## No file available

To read the file of this research,

you can request a copy directly from the authors.

Preprints and early-stage research may not have been peer reviewed yet.

The Unruh effect predicts a thermal response for an accelerated detector moving through the vacuum. Here we propose an interferometric scheme to observe an analogue of the circular Unruh effect using a localized laser coupled to a Bose-Einstein condensate (BEC). Quantum fluctuations in the condensate are governed by an effective relativistic field theory, and as demonstrated below the coupled laser field acts as an effective Unruh-DeWitt detector thereof. The effective speed of light is lowered by 11 orders of magnitude to the sound velocity in the BEC. For detectors traveling close to the sound speed, observation of the Unruh effect in the analogue system becomes experimentally feasible.

To read the file of this research,

you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.

The entropy of a black hole1 and Hawking radiation2 should have the same temperature given by the surface gravity, within a numerical factor of the order of unity. In addition, Hawking radiation should have a thermal spectrum, which creates an information paradox3,4. However, the thermality should be limited by greybody factors5, at the very least6. It has been proposed that the physics of Hawking radiation could be verified in an analogue system7, an idea that has been carefully studied and developed theoretically8–18. Classical white-hole analogues have been investigated experimentally19–21, and other analogue systems have been presented22,23. The theoretical works and our long-term study of this subject15,24–27 enabled us to observe spontaneous Hawking radiation in an analogue black hole28. The observed correlation spectrum showed thermality at the lowest and highest energies, but the overall spectrum was not of the thermal form, and no temperature could be ascribed to it. Theoretical studies of our observation made predictions about the thermality and Hawking temperature29–33. Here we construct an analogue black hole with improvements compared with our previous setup, such as reduced magnetic field noise, enhanced mechanical and thermal stability and redesigned optics. We find that the correlation spectrum of Hawking radiation agrees well with a thermal spectrum, and its temperature is given by the surface gravity, confirming the predictions of Hawking’s theory. The Hawking radiation observed is in the regime of linear dispersion, in analogy with a real black hole, and the radiation inside the black hole is composed of negative-energy partner modes only, as predicted. The spectrum of Hawking radiation is measured in an analogue black hole composed of rubidium atoms, confirming Hawking’s prediction that Hawking radiation is thermal with a temperature given by the surface gravity.

The exploration of quantum phenomena in a curved spacetime is an emerging interdisciplinary area at the interface between general relativity1–4, thermodynamics4–6 and quantum information7,8. One famous prediction in this field is Unruh thermal radiation³—the manifestation of thermal radiation from a Minkowski vacuum when viewed in an accelerating reference frame. Here, we report the experimental observation of a matter field with thermal fluctuations that agree with Unruh’s predictions. The matter field is generated within a framework for the simulation of quantum physics in a non-inertial frame, based on Bose–Einstein condensates that are parametrically modulated⁹ to make their evolution replicate the frame transformation. We further observe long-range phase coherence and temporal reversal of the matter-wave radiation, hallmarks that distinguish Unruh radiation from its classical counterpart. Our demonstration offers a new avenue for the investigation of the dynamics of quantum many-body systems in a curved spacetime.

We study the dynamics of a supersonically expanding ring-shaped Bose-Einstein condensate both experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe. After expansion, energy in the radial mode leads to the production of bulk topological excitations -- solitons and vortices -- driving the production of a large number of azimuthal phonons and, at late times, causing stochastic persistent currents. This reheating of the condensate is reminiscent of the presumed reheating of the universe after inflation.

We measure the power spectrum and two-point correlation function for the
fluctuating free surface on the downstream side of a stationary flow above an
obstacle with high Froude number $F \approx 0.85$. On such a flow the
scattering of incident long wavelength modes is analogous to that responsible
for black hole radiation (the Hawking effect). Our measurements of the
correlations clearly indicate a steady conversion of incident modes into pairs
of modes of opposite energies. We then use a wave maker to measure the
scattering coefficients responsible for this effect.

Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1, 2, 3, 4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.

We investigate theoretically and experimentally a nondestructive interferometric measurement of the state population of an ensemble of laser-cooled and trapped atoms. This study is a step toward generation of (pseudo)spin squeezing of cold atoms targeted at the improvement of the cesium clock performance beyond the limit set by the quantum projection noise of atoms. We calculate the phase shift and the quantum noise of a near-resonant optical probe pulse propagating through a cloud of cold 133Cs atoms. We analyze the figure of merit for a quantum nondemolition (QND) measurement of the collective pseudospin and show that it can be expressed simply as a product of the ensemble optical density and the pulse-integrated rate of the spontaneous emission caused by the off-resonant probe light. Based on this, we propose a protocol for the sequence of operations required to generate and utilize spin squeezing for the improved atomic clock performance via a QND measurement on the probe light. In the experimental part we demonstrate that the interferometric measurement of the atomic population can reach a sensitivity of the order of √Nat in a cloud of Nat cold atoms, which is an important benchmark toward the experimental realization of the theoretically analyzed protocol.

We propose and analyze a series of nondestructive dynamic detectors for Bose-Einstein condensates based on photodetectors operating at the shot-noise limit. These detectors are compatible with real-time feedback to the condensate. The signal-to-noise ratio of different detection schemes are compared subject to the constraint of minimal heating due to photon absorption and spontaneous emission. This constraint leads to different optimal operating points for interference-based schemes. We find the somewhat counterintuitive result that without the presence of a cavity, interferometry causes as much destruction as absorption for optically thin clouds. For optically thick clouds, cavity-free interferometry is superior to absorption, but it still cannot be made arbitrarily nondestructive. We propose a cavity-based measurement of atomic density which can in principle be made arbitrarily nondestructive for a given signal-to-noise ratio.

There are fundamental relations between three vast areas of physics: particle physics, cosmology, and condensed matter physics. The fundamental links between the first two areas - in other words, between micro- and macro-worlds - have been well established. There is a unified system of laws governing the scales from subatomic particles to the cosmos and this principle is widely exploited in the description of the physics of the early universe. This book aims to establish and define the connection of these two fields with condensed matter physics. According to the modern view, elementary particles (electrons, neutrinos, quarks, etc.) are excitations of a more fundamental medium called the quantum vacuum. This is the new 'aether' of the 21st century. Electromagnetism, gravity, and the fields transferring weak and strong interactions all represent different types of the collective motion of the quantum vacuum. Among the existing condensed matter systems, a quantum liquid called superfluid 3He-A most closely represents the quantum vacuum. Its quasiparticles are very similar to the elementary particles, while the collective modes are analogues of photons and gravitons. The fundamental laws of physics, such as the laws of relativity (Lorentz invariance) and gauge invariance, arise when the temperature of the quantum liquid decreases.

A basic set of equations describing the interaction of a Bose-Einstein condensate (BEC) with a laser field is derived based on a semiclassical model and applied to the problem of mutual guiding of laser and BEC atomic beams. Within this framework we have studied stationary spatially localized solutions of the nonlinear system which describe possible laser and BEC atomic beam guiding and have shown their stability as well. It is also shown that a self-guiding effect can be realized through both single-and multiple-scaled structures of a BEC atomic and a laser beam.

Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To address this issue experimentally, we utilize the analogy between the propagation of fields around black holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include surface wave horizons. Long waves propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion process for this system. Given the close relationship between stimulated and spontaneous emission, our findings attest to the generality of the Hawking process.

We study the propagation of a density wave in a magnetically trapped
Bose-Einstein condensate at finite temperatures. The thermal cloud is in the
hydrodynamic regime and the system is therefore described by the two-fluid
model. A phase-contrast imaging technique is used to image the cloud of atoms
and allows us to observe small density excitations. The propagation of the
density wave in the condensate is used to determine the speed of sound as a
function of the temperature. We find the speed of sound to be in good agreement
with calculations based on the Landau two-fluid model.

Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

We propose and study methods for detecting Unruh-like acceleration radiation effects in a Bose-Einstein condensate in a (1+1)-dimensional setup. The Bogoliubov vacuum of a Bose-Einstein condensate is used to simulate a scalar field theory, and accelerated atom dots or optical lattices serve as detectors of phonon radiation due to acceleration effects. In particular, we study the dispersive effects of the Bogoliubov spectrum on the ideal case of exact thermalization. Our results suggest that acceleration radiation effects can be observed using currently accessible experimental methods.

We perform a quantum theoretical calculation of the noise power spectrum for a phase measurement of the light output from a coherently driven optical cavity with a freely moving rear mirror. We examine how the noise resulting from the quantum back action appears among the various contributions from other noise sources. We do not assume an ideal (homodyne) phase measurement, but rather consider phase modulation detection, which we show has a different shot noise level. We also take into account the effects of thermal damping of the mirror, losses within the cavity, and classical laser noise. We relate our theoretical results to experimental parameters, so as to make direct comparisons with current experiments simple. We also show that in this situation, the standard Brownian motion master equation is inadequate for describing the thermal damping of the mirror, as it produces a spurious term in the steady-state phase fluctuation spectrum. The corrected Brownian motion master equation [L. Diosi, Europhys. Lett. {\bf 22}, 1 (1993)] rectifies this inadequacy. Comment: 12 pages revtex, 2 figures

We find that the fluctuations of the condensate in a weakly interacting Bose gas confined in a box of volume $V$ follow the law $<\delta N_0^2>\sim V^{4/3}$. This anomalous behaviour arises from the occurrence of infrared divergencies due to phonon excitations and holds also for strongly correlated Bose superfluids. The analysis is extended to an interacting Bose gas confined in a harmonic trap where the fluctuations are found to exhibit a similar anomaly. Comment: 4 pages, RevTeX

This volume introduces the basic concepts of Bose–Einstein condensation and superfluidity. It makes special reference to the physics of ultracold atomic gases; an area in which enormous experimental and theoretical progress has been achieved in the last twenty years. Various theoretical approaches to describing the physics of interacting bosons and of interacting Fermi gases, giving rise to bosonic pairs and hence to condensation, are discussed in detail, both in uniform and harmonically trapped configurations. Special focus is given to the comparison between theory and experiment, concerning various equilibrium, dynamic, thermodynamic, and superfluid properties of these novel systems. The volume also includes discussions of ultracold gases in dimensions, quantum mixtures, and long-range dipolar interactions.

The theory of Hawking radiation can be tested in laboratory analogues of black holes. We use light pulses in nonlinear fiber optics to establish artificial event horizons. Each pulse generates a moving perturbation of the refractive index via the Kerr effect. Probe light perceives this as an event horizon when its group velocity, slowed down by the perturbation, matches the speed of the pulse. We have observed in our experiment that the probe stimulates Hawking radiation, which occurs in a regime of extreme nonlinear fiber optics where positive and negative frequencies mix.

In the Unruh effect an observer with constant acceleration perceives the quantum vacuum as thermal radiation. The Unruh effect has been believed to be a pure quantum phenomenon, but here we show theoretically how the effect arises from the correlation of noise, regardless of whether this noise is quantum or classical. We demonstrate this idea with a simple experiment on water waves where we see the first indications of a Planck spectrum in the correlation energy.

We propose to simulate a Dirac field near an event horizon using ultracold atoms in an optical lattice. Such a quantum simulator allows for the observation of the celebrated Unruh effect. Our proposal involves three stages: (1) preparation of the ground state of a massless 2D Dirac field in Minkowski spacetime; (2) quench of the optical lattice setup to simulate how an accelerated observer would view that state; (3) measurement of the local quantum fluctuation spectra by Raman spectroscopy in order to simulate a De Witt detector. According to Unruh's prediction, fluctuations measured in such a way must be thermal. Moreover, following Takagi's inversion theorem, they will obey a Bose-Einstein distributions which will smoothly transform into Fermi-Dirac as one of the dimensions of the lattice is reduced.

1. Introduction 2. Quantum field theory in Minkowski space 3. Quantum field theory in curved spacetime 4. Flat spacetime examples 5. Curved spacetime examples 6. Stress-tensor renormalization 7. Applications of renormalization techniques 8. Quantum black holes 9. Interacting fields References Index.

Starting from the three-dimensional (3D) Gross-Pitaevskii equation and using a variational approach, we derive an effective 1D wave equation that describes the axial dynamics of a Bose condensate confined in an external potential with cylindrical symmetry. The trapping potential is harmonic in the transverse direction and generic in the axial one. Our equation, that is a time-dependent nonpolynomial nonlinear Schrödinger equation (1D NPSE), can be used to model cigar-shaped condensates, whose dynamics is essentially 1D. We show that 1D NPSE gives much more accurate results than all other effective equations recently proposed. By using 1D NPSE we find analytical solutions for bright and dark solitons, which generalize the ones known in the literature. We deduce also an effective 2D nonpolynomial Schrödinger equation (2D NPSE) that models disk-shaped Bose condensates confined in an external trap that is harmonic along the axial direction and generic in the transverse direction. In the limiting cases of weak and strong interaction, our approach gives rise to Schrödinger-like equations with different polynomial nonlinearities.

In ultracold gases many experiments use atom imaging as a basic observable. The resulting image is averaged over a number of realizations and mostly only this average is used. Only recently the noise has been measured to extract physical information. In the present paper we investigate the quantum noise arising in these gases at zero temperature. We restrict ourselves to the homogeneous situation and study the fluctuations in particle number found within a given volume in the gas, and more specifically inside a sphere of radius R. We show that zero-temperature fluctuations are not extensive and the leading term scales with sphere radius R as R2 ln R (or ln R) in three- (or one-) dimensional systems. We calculate systematically the next term beyond this leading order. We consider first the generic case of a compressible superfluid. Then we investigate the whole Bose-Einstein-condensation (BEC) –BCS crossover, and in particular the limiting cases of the weakly interacting Bose gas and of the free Fermi gas.

This paper examines various aspects of black-hole evaporation. A two-dimensional model is investigated where it is shown that using fermion-boson cancellation on the stress-energy tensor reduces the energy outflow to zero, while other noncovariant techniques give the Hawking result. A technique for replacing the collapse by boundary conditions on the past horizon is developed which retains the essential features of the collapse while eliminating some of the difficulties. This set of boundary conditions is also suggested as the most natural set for a preexistent black hole. The behavior of particle detectors under acceleration is investigated where it is shown that an accelerated detector even in flat spacetime will detect particles in the vacuum. The similarity of this case with the behavior of a detector near the black hole is brought out, and it is shown that a geodesic detector near the horizon will not see the Hawking flux of particles. Finally, the work of Berger, Chitre, Nutku, and Moncrief on scalar geons is corrected, and the spherically symmetric coupled scalar-gravitation Hamiltonian is presented in the hope that someone can apply it to the problem of black-hole evaporation.

We have modulated the density of a trapped Bose-Einstein condensate by changing the trap stiffness, thereby modulating the speed of sound. We observe the creation of correlated excitations with equal and opposite momenta, and show that for a well-defined modulation frequency, the frequency of the excitations is half that of the trap modulation frequency.

In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects
cause black holes to create and emit particles as if they were hot bodies with temperature
\frachk2pk » 10 - 6 ( \fracM\odot M )° K\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K
where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black
hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon
of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons
in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so
much entropy per baryon.

The quantum fluctuation of electron orbits in ideal storage rings is a sort of Fulling-Unruh effect (heating by acceleration in vacuum). To spell this out, the effect is analyzed in an appropriate comoving, and so accelerating and rotating, co-ordinate system. The depolarization of the electrons is a related effect, but is greatly complicated by spin-orbit coupling. This analysis confirms the standard result for the polarization, except in the neighbourhood of a narrow resonance.

The possibility of using accelerated electrons to exhibit the quantum field theoretic relation between acceleration and temperature is considered. In principle, the depolarization of electrons in a magnetic field could be used to give temperature reading. The effect is examined for linearly accelerated electrons, but the result is that the relevant orders of magnitude are too small for real experiments in linear accelerators. For electrons in storage rings sufficiently large accelerations can be obtained, and the residual depolarization which has been found theoretically and experimentally is shown to be an effect closely related to the thermal effect of linearly accelerated electrons.

This paper presents an analysis of the radiation seen by an observer in circular acceleration, for a magnetic spin. This is applied to an electron in a storage ring, and the subtilty of the interaction of the spin with the spatial motion of the electron is explicated. This interaction is shown to be time dependent (in the radiating frame), which explains the strange results found for the electron’s residual polarisation in the literature.

Event horizons of astrophysical black holes and gravitational analogues have been predicted to excite the quantum vacuum and give rise to the emission of quanta, known as Hawking radiation. We experimentally create such a gravitational analogue using ultrashort laser pulse filaments and our measurements demonstrate a spontaneous emission of photons that confirms theoretical predictions.

The interferometers now being developed to detect gravitational waves work by measuring the relative positions of widely separated masses. Two fundamental sources of quantum-mechanical noise determine the sensitivity of such an interferometer: (i) fluctuations in number of output photons (photon-counting error) and (ii) fluctuations in radiation pressure on the masses (radiation-pressure error). Because of the low power of available continuous-wave lasers, the sensitivity of currently planned interferometers will be limited by photon-counting error. This paper presents an analysis of the two types of quantum-mechanical noise, and it proposes a new technique: the ''squeezed-state'' technique: that allows one to decrease the photon-counting error while increasing the radiation-pressure error, or vice versa. The key requirement of the squeezed-state technique is that the state of the light entering the interferometer's normally unused input port must be not the vacuum, as in a standard interferometer, but rather a ''squeezed state'': a state whose uncertainties in the two quadrature phases are unequal. Squeezed states can be generated by a variety of nonlinear optical processes, including degenerate parametric amplification.

We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an "Unruh" temperature given by k(B)T=Planck kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.

Based on doubly detuned Raman transitions between (meta)stable atomic or molecular states and recently developed atom counting techniques, a detection scheme for sound waves in dilute Bose-Einstein condensates is proposed whose accuracy might reach down to the level of a few or even single phonons. This scheme could open up a new range of applications including the experimental observation of quantum radiation phenomena such as the Hawking effect in sonic black-hole analogues or the acoustic analogue of cosmological particle creation.

We study phonons in a dynamical chain of ions confined by a trap with a time-dependent (axial) potential strength and demonstrate that they behave in the same way as quantum fields in an expanding or contracting Universe. Based on this analogy, we present a scheme for the detection of the analogue of cosmological particle creation which should be feasible with present day technology. In order to test the quantum nature of the particle creation mechanism and to distinguish it from classical effects such as heating, we propose to measure the two-phonon amplitude via the 2nd red sideband transition and to compare it with the one-phonon amplitude (1st red sideband).

The physics at the event horizon resembles the behavior of waves in moving media. Horizons are formed where the local speed of the medium exceeds the wave velocity. We used ultrashort pulses in microstructured optical fibers to demonstrate the formation of an artificial event horizon in optics. We observed a classical optical effect: the blue-shifting of light at a white-hole horizon. We also showed by theoretical calculations that such a system is capable of probing the quantum effects of horizons, in particular Hawking radiation.

- T Langen
- R Geiger
- M Kuhnert
- B Rauer
- J Schmiedmayer

T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and
J. Schmiedmayer, Nature Physics 9, 640 (2013).

- T Torres
- S Patrick
- A Coutant
- M Richartz
- E W Tedford
- S Weinfurtner

T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W.
Tedford, and S. Weinfurtner, Nat. Phys. 13, 833 (2017).

- L Pitaevskii

L. Pitaevskii, JETP 12, 1008 (1961).

- M Good
- B A Juárez-Aubry
- D Moustos
- M Temirkhan

M. Good, B. A. Juárez-Aubry, D. Moustos,
and
M. Temirkhan, (2020), arXiv:2004.08225 [gr-qc].