<360and<380nm
[10]UK20086materialsblockingradiation<280nm,<320nm,<350nm,<370nm,
<380nm,<400nm
[17]FI19993materialsblockingradiation<315nm,<360nm,<400nm
[18]IL20031materialblockingradiation<300nm
[19]ES20093materialsblockingradiation<300nm,<315nm,<380nm
[20]ES20045materialsblockingradiation<380nm
[21]ES20134materialsblockingradiation<380nm
[22]ES20091materialblockingradiation<380nm
[23]UK20111materialblockingradiation<380nm
[24]UK20072materialsblockingradiation<380nm
[25]UK20048materialsblockingradiation<400nm,<405nm
[26]GR20043materialsblockingradiation<380nm
[27]GR20063materialsblockingradiation<380nm
[28]GR20123materialsblockingradiation<380nm
[29]RS20121materialblockingradiation<380nm
[30]DE20131materialblockingradiation<380nm
[31]US20061materialblockingradiation<380nm
[32]AU20171materialblockingradiation<380nm
[33]US19993materialsblockingradiation<380nm
[34]IN20153materialsblockingradiation<270nm,<315nm,<395nm
[35]IN20143materialsblockingradiation<270nm,<315nm,<395nm
[36]IN20052materialsblockingradiation<320nm,<400nm
[37]IT20162materialsblockingradiation<312nm,<400nm
Agronomy2020,10,10214of17
[38]CH20152materialsblockingradiation<315nm
[39]JP19933materialsblockingradiation<290nm,<320nm,<400nm
[40]BE20012materialsblockingradiation<315nm
[41]DE19944materialsblockingradiation<280nm,<305nm,<320nm,<360nm
[42]DE20093materialsblockingradiation<380nm
[43]DE20103materialsblockingradiation<315nm
[44]JP20081materialblockingradiation<350–400nm
[45]ET20161materialblockingradiation<350nm
[46]JP20124materialsblockingradiation<340nm,<350nm,<360nm,<400nm
[47]BD20164materialsblockingradiation<340nm,<350nm,<360nm,<400nm
[48]BD20164materialsblockingradiation<340nm,<350nm,<360nm,<400nm
[49]US20142materialsblockingradiation<315nm,<380nm
[50]IN19972materialsblockingradiation<280nm,<310nm
[51]
J
P19972materialsblockingradiation<290nm,<400nm
[52]EG20183materialsblockingradiation<380nm
[53]UK20123materialsblockingradiation<380nm
[54]ET20141materialblockingradiation<315nm
[55]IT20194materialsblockingradiation<315nm
[56]DE20102materialsblockingradiation<380nm
[57]AR20061materialblockingradiation<310nm
[58]SA20141materialblockingradiation<380nm
[59]ES20101materialblockingradiation<380nm
[60]EG20163materialsblockingradiation<380nm
[61]ES20104materialsblockingradiation<380nm
[62]GR20113materialsblockingradiation<380nm
[63]US2017Nodetails
2.ExperimentalDesign,MethodologyandInstrumentationNeededtoTestUVBlockingCovering
Material
2.1.NecessaryEquipmentandInstrumentsonTestingaUVBlockingMaterial
TomeasuretheUVradiationlevels,specificsensorsareneeded,forthedifferentwavebands.
ThelightsensorsunderdifferentUVblockingmaterialscouldbelikethefollowing:
Globalsolarradiationsensors,
Photosyntheticallyactiveradiationsensors,
UVAandUVBradiationsensors.
OncetheUVblockingmaterialeffectistobeinvestigated,itisusefultotestsensors’UVlight
absorbanceeverythreetosixmonthsbecauseitiswellknownthatthisabilityfadeswithtime
(authors’personalexperienceandunpublisheddata).
2.2.Methodology
Themeasurementsthatastudyshouldconductinordertoconfirmthatacladdingcanattenuate
UVsolarradiationincludethestudyofplantagronomiccharacteristicssuchasheight[4,18,36,39,50–
52],internodelengthandnumber[4,34,47],totalleafarea[32,36,39,43,51,52],anddrymattercontent
[34,50,52].Itisalsoknownthatyieldcharacteristics,astotalandmarketableyield,numberoffruits
andtheirmarketabilitycanbeaffectedbyUVblockingcoveringmaterials[18–24].Moreover,the
maindifferencebetweenfruitsthathavebeenproducedunderUVexclusionconditionsisthatthey
haveasignificantlylowercontentofsecondarycompounds,pigmentsandphenolicswhenthey
comparedwiththatcontainedinfruitsproducedunderopenfieldconditions[19,24,25,33,43,47,53].
Agronomy2020,10,10215of17
3.EffectsofUVBlockingGreenhouseCoveringMaterialsonPlantFunctions
3.1.EffectsonPhotosynthesisandRespiration
InJapan,in1993,theeffectofPVCcoveringmaterialswithdifferentUVradiation
transmissivitiesonthephotosyntheticactivityoftomato(SolanumlycopersicumL.)andradish
(RaphanusraphanistrumL.)plantswasstudied[39].Theyfoundthatthecarbonmetabolismwas
alwaysgreaterundertheUVblockingcover,whiledarkrespirationwasfoundnottobepromoted
bytheUVblockingmaterial.Anincreaseinphotosyntheticactivitywasalsofoundinmungbeans
(VignaradiataL.)[50].Moreover,inGermany,theeffectofthreedifferentUVblockingfilmsona
broccoli(BrassicaoleraceaL.)cropwasinvestigated,wherehigherC/Nratiovaluesweredetected
underUVexclusionconditions[42].Moreover,anincreaseingasexchanges,carbonicanhydrase,
Rubisco,nitratereductaseactivitiesandtotalsolubleproteincontentwasfoundinwheat(Triticum
aestivumL.)plants[34].
However,aneutralresponseonphotosyntheticratewasfoundingreenandredlettuce(Lactuca
sativaL.)[10],andinstrawberry(Fragaria×ananassaL.)plants(cvs.CamarosaandVentana)[19].
Adecreaseinthephotosyntheticrateofsoybean(GlycinemaxL.)plantswasobservedunderUV
blockingcoveringmaterials[49].Also,decreasedcarbonmetabolism(asphotosyntheticrate),
nitrogenmetabolismandproteinlevelswereobservedineggplant(SolanummelongenaL.)[51].
MostoftheabovereportsdeclaredthatUVblockingcoveringmaterialsenhanced
photosyntheticrateinplantspeciesliketomato,radish,mungbean,broccoliandwheat,andhadno
effectineggplantandsoybeanplants;whileinstrawberry,greenandredlettuce(LactucasativaL.)
plants,photosynthesiswassuppressed.Thedifferentresultsmayhaveoccurredduetothefactthat
PhotosystemII(PSII)ofsomeplantspeciesismoresensitivetoUVBradiation[7].
AsummaryoftheeffectsofUVblockinggreenhousecoveringmaterialsonphotosynthesisand
respirationispresentedinTable2.
Table2.EffectofUVblockingcoveringmaterialsonthePhotosyntheticActivityofdifferentplant
species.
ReferenceYearCountryPlantPhotosynthesisDarkRespiration
[39]1993
J
apan tomato 1
[39]1993
J
apanradish1
[51]1997Japaneggplant1,2
[50]1997Indiamungbean1
[10]2008UKlettuceX
[42]2009Germanybroccoli3
[19]2009SpainstrawberryX4
[49]2014USAsoybean1
[34]2015Indiawheat1,5
:increase;:decrease;X:noeffectsfound;1:carbonmetabolismasphotosyntheticrate;2:nitrogen
metabolismandproteinlevels;3:C/Nratio;4:contentofcarbohydrates;5:gasexchanges,carbonic
anhydrase,Rubisco,nitratereductaseactivitiesandtotalsolubleproteincontent.
3.2.EffectsonTranspiration
InastudycarriedoutinGreece,itwasstatedthattheplantheight,totalleafareaandleafnumber
werepositivelyaffectedbythelackofUVradiation[26].Theyaddedthataplant’stranspirationrate
wasthoroughlyincreasedaspartoftheirresponsetoUVexclusionconditions.
Asfarasthestomatalconductanceisconcerned,itwasfoundthatcutroses(Rosa×hybrida)
stomatalconductancewasunaffectedunderreducedUVlightconditions[54],whileinwheatplants
washigherundertheUVblockingcovers[35].Thedifferencesnoticedinstomatalconductancemay
beattributedtovariationsinUVBimpactratesofdiverseUVsensitivitiesofvariousspecies,butalso
signifythecomplexityofUVeffectsonstomata[5].
Agronomy2020,10,10216of17
3.3.EffectsonGerminationandonSeedlings
InastudycarriedoutinGermany,aUVopenandaUVblockingplexiglasscoverwere
comparedinordertoinvestigatetheireffectonsunflower(HelianthusannuusL.)growth,anditwas
foundthatthehypocotyllengthwasreducedby50%undertheUVblockingmaterial[41].Hypocotyl
elongationgrowthisanessentialstepintheseedgerminationandakeycharacteristicforplant
emergence,influencedbyenvironmentalconditions,phytohormones,andisvaryingamong
genotypes[64].
Moreover,thetotalcotyledonsareaandfreshweightwerereducedby70%,aswellasdryweight
beingreducedby8%,whileseedlingscumulativestemelongationwasreducedby22%undertheUV
blockingcoveringmaterial.Moreover,therewasa27%decreaseinsunflowergermination.InJapan,
itwasfoundthatradishandwelshonion(AlliumfistulosumL.)germinationfailurewashigherunder
UVlowconditions.Itwasalsofoundthattherewasanegativeeffectonthegerminationand
hypocotyllengthofsunflowerandbluestar(IsotomaaxillarisL.)undertheUVblockingfilm[44].
Thus,accordingtotheabove,UVblockingcoveringmaterialswouldhaveasuppressiveeffect
onthegrowthanddevelopmentofthegerminationprocess,duetothefactthatUVBradiation
photonsaremoreenergeticthanvisiblelightphotonsand,hence,haveastrongereffectonthesurface
ofplantcells,causingtheultimatebreakdownofseedcoatingallowinggerminationtooccur[64].
3.4.EffectsonPigmentSynthesis
Duringtheripeningprocess,fruitchlorophyllcontentdecreaseswhileotherpigmentsare
synthesized.UVambientlightisacrucialfactorforthedevelopmentofmanypigmentssuchas
carotenoids(i.e.,xanthophyll),flavonoids(i.e.,anthocyanin),andphenolics.Inripefruits,
chlorophyllstillexistsbutinasmallproportion[65].IthasbeenreportedthatalackofUVradiation
hasanegativeeffectonpigmentsynthesis[66,67].
Chlorophyllintomatoandradishleaveswasfounddecreased[39],andalsoitwasobservedthat
thetotalcontentofanthocyaninswasreducedineggplantplants[51].Moreover,flavonoids
(kaempferol3glucoside)inscotspine(Pinussylvestris)seedlingsinthesubarcticregion[17],andin
arabidopsis(ArabidopsisthalianaL.)plantswerealsofoundreducedunderUVexclusionconditions
[33].Furthermore,itwasobservedthattotalphenolicsandphenolicacidscontentintomatofruit
wereaffectedbycultivarandUVsolarradiation[31].Thetotalamountofphenoliccompoundsin
tomatofruit,ascaffeicacid,aswellasthecontentoftotalphenolics,werereducedby16%forboth
cultivarstested,undertheUVblockingcover.Lastly,adecreasedconcentrationoftotalpolyphenols
includingluteolin,quercetingalactosideandquercetinglucosidewasdetectedinrocketsalad(Eruca
vesicariaL.)plantsgrownunderaUVblockingcover[55].
InastudyintheUK,theeffectoftwopolyethylenefilmswithvarioustransmissivitiesintheUV
radiation,onthephenolcontentandflavonoidconcentrationinaredlettucecropwastested[24].
Moreover,astudycarriedinUKstatedthattotalcontentofflavonoids(anthocyanin)andphenolic
compoundsweredecreasedunderUVblockingfilm(redandgreenlettuce)[10].Thesameresults
werealsofoundforstrawberrycropsunderUVblockingfilms[19].InGermany,acomparativestudy
wasmaderegardingthetotalamountofbioactivecompoundsingreenhousegrownandopenfield
strawberries.Thetotalcontentofflavonoids,anthocyanins,andkaempferolderivatives,underthe
UVblockingcoverwasdecreasedbyapproximately15–35%[43].Moreover,strawberrycultivars
grownunderUVblockingfilmsshowedareductionintotalphenolics(ellagicacid)andflavonoid
content(anthocyanin).Itwasalsofoundthatthemainflavonoidcompounds(quercetinand
cyanidin)detectedinRedOaklettuceleafwereincreasingwiththeincreaseinUVBradiation[56].In
China,itwasreportedthatambientUVBradiationresultsindelayedgrowthanddevelopmentin
rapeseedplants(BrassicanapusL.).UVradiationseemedtoinhibitphotomorphogenesisand
chlorophyllproductionwhiletherewasanincreaseoncarotenoidcontent.Moreovertherewasa
reductionintheaccumulationofUVBabsorbingcompoundsintheleavesundertheUVblocking
film[38].
InIndia,apositiveplantresponseinpigmentsynthesisofguarbeans(Cyamopsistetragonoloba
L.),uradbeans(VignamungoL.)andmungbeanswasdetectedunderfilmswithdifferent
Agronomy2020,10,10217of17
transmissivitiesinUVAradiation[36].InArgentina,theaccumulationofphenoliccompoundsin
arabidopsiswasgreaterinplantsgrownunderUVblockingconditions[57].
TheredcolorparametersdetectedineggplantsgrownunderUVblockingfilmswerepositively
affected,whilelightness(L*)wasunaffected[27].InUK,strawberryresponsesunderdifferentUV
blockingcoveringfilmswereinvestigated,andfoundthatthefruitproducedunderUVblocking
filmshadhigherchromavalues(by10–23%)thanunderUVopenfilms[25].InGreece,itwasstudied
theeffectofreducedUVradiationontomatocolor[28].Whenthecolormeasurementstookplaceon
harvestedfruits,nosignificantdifferenceswerefound,whilewhenthecolormeasurementswere
heldinvivo,theyobserveddifferencesincolorparametersatthelaterstagesofmaturity(lightred
andredstages).Theseripeningstagesinredcoloredtomatoesarecharacterizedbythesynthesisof
redpigmentation(lycopeneandβcarotene),whichisaffectedbythepresenceofUVradiation.As
theauthorsfoundnodifferencesinlycopenecontent,theyassumedpossibledifferencesinother
pigments(β‐carotene,etc.)content.Onthecontrary,otherauthorsshowedthatintomatoesgrown
underpearlshadeUVblockingfilms,thelycopenecontentwasfoundtobedecreased[29].
Furthermore,strawberryfruitcoloriscorrelatedwithUVradiationlevels[53].Thevaluesof
strawberryfruitcolorwereallreportedtobesignificantlyhigherunderaUVblockingcover,
followedbythelowUVblockingandtheUVopenfilm.Moreover,itwasfoundthatwhenpeppers
(CapsicumannuumL.)weregrownunderUVblockingnetstheyhadhigherconcentrationofphenolic
compoundsduringstorage.Moreover,higheramountsofascorbicacidweredetectedunderUV
blockingconditions[58].LackofUVradiationalsoresultedinincreaseintotalchlorophyllcontent
inthreetropicalplants,undertheUVblockingfilms[36].Moreover,L*,a*andb*parametersvalues
(inupperleaves)ofredamaranthwerefoundtobesignificantlyhigherunderUVexclusion
conditions[48],whereL*parametersvaluesvarybetweenlight(L*=100)anddark(L*=0),a*values
mayvaryfromgreen(a*=−50)tored(a*=50)andb*valuesfromblue(b*=−50)toyellow(b*=50)
[28].Rosepetalblackeningandappearanceofbrownspotsonwhitepetalcultivarsarecorrelated
withtheincreaseinUVradiationlevels[54].
Whiteclovershowedaneutralresponseinchlorophyllcontent(TrifoliumrepensL.)[40],while
thesamewasstatedforcocoplum(ChrysobalanusicacoL.)leaves[18].WhileinSpain,acomparative
studyontwostrawberrycultivars(CamarosaandVentana)underacelluloseacetateandaPEUV
blockingfilmshowednosignificantdifferencesontheantioxidantactivity,thecontentof
carbohydratesandanthocyanin[19].Moreover,greenlettuceplants,cv.LolloBiondo,showedno
phytochemicalresponsestodifferentUVradiationlevelsandtotalphenolicsinraspberries(Rubus
idaeusL.),andblueberries(VacciniumCyanococcusR.)werenotaffectedbythecoveringmaterial[56].
Strawberrytree(ArbutusunedoL.)andgrapevine(VitisviniferaL.)leavesshoweddifferent
responseswhencultivatedunderdifferentUVblockingfilms.Onday191,theplantsthatgrown
insidethegreenhousestransferredoutdoors,andatthatday,thetotalcontentofflavonolswaslower.
LaterflavonolindexingrapevineplantsthatgrowundertheUVblockingfilmwasincreased
significantlywhentheseplantsweremovedinUVopenconditions[37].InAustralia,twoplastic
films,aUVopenandaUVblockingweretestedandfoundafreefractionofphenols(caffeicacid),
andflavonoids(cyanidin)undertheUVblockingfilm.Moreover,inalltestedsorghum(Sorghum
bicolorL.)genotypes,theyfoundhigherconcentrationsoftheboundformsofthesecompoundsunder
theUVblockingfilm.Moreover,theantioxidantactivitywaslowerunderUVblockingtreatmentfor
allgenotypes[32].
Basedontheabovestudies,asalsopresentedinTable3,itcanbesummarizedthat:(a)
chlorophyllcontentispositively(in56%ofthestudies)ornegatively(in11%ofthestudies)affected
orisunaffected(in33%ofthestudies)byUVblockingcoveringmaterials,(b)flavonoidconcentration
andphenoliccompoundswerepositively,negativelyornotaffectedbyUVblockingcovering
materials.Thediscrepanciesthathavebeennoticedamongtheresultsinthesamepigmentcategories
concerndifferentplantspecies.However,whendifferencesarenoticedinthesamespecies,thesecan
beattributedtothedifferentenvironmentalconditionsand,morespecifically,tothedifferent
ambientUVradiationlevels.
Agronomy2020,10,10218of17
Table3.EffectofUVblockingcoveringmaterialsonpigmentsynthesis.
ReferenceYearCountryPlantSpeciesPigments
ChlorophyllFlavonoidPhenolicCarotenoid
[20,21,36,39],1993,2004,2013,2006Japan,Spain,USAtomato3X7
[29]2012Serbiatomato 
[33]1999USAarabidopsis21
[25,43,52,53]2004,2012,2010,2010UK,Germanystrawberry 1,4,5
[10,22,24]2008,2009,2007UK,Spainlettuce 1,5
[42]2009Germanybroccoli
[47]2016Bangladeshbroccoli
[60]2016Egyptcucumber 
[52]2018Egyptcucumber
[39]1993
J
apanradish 
[51]1997Japaneggplant 
[17]1999Finlandpine 1
[40]2001BelgiumwhitecloverX
[18]2003IsraelcocoplumXX 
[36]2005Indiaguarbean 2
[36]2005Indiauradbean 2
[36]2005Indiamungbean 2
[58]2014SApepper 
[38]2015Chinarapeseed  X
[34]2015Indiawheat 2X
[45]2016EthiopiapeaXX 
[37]2016Italystrawberrytree 
[37]2016Italygrapevine 
[47]2016Bangladeshturnip

[48]2016Bangladeshredamaranth 
[32]2017Australiasorghum  3,6
[55]2019Italyrocket 1 
:increase;:decrease;X:noeffectsfound;1:kaempferol3glucosideandquercetin;2:Chlorophyll
aandb;3:Caffeic,pcoumaric,ferulicacid;4:Pelargonidin3glucoside;5:Cyanidin3glucoside;6:
Luteolin;7:lycopene.
4.EffectsofUVBlockingGreenhouseCoveringMaterialsonPlantArchitectureandOrgans
4.1.EffectsonPlantRoots,LeavesandStems
InBelgium,itwasreportedthatwhiteclovergrownunderaUVblockingplexiglasscoverthat
blocked88%ofthesolarUVradiationproducedsignificantlyhigherrootbiomass(comparedwitha
UVblockingcoverthatblockedthe82%ofUVambientradiation[40]),andthatsoybeanplantsgrown
underopenfieldhadsignificantlyhigherrootweight,comparedtothosegrownunderaUVdeficient
environment[49].
StemelongationineggplantattheearlystagesofdevelopmentwasenhancedunderUVB
exclusionconditions[51].InUSA,itwasobservedthatchrysanthemum(ChrysanthemumindicumL.)
andgoldenrod(Solidagosp.L.)plantheightwasslightlyincreasedunderUVblockingcovers,dueto
anincreasednumberofinternodes,withoutanyeffectoninternodelength,numberofbranchesand
numberofbudsperbranch[4],aswasalsothecasefortomatoplantsunderUVblockingmaterials
[20,28].Inaddition,eggplant[27]andpeppercropsweretaller,andhadlongerstemswhengrown
underUVblockingfilmsornets[59].Furthermore,theshootlengthofpotrosecultivarswasfound
tobeincreasedby25–35%[54].TheonlyexceptionwhereaneutralresponseofplantstoUVblocking
materialwasmentionedforcucumber(CucumissativusL.)andtomatoplants[46].
CucumberleafareaanddrymatterwereaffectedbyUVblockingmaterial,showinganincrease
whentheyweregrownunderUVexclusionconditions[52,60].Thesamepositivereactionwasalso
evidentintomato[25],guar,uradandmungbeans[36],eggplant[27],radishandwelshonion[44],
broccoliandturnip(BrassicarapaL.)seedlings[47],soybean[49]androses[54].Lastly,aneutral
reactionofplantleafgrowthunderUVblockingmaterialswasonlyfoundinsomewheatvarieties
[34],rapeseed[38],andpea(Pisumsativum)[45],whileanegativeresponsewasstatedforstrawberry
plants;butthisparameterwasnotaffectedbythedifferentUVblockingmaterials[43].Moreover,
Agronomy2020,10,10219of17
redamaranth(AmaranthustricolorL.)showedadecreaseinthetotalnumberofleaves,totalleafarea
andleafbrixwhengrownunderUVexclusionconditions[48].
TheabovestudiesregardingtheeffectofUVblockingmaterialonplantheight,leafnumberand
leafareapresentedapositiveorneutralresponseinmostoftheplantspeciestested,becauseofthe
factthatplantsexposedtoUVradiationshowtypicallylesselongatedleaves,stems,andhypocotyls,
increasedbranchingofstemsandroots,andthickerleaves[7].
AsummaryoftheeffectsofUVblockinggreenhousecoveringmaterialsonplantgrowthare
presentedinTable4.
Table4.EffectofUVblockingmaterialonStemandLeafcharacteristics.
ReferenceYearCountryPlantSpeciesStemLeaf
HeightInterNodesDryMatterNumberAreaDryMatter
[39]1993Japantomato
1
[46]2012JapantomatoX  
[39]1993Japanradish  1
[44]2008Japanradish  3
[51]1997Japaneggplant
[60]2018Egyptcucumber
[46]2012JapancucumberX  
[50]1997IndiamungbeanX
[36]2005Indiaguarbean
[36]2005Indiauradbean
[33]1999USAarabidopsis  2
[40]2001Belgiumwhiteclover X
[4]2002USAchrysanthemumX 
[18]2003Israelcocoplum
[44]2008Japanwelshonion  3
[59]2010Spainpepper
[54]2014Ethiopiarose1
[49]2014USASoybean
[38]2015ChinarapeseedX
[34]2015Indiawheat 2X
[45]2016EthiopiapeaXX
[47]2016Bangladbroccoli
[47]2016Bangladturnip 
[48]2016Bangladredamaranth 3
:increase;:decrease;X:noeffectsfound.
4.2.EffectsonFlowering
TheeffectofUVblockingcoveringmaterialsonfloweringhasnotbeenstudiedextensively.In
thecaseofwhiteclover,itwasfoundthattherewasanincreaseinnumberandbiomassallocationin
flowers[40].Thesameresultswerealsofoundintomatoplants[20].
4.3.EffectsonFruitSetting
ThepositiveeffectofUVblockingmaterialsonfruitsettinghasbeenstatedinmanystudies
(Table5).InSpain,itwasfoundthatthenumberofsetfruitsintomatoplantswasgreaterunderthe
UVblockingcoveringmaterial[20].InGreece,ahighernumberofmarketablefruitsandmeanfruit
weightwereobservedunderUVblockingcoveringmaterials,whiletotalfruitnumberandshape,
totalsolublesolids,ascorbicacid,lycopenecontent,pHandtitratableaciditywerefoundtobe
unaffected,andfinallyinjuriescausedbyinsectsweresuppressed[28].InSpain,alowernumberof
fruitsperm2werefoundintomatoplantsgrownunderUVexclusionconditions[21].
Cropssuchaseggplant[27],strawberries[25]andpeppers[58]grownunderUVblocking
coveringmaterialsshowedhighermarketableyieldandsignificantlylowerweightandfirmnessloss
inpostharveststorage.Inthecaseofstrawberryplants,positiveeffectsarepresentinmostcases
[19,25,43,53],whileneutralreactionswerefoundonlyinveryfewstudies[43,53].
Agronomy2020,10,102110of17
EvaluatingtheresultsofdifferentreportsrelevanttotheeffectofaUVblockingmaterialonfruit
setting,the78%ofreportsreportedpositiveeffect,the11%ofthemnegativeandtheremain11%
neutralresponse,respectively.Mostofthediscrepanciesfoundontheaboveresultsareduetothe
differentenvironmentalconditionsduringtheconductoftheexperiments.
Table5.EffectofUVblockingcoveringmaterialonfruit.
ReferenceYearCountryPlantSpeciesFruit
NumberFreshWeightMarketability
[20,21]2004,2013Spaintomato 1
[19
,
25]2004Spain,UKstrawberry 2
[43,56]2010Germanystrawberry 4X3
[53]2012UKstrawberryXX
[27]2006Greeceeggplant
[58]2014SApeppers
:increase;:decrease;X:noeffectsfound;1:fruitsetperplant;2:totalfruitfreshweightperplant;
3:fruitdrymattersize;4:meanfruit.
5.EffectsofUVBlockingGreenhouseCoveringMaterialsPlantPerformance
5.1.EffectsonYield
ThepositiveeffectofUVblockingcoveringmaterialsonplantyieldwasfirstreportedintomato
plantsinJapan,wherethefreshanddryweightoftomatofruitwasfoundtobegreaterundertheUV
blockingcover[39].InSpain,a14–19%increaseintomatototalyieldanda37%increaseinmarketable
yieldperplant,whentomatoesgrownundertheUVblockingfilm[21].
Furthermore,anupto60%increaseinthetotalyieldofguar,uradamdmungbeanswas
reported[36].Thesametrendwasalsoobservedinthecaseofaneggplantcropwherefruitweight
washigherunderUVblockingconditions[27].Asimilartrendwasalsonoticedinlettucecrop(cv.
Constance)wherefreshanddryweightincreasedundertheUVblockingfilm[24].Redlettuce(cv.
Revolution)produced40%moredryweightundercompleteUVexclusionconditions[22].Thesame
resultswereobservedforstrawberry[19]andbroccoliplants[42].StrawberriesgrownunderUV
blockingcoversshoweda20–40%higheryield[19],whiletheoppositewasreportedformelon
(CucumismeloL.)andwatermelon(CitrulluslanatusL.)plants,areductioninyieldunderUVblocking
filmduetoadecreaseininsectactivity[68].
ItwasreportedthattomatototalyieldwasincreasedunderpearlshadeUVblockingnets[29].
OntheQinghaiTibetanplateau,rapeseedbiomassincreasedabout12–20%underUVblockingfilms
[38].InIndia,itwasfoundthatwheatplantshadagreatergrainyieldundertheUVblockingfilms
[34].RelativeresultswerealsoobtainedinEthiopiawhereinopenfieldconditionspeaproduced
morebranchescomparedtotheotherUVblockingtreatmentsandforbothtestedaltitudesshoot
elongationwasaffectedsimilarlybyUVradiation[45].
InBangladesh,broccoliandturnipseedlingsfreshweightwasincreasedby50–70%,whiledry
weightdidnotfollowasimilartrendandinbroccoliseedlings,thehighestamountsofdrymatter
wererecordedinsidethetunnelsthatwerecoveredwiththeUVblockingfilmthatblocked
wavelengthsshorterthan340nm,whileturnipseedlings’drymatterwashigherinplantsthatgrew
outdoors[47].Inthecaseofredamaranth,freshanddryweightweregreaterunderUVblocking
filmsthanunderUVopenfilmsorinopenfield[48].
Inthecaseofornamentalplants,theshootlengthandnumberofleavesofthreepotrosecultivars
wereincreased(25–35%and15–19%,respectively)undertheUVblockingfilms,andthecolorofthe
marketablecutflowerswasalsooptimized[54].
NodifferenceswerefoundonBrusselssprouts’averageweightandtotalyield,butthequality
ofsproutswassignificantlylowerundertheUVblockingcover[30].AneutralresponsetoUV
radiationlevelswasalsoreportedforstrawberry[43]andtomatoplantswhereonlythetotalyield
wasunaffectedwhilemarketableyieldwasincreased[28].InEgypt,therearetworeportsconcerning
Agronomy2020,10,102111of17
cucumbercultivationunderUVblockingmaterialswhereaneutralresponseofthecropwasfound
[52,60].
Welshonionandradishshootfreshweightunderphotoselectiveredandbluefilms(lowUV
levels)wasfoundtobegreaterthaninUVopenfilms.Shootdryweightwashigherunderredfilms
followedbyblue(UVblocking)andclearfilm,respectively[44].
IntheUSA,itwasreportedthatsoybeantotalpoddryweightwaslowerunderUVexclusion
conditions,whilenodifferenceswereobservedintotalseedweightperplant,individualseedweight,
numberofnodes,orstemweight[49].InSpain,itwasreportedadecreaseinlettuceaverageweight
grownunderUVblockingnets[22].
Moreover,whiteclover[40],chrysanthemumandgoldenrodplantsyieldwasdecreasedunder
UVminusconditions[4].
TheeffectofUVblockingcoveringmaterialsonplantyieldwasthoroughlyinvestigated(28
relativepapers).The61%ofthemreportedinapositive,11%negativeand28%neutralreaction,
respectively,concerningdifferentplantspecies.Moreover,itwasreportedthatthe86%ofthestudies
revisedshowedanincreaseinshoots’freshanddryweight—resultsthatcanbeexplainedbythefact
thathigherexposuretoUVradiationleadstotheincreasedbranchingofstems[5](Table6).
Table6.EffectofUVblockingcoveringmaterialsontheyieldofdifferentcrops.
ReferenceYearCountryPlantSpecies
Yield
FreshWeightDryWeightShootsNo
Detail
[40]2001Belgiumwhiteclover 1 2
[4]2002USAchrysanthemum
3
[4]2002USAgoldenrods  3
[21,39]2012,1993Spain,Japantomato 4,6
[28]2012Greecetomato 12X
[36]2005Indiaguarbean 7
[36]2005Indiauradbean 7
[36]2005Indiamungbean 7
[22]2009Spainlettuce
[27]2006Greeceeggplant  8
[44]2008Japanwelshonion 8 9
[19]2009Spainstrawberry
[43]2010GermanystrawberryX
[42,47]2009,2016Germany,Bangladeshbroccoli 10
[68]2010Spainmelon  11
[68]2010Spainwatermelon   11
[30]2013Germanybrusselssprouts  X
[54]2014Ethiopiarose
[49]2014USAsoybean 13X1,4
[38]2015Chinarapeseed  15
[34]2015Indiawheat 
[45]2016Ethiopiapea 16
[60]2016Egyptcucumber X
[47]2016Bangladeshturnip
:increase;:decrease;X:noeffectsfound;1:totalbiomass;2:increasedyield;3:numberofbranches;
budsperbranch;4:marketableyieldperplant;5:greaterfinalsize;6:increasedfruit#andmeanfruit
weight;7:sizeofthepod;8:shootdryweight;9:shootfreshweight;10:increasedaboveground
biomassaccumulation;11:disturbanceinpollinationactivity;12:Nodifferencesintotalyield;fruit
number;marketablemeanfruitweightbutsignificantlyhighermarketableyieldoughttolessinsect
injuries;13:totalpoddryweight;14:nodifferencesinseedweightperplant;individualseedweight;
nodespermainstem;orstem);weightperplant;15:plantbiomass;16:decreasednumberofbranches
andshootelongation;17:yieldremainedunaffectedevenwithpronounceddifferencesintheir
vegetativeresponses.
Agronomy2020,10,102112of17
5.2.EffectsonPlantEarliness/Senescence
FloweringearlinessandrateoffruitandcropdevelopmentseemstobeaffectedbyUVblocking
materials.StudieshaveshownthattheuseofUVblockingcoverscandelaytomatoandradishleaf
senescence[39].Thesamewasobservedforeggplantplants[51].
RelativeresultsinUKandSpainreportedquickerestablishmentanddevelopmentofstrawberry
crops[25]aswellasadelayinripeningprocess[19],whentheplantsweregrownunderUVblocking
covers.Inadditionfruitcolordevelopmentofthesameplantwasalsodelayed[53].
Moreover,UVblockingmaterialhadanegativeeffectonfloweringprocessofpeaplant[45].
RegardingtheeffectofUVblockingmaterialonplantdevelopment,variedresultshavebeen
emerged.Asitconcernsleafaging,33%oftherelativereportsshowedapositiveresponsewhilea
67%showedanegative.Regardingripening,50%ofthestudiesreportedpositiveresponsewhilean
equalnegativeresponsewasalsopublished.Colordevelopmentandflowerdelaywereboth
depressed(underUVblockingmaterial)inalltheexaminedcases,duetothelimitedactivityof
cryptochromes,whichareresponsiblefortheplantdevelopmentprocess[6],asshowninTable7.
Table7.EffectofUVblockingcoveringmaterialonplantDevelopment/Earliness.
ReferenceYearCountryPlantSpeciesDevelopment
[39]1993
J
apantomato 1
[39]1993Japanradish 1
[51]1997Japaneggplant 1
[25]2004UKstrawberry 2,3
[19]2009Spainstrawberry 3,4
[45]2016Ethiopiapea 5
:increase,:decrease,X:nodifferencesfound,1Leafaging,2Establishment,3Ripening,4Color
development,5Flowering.
6.VariationsofUVAmbientRadiationLevelsonEvaluatingDataRegardingUVBlocking
Material
UVradiationlevelsandspatialdistributionofsolarUVradiationmustbetakeninto
considerationduringtheevaluationoftheresults,includingtheeffectoftheUVblockingcovering
materialonthecrop.Specifically,UVradiationlevelsexhibitaseasonalvariationpatternwithinthe
year(Table8).
Forallthesereasons,theestablishmentofageneralruleabouttheresponseofplantsinseveral
levelsofUVradiationmustberelatedtotheplaceandthemonth.Itmustbementionedthathigher
UVradiationlevelshavebeenreportedincountriesnearequatorwherethelatitudeisnearzero,such
asEthiopia(Lat.=6)(Table8).
Besidesthat,UVradiationlevelsvarywiththepresenceofclouds,haze,snow,sunpositionand
altitude.ThehighestUVradiationlevelsonEarthcanbefoundin:Peru,Bolivia,ChileandArgentina,
wheretheUVindexexceeds24[69]inhighaltitudes(alpine).
Accordingtosomerepresentativestudies,differentresponseswerefoundforthesamespecies
whentheexperiments,heldindifferentworldareas.Specifically,differenceshavebeenfoundonthe
plantheightofcucumbercropsgrowninEgypt[52]andJapan[46],althoughbothcountriesexhibit
equalUVradiationlevels(Table9).Indetail,inEgypt,plantheightwasenhancedbytheexclusion
ofUVradiation,whilenodifferenceswherenoticedinJapan.Thiscanbeattributedtodifferent
responsesofspeciesandcultivarstoUVradiationlevels,duetodifferencesinthegenetic
background.
Insomeplantspecies,responsescouldbeproportionaltoUVradiationlevels.Forexample,in
Germany[42],whereUVradiationlevelsarelow,flavonoidindexinbroccoliplantswasfoundtobe
lower,incontrastwithbroccoliplantsgrowninBangladesh[47],whereUVradiationishigher.
Similarresponseswerenoticedinthecaseofstrawberryplants’freshweight,inexperiments
Agronomy2020,10,102113of17
conductedinSpain[19]andGermany[43],andinripeningprocessdelaysofthesameplant,
comparingthefindingsinSpainandtheUK[23].
Accordingly,thecountriesexaminedinthispaperaregatheredinfivecategoriesregardingUV
radiationlevels(Table9).
Table8.UVIndexvariationinthesameplacewithintheyearinplacesregardingUVblockingstudies
reviewedinthiswork.DifferentbackgroundcolorsindicatedifferentUVlevels.
Country(City) Latitude J F M A M J J A S O N D
Argentine(BuenosAires)35°S9974322457910
Australia(Perth)32°S1211964334681012
Germany(Berlin)52°N112457753110
Greece(Volos)39°N3458991097432
J
apan(Tokyo)36°N2458991097422
Africa(Ethiopia)S121212121212121212121211
Brazil(RiodeJaneiro)23°S12119755579101212
Cuba(Havana)23°N689101011121110865
Vietnam(Hanoi),(India)21°N6810111111121210866
Spain(Mallorca)39°N234689986421
USA(LosAngeles)34°N34689101097532
Table9.LevelsofambientsolarUVradiationincountriesmentionedinthiswork.
Continent1÷2
LOW
3÷5
MODERATE
6÷7
HIGH
8÷10
VERY
HIGH
11
EXTREME
Europe
UK
Germany
Belgium
Italy
Serbia
Spain
Italy
Greece
 
Asia
Japan
ChinaIndia
Bangladesh
N.AmericaS.
America
North
CarolinaCalifornia
Florida
Argentina
AfricaEgyptSouthAfricaEthiopia
Oceania  Perth
7.ConcludingRemarks
SummarizingtheresultsconcerningplantresponsesonUVblockingmaterialworldwide,itwas
foundthatthemostexaminedparameteristheeffectofthesematerialsonplantpigments(32papers),
followedbyyield(28papers)andleafarea(25),whiletheleastexaminedplantorgansarerootsand
flowers(2papers).
Basedontheseresults,astrongpositiveornegativeeffectemergedinchlorophyllorphenolic
compounds,respectively,underUVblockingmaterials,whileamoredimresponsewasalsoreported
forflavonoidandcarotenoidcompounds.
Agronomy2020,10,102114of17
TheplantfunctionsthataremostaffectedbyUVblockingmaterialsareeitherenhancedincases
ofphotosynthesis(foundinmorethan50%of9relevantreports)inplantspeciessuchastomato,
radish,mungbean,broccoliandwheat,orincasesofstomatalconductance(wheat),ortranspiration.
PlantheightandleafareaseemtobepositivelyaffectedbyUVblockingcladdingmaterials.Thesame
isevidentalsoforyieldandgrowthcharacteristics.However,UVblockingmaterialssuppressthe
totalantioxidantcontentandotherhealthrelatedphytochemicals,andthisisconsideredbymany
researchersasthebasicdisadvantageofthismaterial.
Eventhoughthereisadecreaseininsecticideuse,adecreasedpestpopulationentersinto
greenhousesornethouses[62].Ifotherchemicalsareappliedtoplantsduringthegrowingseason,
thentheseresiduesonfruitsthathavebeenproducedunderUVblockingconditionsare
characterizedbyamoreconsistentretention[63]afterharvest.Lastly,theapplicationofUVblocking
materialscreatesaparticularlightmodificationintheplantenvironmentwhichleadstoabetter
canopylightuseefficiency[69].
Abbreviations
SYMBOLNAMEWAVEBAND(nm)
UVUltraviolet280–400
UVA UltravioletradiationtypeA320–400
UVB UltravioletradiationtypeB280–320
PARPhotosynteticallyActiveRadiation400–700
IRInfraRedradiation700–100,000
NIR(orIRA)NearInfraRedradiation750–1400
FRFarRed700–780
AuthorContributions:Conceptualization,N.K.andC.P.;datacuration,A.B.andC.P.;writing—originaldraft
preparation,A.B.andC.P.;writing—reviewandediting,N.K.andC.P.;supervision,N.K.;project
administration,N.K.;fundingacquisition,N.K.Allauthorshavereadandagreedtothepublishedversionofthe
manuscript.
Funding:ThisresearchhasbeencofinancedbytheEuropeanUnionandGreeknationalfundsthroughthe
OperationalProgramCompetitiveness,EntrepreneurshipandInnovation,underthecallRESEARCH
CREATE—INNOVATE(projectcode:T1EDK01499).
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Halevy,A.Isthereanidealcoverforprotectedcultivation?InProceedingsof14thInternationalCongress
forPlasticsinAgriculture,TelAviv,Israel,3–7March1997;pp.3–7.
2. Antignus,Y.;Lapidot,M.;Hadar,D.;Messika,Y.;Cohen,S.Ultraviolet—Absorbingscreensserveasoptical
barrierstoprotectcropsfromvirusandinsectpests.J.Econ.Entomol.1998,91,1401–1405.
3. Costa,H.S.;Robb,K.L.EffectsofultravioletabsorbinggreenhouseplasticfilmsonflightbehaviorofBemisia
argentifolii(Homoptera:Aleyrodidae)andFrankliniellaoccidentalis(Thysanoptera:Thripidae),J.Econ.
Entomol.1999,92,557–562.
4. Costa,H.S.;Robb,K.L.;