Available via license: CC BY 4.0
Content may be subject to copyright.
Plants, People, Planet. 2020;00:1–6.
|
1wileyonlinelibrary.com/journal/ppp3
Received: 11 Februar y 2020
|
Revised: 3 April 2020
|
Accepted: 20 April 2020
DOI: 10.1002/ppp3.10112
BRIEF REPORT
Expanding tropical forest monitoring into Dry Forests: The
DRYFLOR protocol for permanent plots
Peter W. Moonlight1 | Karina Banda-R2,3 | Oliver L. Phillips2 | Kyle G. Dexter1,4 |
R. Toby Pennington1,5 | Tim R. Baker2 | Haroldo C. de Lima6 | Laurie Fajardo7 |
Roy González-M.8 | Reynaldo Linares-Palomino9,10 | Jon Lloyd11 |
Marcelo Nascimento12 | Darién Prado13 | Catalina Quintana14 | Ricarda Riina15 | Gina
M. Rodríguez M.3 | Dora Maria Villela16 | Ana Carla M. M. Aquino17 | Luzmila Arroyo18 |
Cidney Bezerra19 | Alexandre Tadeu Brunello17 | Roel J. W. Brienen2 |
Domingos Cardoso20 | Kuo-Jung Chao21 | Ítalo Antônio Cotta Coutinho22 |
John Cunha23 | Tomas Domingues17 | Mário Marcos do Espírito Santo24 | Ted
R. Feldpausch5 | Moabe Ferreira Fernandes25 | Zoë A. Goodwin1 | Eliana
María Jiménez26 | Aurora Levesley2 | Leonel Lopez-Toledo27 | Beatriz Marimon28 |
Raquel C. Miatto17 | Marcelo Mizushima25 | Abel Monteagudo29 | Magna Soelma Beserra
de Moura30 | Alejandro Murakami18 | Danilo Neves31 | Renata Nicora Chequín13 |
Tony César de Sousa Oliveira17 | Edmar Almeida de Oliveira28 | Luciano P. de Queiroz25 |
Alan Pilon32 | Desirée Marques Ramos33 | Carlos Reynel9 | Priscyla M. S. Rodrigues34 |
Rubens Santos35 | Tiina Särkinen1 | Valdemir Fernando da Silva36 | Rodolfo M.
S. Souza36,37 | Rodolfo Vasquez29 | Elmar Veenendaal38
1Tropical Biodiversity, Royal Bot anic Garden Edinburgh, Edinburgh, UK
2School of Geography, Faculty of Environment, University of Leeds, Leeds, UK
3Fundación Ecosistemas Secos de Colombia, Barranquilla, Colombia
4School of Geosciences, The University of Edinburgh, Edinburgh, UK
5Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
6Instituto de Pesquisas, Jardim Botanico do Rio de Janeiro, Rio de Janeiro, Brazil
7Centro de Ecologia, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
8Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
9Herbario, Departamento Académico de Biología, Universidad Nacional Agraria L a Molina, Lima, Peru
10Center for Conservation and Sustainability, Smithsonian Conser vation Biology Institute, Washington, DC, USA
11Depar tment of Life Sciences, Imperial College London, Ascot, UK
12Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos Dos Goytacazes, Brazil
13Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Facultad Ciencias Agrarias, UNR , Universidad Nacional de Rosario, Santa Fe, Argentina
14Escuela de Biología, Facultad de Ciencias Exactas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
15Real Jardín Botánico, CSIC, Madrid, Spain
16Laboratório de Ciências Ambientas, Universidade Estadual do Norte Fluminense, Campos Dos Goytacazes, Brazil
17Depar tamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de Sao Paulo, Ribeirão Preto, Brazil
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2020 The Authors, Plants, People, Planet © New Phytologist Trust
2
|
MOONLI GHT eT aL .
18Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma Gabriel Rene Moreno, Santa Cruz de la Sierra, Bolivia
19Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Recife, Brazil
20Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
21International Master Program of A griculture, National Chung Hsing University, Taichung, Taiwan
22Departamento de Biologia Vegetal, Universidade Federal do Ceará, For taleza, Brazil
23Centro de Tecnologia e Recursos Naturais (CTRN), Universidade Federal de Campina Grande, Campina Grande, Brazil
24Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Centro Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes
Claros, Brazil
25Ciencias Biologicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
26Grupo de Ecología y Conservación de Fauna y Flora Silvestre, Universidad Nacional de Colombia Facultad de Ciencias, Bogota, Colombia
27Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
28Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, Brazil
29Herbario HOXA, Jardín Botánico de Missouri, Oxapampa, Peru
30Embrapa Semiárido, Embrapa, Petrolina, Brazil
31Biologia Vegetal, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
32Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de Sao Paulo, Ribeirão Preto, Brazil
33Laboratório de Fenologia, Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
34Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
35Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, Brazil
36Department of Forest Sciences, Universidade Federal Rural de Pernambuco, Recife, Brazil
37Depar tamento de Ciências Atmosféricas, Instituto de Astronomia, Geofífisica e Ciências Atmosféricas, Universidade de São Paulo, Ribeirão Preto, Brazil
38Plant Ecology and Nature Conservation, Wageningen University and Research, Wageningen, The Netherlands
Correspondence
Peter W. Moonlight, Tropical Biodiversity,
Royal Botanic Garden Edinburgh, 20A
Inverleith Row, Edinburgh, EH3 5LR, UK.
Email: pmoonlight@rbge.org.uk
Funding information
Newton Fund, Grant/Award Number: NE/
N000587/1, NE/N01247X/1 and NE/
N012550/1; Natural Environment Research
Council, Grant/Award Number: NE/
I027797/1 and NE/I028122/1; Fundação de
Amparo à Pesquisa do Estado de São Paulo,
Grant/Award Number: 2015/50488-5;
CYTED, Grant/Award Number: 418RT0554
Societal Impact Statement
Understanding of tropical forests has been revolutionized by monitoring in perma-
nent plots. Data from global plot networks have transformed our knowledge of for-
ests’ diversity, function, contribution to global biogeochemical cycles, and sensitivity
to climate change. Monitoring has thus far been concentrated in rain forests. Despite
increasing appreciation of their threatened status, biodiversity, and importance to the
global carbon cycle, monitoring in tropical dry forests is still in its infancy. We provide
a protocol for permanent monitoring plots in tropical dry forests. Expanding monitor-
ing into dry biomes is critical for overcoming the linked challenges of climate change,
land use change, and the biodiversity crisis.
KEYWORDS
floristics, long term plots, tropical dry forests, vegetation dynamics, vegetation structure
1 | THE VALUE OF FOREST MONITORING
Long-term forest plots are sites where all trees above a specified
diameter are numbered, identified, and measured, and where re-
peated censuses record growth, mortality, and recruitment. Such
plots have become widespread in tropical rain forests, exempli-
fied by networks such as RAINFOR (Amazon Forest Inventory
Network; Malhi et al., 2002), AfriTRON (African Tropical Rainforest
Observation Network; Lewis et al., 2009), T-FORCES (Tropical
Forests in the Changing Earth System; Qie et al., 2017), and CTFS-
forestGEO (Center for Tropical Forest Science-Forest Global Earth
Observatory; Anderson-Teixeira et al., 2014). The RAINFOR,
AfriTRON, and T-FORCES networks collectively comprise > 1,000
1 ha plots across the tropics, where every tree with a stem diam-
eter ≥ 10 cm is measured. CTFS-forestGEO employs much larger
(often 50 ha) plots where every stem ≥ 1 cm in diameter is measured,
and this more intensive survey means that there are fewer (<100) of
such plots across the tropics.
These long-term tropical rain forest plots have been extremely
successful in achieving their primary aim of improving our knowl-
edge of tropical forest ecology, including, for example: the rela-
tionships of climate with biomass (Álvarez-Dávila et al., 2017) and
forest structure (Feldpausch et al., 2012); the role of diversity in car-
bon storage and productivity (Coelho de Silva et al., 2019; Sullivan
|
3
MOONLI GHT eT aL .
et al., 2017); and drivers of monodominance in Amazonia (ter Steege
et al., 2019). In addition, they have helped increase understanding
of community floristic diversity and composition (Baker et al., 2016;
Guevara et al., 2016; Levis et al., 2017), continental scale floristic
patterns (Esquivel-Muelbert et al., 2017; ter Steege et al., 2006; ter
Steege, Pitman, Sabatier, Baraloto, & Salomão, 2013), biome delim-
itation, and mapping (Silva-de-Miranda et al., 2018), and even facil-
itated the discovery of species new to science (reviewed by Baker
et al., 2017). Repeated censuses of these plots have provided insight
into the role of tropical forests in global cycles of carbon, energy,
and water (Pan et al., 2011; Phillips et al., 1998), long-term trends in
forest dynamics (Brienen et al., 2015), and the impacts of extreme
climatic events (Feldpausch et al., 2016; Phillips et al., 2009). As
such, these international standardized networks are a helpful mac-
roecological tool to study humanity's effect on the Earth system and
the vital role that moist tropical forests play in carbon sequestration
and therefore in mitigating the effects of increasing concentration
of atmospheric CO2. Conversely, they have also demonstrated how
tropical forest destruction and degradation account for an estimated
1.3 Pg carbon emissions (Malhi, 2010) and that, following deforesta-
tion, the recovery of forest species composition can take centuries
(Rozendaal et al., 2019). They may also have critical implications at
national levels too - in Peru, for example, long-term permanent plots
have been used to show that the country's intact rain forests have
helped to remove 86% of the country's emissions from the combus-
tion of fossil fuels (Vicuña-Minaño et al., 2018).
2 | DRY FORESTS: A GLOBAL RESOURCE
Long-term monitoring started in tropical rain forests and has been
concentrated there since. This reflects the importance of such
forests as the largest above-ground terrestrial carbon stock (Pan
et al., 2011) and their unparalleled levels of local (alpha) diversity of
plants and animals (e.g. Bass et al., 2010). However, half of the global
tropics are too seasonally dry to support such forests and instead
are home to tropical dry forests (Figure 1) and savannas (Pennington,
Lehmann, & Rowland, 2018). An estimated one-third of the global
population inhabits the seasonally dry tropics (GLP, 2005), and, as
a consequence, these systems have been commonly and severely
altered (e.g., Fajardo et al., 2005; Janzen, 1988; Linares-Palomino,
Kvist, Aguirre-Mendoza, & Gonzales-Inca, 2010; Portillo-Quintero &
Sánchez-Azofeifa, 2010). Because they can be erroneously viewed
as semi-natural, and because of their smaller stature and lower local
diversity than rain forests, tropical dry forests have been under-ap-
preciated by science and conservation. However, new information
suggests that their floristic diversity at continental scale (gamma
diversity) may approach that of rain forests (Flora do Brasil, 2020;
DRYFLOR, 2016), and that they play an essential role in controlling
the interannual variability in the global carbon cycle (Poulter, Frank,
Ciais, Myneni, & Andela, 2014). It is clear that science and society
cannot continue to largely ignore these tropical dry biomes.
3 | PUTTING DRY FORESTS IN THE
SPOTLIGHT
Even thirty years ago tropical dry forests were already considered
the most threatened tropical biome on the planet (Janzen, 1988),
and less than 10% of their original extent remains in many Latin
American countries, which house the largest remaining areas of this
vegetation (Miles et al., 2006; Pennington et al., 2018; Pennington,
Prado, & Pentry, 2000). This high level of loss is not only due to re-
cent conversion but also is a reflection of a long history of defor-
estation and use by early civilizations inhabiting dry forest areas,
especially in Latin America (Murphy & Lugo, 1986).
Landscape modification in tropical dry forest areas has been
exacerbated by their frequently fertile soils, and this also makes
them a continuing focus for agricultural expansion. Although at
local scales plant species richness in tropical dry forests does
FIGURE 1 Dry forest in El Coto de
Caza El Angolo, Piura, Peru in the dry
season showing Ceiba trichistandra (A.
Gray) Bakh. Photograph taken by P.W.
Moonlight
4
|
MOONLI GHT eT aL .
not match that of tropical rain forest, in the Neotropics, at least,
high floristic turnover amongst areas means that at continental
scale their species diversity rivals that of rain forest. For example,
DRYFLOR (Latin American Seasonally Dry Tropical Forest Floristic
Network; 2016) recorded 6,958 woody species from just 1,602
surveys, whereas a current estimate of the number of tree spe-
cies in the moist forests of the Amazon Basin is 6,727 (Cardoso
et al., 2017).
Despite this diversity, tropical dry forests are woefully un-
der-protected. For example, only 1.2% of remaining Brazilian
Caatinga dry forest and 1.4% of Colombian inter-Andean dry
forest are protected (García, Corzo, Isaacs, & Etter, 2014; MMA,
2016), falling massively short of the 17% target set by Aichi bio-
diversity target 11 (CBD, 2011). An integral part of improving the
conservation outlook for tropical dry forests, and of gaining vital
information relevant to their restoration, will come from long-term
ecological monitoring. Such monitoring will be essential to under-
stand how their species grow, reproduce, and recruit, and the
mechanisms behind their mortality, especially in times of climatic
and environmental changes.
The rapid growth of long-term forest monitoring in tropical
rain forests partly reflects internationally agreed, standard proto-
cols for plot establishment. Conversely, the slow adoption of mon-
itorin g in dry biom es is a cons equence, among other factors, of the
lack of agreed protocols. Such lack of consensus in part reflects
the wide physiognomic spectrum of tropical savannas and dry for-
ests. For dry forests, the focus of this paper, this can vary from tall,
closed forest with a 25–30 m canopy, to more open, low, thorny,
and cactus scrub (Pennington et al., 2000). Protocols designed for
1 ha plots in the moist tropics (e.g. Phillips, 2018) fail to capture
th e maj ori t y of gr owt h, mor talit y, or re cruitm ent dy nam ics in these
systems, primarily because mature individuals of many species do
not reach a minimum diameter at breast height (DBH) of 10 cm.
These smaller trees play an important role when describing struc-
ture and functioning of dry forest vegetation (Torello-Raventos
et al., 2013). We urgently need a standard for systematizing the
way with which the large number of researchers now working in
dry forests can measure and monitor these ecosystems. Only with
such a standard protocol in place can we lay the foundations for
generating a rich legacy of scientific and practical advancement in
ecology across the tropics.
In response to this urgent need we here present an approach in
measuring and monitoring tropical ecosystems, specifically adapted
to meet the challenges of long term monitoring in dry forests.
Our protocol, the DRYFLOR Field Manual for Plot Establishment and
Remeasurement (“DRYFLOR Plot Protocol”; please see the Supporting
Information for English, Portuguese and Spanish versions of the
protocol), is based on wide tropical experience and has received rig-
orous field testing in the dry forests, semi-deciduous forests, and
related dr y biomes of Pe ru, sou theas t, an d nor theas t Brazil. The pro-
tocol design is modified and expanded from that used by R AINFOR
(The Amazon Forest Inventory Network; Phillips, Baker, Feldpausch,
& Brienen, 2018) across the Americas and beyond with a particular
emphasis on the Amazon Basin. The new DRYFLOR Plot Protocol cap-
tures most dry forest structure and dynamics and is specifically de-
signed to enable a full and detailed comparison with data captured
by humid forest protocols (Phillips et al., 2018) and by savanna and
dry forest protocols (e.g. by measuring stems ≥ 5 cm diameter and at
130 and 30 cm, rather than ≥10 cm diameter at only 130 cm; in its
provisions for multi stemmed individuals). Physiognomic and dynam-
ics data from the protocol are fully compatible with the ForestPlots
database (Lopez-Gonzalez, Lewis, Burkitt, & Phillips, 2011) and flo-
ristic data with the DRYFLOR database (www.dryfl or.info). We be-
lieve it reaches a reasonable compromise between practical field
constraints in terms of time and data captured for the purpose of
estimating species abundances and biomass data, but it also pro-
vides optional modules that can be implemented if a more complete
picture of dry forest dynamics is desired.
4 | CONCLUSIONS AND CHALLENGES
AHEAD
The DRYFLOR Plot Protocol is a product of a large, collaborative net-
work of researchers working across Latin American dry forests and
related dry biomes. It is intended to permit the rapid and efficient
collection of inventory data in the dry tropics and facilitate stud-
ies on the structure and function of forests. The development of
this protocol is indebted to both the R AINFOR and the DRYFLOR
networks and three projects funded from 2011 to 2019 by the UK
Research Councils and the Brazilian Research Foundations FAPESP
and FAPERJ. The uptake of the protocol in new geographic areas and
beyond these networks will be a continuing challenge, but provides
the considerable benefit of standardised data capture. This will en-
able further collaborative research at wider spatial scales that is vital
for addressing questions about the current and future ecology of
tropical forests in a rapidly changing world. The societal relevance
of this research will ultimately depend not simply on the application
of a universal dry forest protocol, but also on the development of
lasting, meaningful relationships with local and regional stakehold-
ers and policymakers.
ACKNOWLEDGMENTS
This paper was conceived at two DRYFLOR meetings funded by
CYTED (Iberoamerican Program of Science and Technology net-
work grant #418RT0554). The protocol was designed and tested
across three projects: NERC-Newton-FAPESP Nordeste: New
Science for A Neglected Biome (#NE/N01247X/1; #NE/N012550/1;
#2015/50488-5); NERC-Newton-FAPERJ Dry Forest Biomes in
Brazil: Biodiversity and Ecosystem Services; (#NE/N000587/1); NERC
Niche Evolution of South American Trees and its Consequences (#NE/
I027797/1; #NE/I028122/1). We are grateful for the active involve-
ment of the RAINFOR and DRYFLOR networks; all countries, land-
owners and agencies who have granted us permission and provided
logistical support during the protocol testing; and the support of all
author´s institutions.
|
5
MOONLI GHT eT aL .
AUTHOR CONTRIBUTIONS
T.P. conceived the idea and P.M. led the writing of the manuscript
and plot protocol, with significant input from authors K.B.-R. to
D.M.V. All authors contributed to the design and field testing of the
protocol, and had input in the manuscript. Portuguese translation of
the Supporting Information was done by A.T.B., D.M.V., D.R.M., I.C.,
M.N. T.C.d.S.O, and R.C.M.; Spanish translation was done by C.Q,
K.B.-R., R.L.-P., and R.R.
ORCID
Peter W. Moonlight https://orcid.org/0000-0003-4342-2089
Tim R. Baker https://orcid.org/0000-0002-3251-1679
Reynaldo Linares-Palomino https://orcid.
org/0000-0002-7631-5549
Kuo-Jung Chao https://orcid.org/0000-0003-4063-0421
REFERENCES
Álvarez-Dávila, E., Cayuela, L., González-Caro, S., Aldana, A. M.,
Stevenson, P. R., Phillips, O., … Rey-Benayas, J. M. (2017). Forest
biomass density across large climate gradients in nor thern South
America is related to water availability but not with tempera-
ture. PLoS One, 12, e0171072. https://doi.org/10.1371/journ
al.pone.0171072
Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Gonzalez-Akre, E.
B., Muller-Landau, H. C., Joseph Wright, S., … Zimmerman, J. (2014).
CTFS-ForestGEO: A worldwide network monitoring forests in an era
of global change. Global Change Biology, 21, 528–549. https://doi.
org /10.1111/gcb.12712
Baker, T. R., Pennington, R. T., Dexter, K. G., Fine, P. V. A., Fortune-
Hopkins, H., Honorio, E. N., … Vasquez, R. (2017). Maximising syn-
ergy among tropical plant systematists, ecologists, and evolutionary
biologists. Trends in Ecolog y & Evolution, 32, 258–267. https://doi.
org/10.1016/j.tree.2017.01.007
Baker, T. R., Vela Díaz, D. M., Moscoso, V. C., Navarro, G., Monteagudo,
A., … Phillips, O. L . (2016). Consistent small effects of treefall dis-
turbances on the composition of four Amazonian forests. Journal of
Ecology, 104, 497–506. https://doi.org/10.1111/1365-2745.12529
Bass, M. S., Finer, M., Jenkins, C. N., Kreft, H., Cisneros-Heredia, D. F.,
McCracken, S. F., … Kunz, T. H. (2010). Global conservation signifi-
cance of Ecuador’s Yasuní National Park. PLoS One, 5, e8767. https://
doi.org/10.1371/journ al.pone.0008767
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T.
R., Lloyd, J., … Zagt, R. J. (2015). Long-term decline of the Amazon
carbon sink. Nature, 519, 344–348. https://doi.org/10.1038/natur
e14283
Cardoso, D., Särkinen, T., Alexander, S., Amorim, A. M., Bittrich, V., …
Forzza, R. C. (2017). Amazon plant diversit y revealed by a taxonomi-
cally verified list. PNAS, 104, 10695–10700. https://doi.org/10.1073/
p n a s . 1 7 0 6 7 5 6 1 1 4
CBD. (2011). Convention on biological diversity, quick guide to the
Aichi biodiversit y targets: Protected areas increased and improved,
TARGET 11–technical rationale extended (COP/10/INF/12/Rev,
Convention on Biological Diversity, 2011).
Coelho de Souza, F., Dexter, K. G., Phillips, O. L., Pennington, R. T.,
Neves, D., Sullivan, M. J. P., … Baker, T. R. (2019). Evolutionary di-
versity is associated with wood productivity in Amazonian forests.
Nature Ecology & Evolution, 3, 1754–1761. https://doi.org/10.1038/
s41559-019-1007-y
do Brasil, F. (2020, under construction). Jardim Botânico do Rio de
Janeiro. Retrieved from http://flora dobra sil.jbrj.gov.br/
DRYFLOR. (2016). Plant diversity patterns in neotropical dry forests
and their conservation implications. Science, 353 (6306), 1383–1387.
https://doi.org/10.1126/scien ce.aaf5080
Esquivel-Muelbert, A., Galbraith, D., Dexter, K. G., Baker, T. R., Lewis,
S. L., Meir, P., … Phillips, O. L. (2017). Biogeographic distributions
of neotropical trees reflect their directly measured drought toler-
ances. Nature Scientific Reports, 7, 8334. https://doi.org/10.1038/
s41598-017-08105-8
Fajardo, L., González, V., Nassar, J. M., Lacabana, P., Portillo,
Q., Carrasquel, F.& Rodríguez, J. P. (2005). Tropical dry for-
ests of Venezuela: Characterization and current con-
servation status. Biotropica, 37, 531–546. https://doi.
org /10.1111/j.1744 -7429.2005.00 071.x
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J., Gloor, M.,
Monteagudo Mendoza, A., … Alexiades, M. (2012). Tree height in-
tegrated into pantropical forest biomass estimates. Biogeosciences,
3381–3403. https://doi.org/10.5194/bg-9-3381-2012
Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J.,
Lopez-Gonzalez, G., … Vos, V. A. (2016). Amazon forest response
to repeated droughts. Global Biogeochemical Cycles, 30, 964–982.
https://doi.org/10.10 02/2015G B005133
García, H., Corzo, G., Isaacs, P., & Etter, A. (2014). El Bosque seco Tropical
en Colombia (pp. 228–251). C. Pizano & H. García (Eds.). Bogotá
D.C., Colombia: Instituto de Investigación de Recursos Biológicos
Alexander von Humboldt (IAvH).
GLP (Global Land Project). (2005). Science plan and implementation
strategy [IGBP (International Geosphere Biosphere Program) report
no. 53/international human dimensions programme report No. 19,
IGBP Secretariat, Stockholm, 2005]. Retrieved from www.globa lland
proje ct.org/docum ents.shtml
Guevara, J. E., Damasco, G., Baraloto, C., Fine, P. V. A., Peñuela, M. C.,
… ter Steege, H. (2016). Low phylogenetic beta diversity and geo-
graphic neo-endemism in Amazonian white-sand forests. Biotropica,
48, 34–46. https://doi.org/10.1111/btp.12298
Janzen, D. H. (1988). Tropical dry forests: The most endangered major
tropical ecosystem. In E. O. Wilson (Ed.), Biodiversity (pp. 130–137).
Washington, DC: National Academy Press.
Levis, C., Costa, F. R. C., Bongers, F., Peña-Claros, M., Clement, C. R.,
… ter Steege, H. (2017). Persistent effects of pre-Colombian plant
domestication on Amazonian forest composition. Science, 355, 925–
931. https://doi.org/10.1126/scien ce.aal0157
Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T.
R., Ojo, L. O., … Wöll, H. (2009). Increasing carbon storage in in-
tact African tropical forests. Nature, 457, 1003–1006. https://doi.
org/10.1038/natur e07771
Linares-Palomino, R., Kvist, L. P., Aguirre-Mendoza, Z., & Gonzales-
Inca, C. (2010). Diversity and endemism of woody plant spe-
cies in the Equatorial Pacific seasonally dry forests. Biodiversity
and Conservation, 19, 169–185. https://doi.org/10.10 07/
s10531-009-9713-4
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., & Phillips, O. L. (2011).
ForestPlots.net: A web application and research tool to manage and
analyse tropical forest plot data. Journal of Vegetation Science, 22(4),
610–613. ht tps://doi.org/10.1111/j.1654 -1103.2011.01312.x
Malhi, Y. (2010). The carbon balance of tropical forest regions, 1990–
2005. Current Opinion in Environmental Sustainability, 2, 237–244.
https://doi.org/10.1016/j.cosust.2010.08.002
Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T., Wright, J., Almeida, S.,
… Vinceti, B. (2002). An international network to monitor the
structure, composition and dynamics of Amazonian forests
(RAINFOR). Journal of Vegetation Science, 13, 439–450. https://doi.
org /10.1111/j.1654-1103 .2002.tb 020 68.x
Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., …
Gordon, G. E. (2006). A global view of the conservation status of
6
|
MOONLI GHT eT aL .
tropical dry forests. Journal of Biogeography, 33, 481–505. https://
doi.org/10.1111/j.1365-2699.2005.01424.x
MMA, Ministério do Meio Ambiente [Ministry of the Environment].
(2016). Unidades de Conservação por Bioma (CNUC/MMA,
Brasília-DF, Brasil, 2016).
Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forests.
Annual Review of Ecology and Systematics, 17, 67–88. https://doi.
org/10.1146/annur ev.es.17.110186.000 435
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
… Hayes, D. (2011). A large and persistent carbon sink in the world’s
forests. Science, 333, 988–993. https://doi.org/10.1126/scien
ce.12 0160 9
Pennington, R. T., Lehmann, C. E. R., & Rowland, L. M. (2018). Tropical
savannas and dry forests. Current Biology, 28, R541–R545. https://
doi.org/10.1016/j.cub.2018.03.014
Pennington, R. T., Prado, D. E., & Pentry, C. A. (2000).
Neotropical seasonally dry forests and Quaternar y vegeta-
tion changes. Journal of Biogeography, 27, 261–273. https://doi.
org/10.1046/j.1365-2699.2000.00397.x
Phillips, O. L., Aragao, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J.,
Lopez-Gonzalez, G., … Torres-Lezama, A. (2009). Drought sensitiv-
ity of the Amazon rainforest. Science, 323, 134 4–1347. https://doi.
org/10.1126/scien ce.1164033
Phillips, O. L., Baker, T. R., Feldpausch, T. R., & Brienen, R. J. W. (2018).
RAINFOR field manual for plot establishment and remeasurement.
(Amazon Forest Inventory Network, 2018, 27 pp.). https://doi.
org/10.5521/fores tplots.net/2018_5
Phillips, O. L., Malhi, Y., Higuchi, G., Núñez, P. V., Vázquez, R. M., …
Grace, J. (1998). Changes in carbon balance of tropical forests:
Evidence from long-term plots. Science, 282, 439–442. https://doi.
org/10.1126/scien ce.282.5388.439
Portillo-Quintero, C. A., & Sánchez-Azofeifa, G. A. (2010). Extent
and conservation of tropical dry forests in the Americas.
Biological Conservation, 143, 144–155. https://doi.org/10.1016/j.
biocon.2009.09.020
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N. et al (2014).
Contributions of semi-arid ecosystems to interannual variabil-
ity of the global carbon cycle. Nature, 509, 600–603. https://doi.
org/10.1038/natur e13376
Qie, L., Lewis, S. L., Sullivan, M. J. P., Lopez-Gonzalez, G., Pickavance, G.
C., … Phillips, O. L . (2017). Long term sink in Borneo’s forests halted
by drought and vulnerable to edge effects. Nature Communications,
8, 1966. https://doi.org/10.1038/s41467-017-01997-0
Rozendaal, D. M. A., Bongers, F., Aide, T. M., Alvarez-Dávila, E., Ascarrunz,
N., Balvanera, P., … Poorter, L. (2019). Biodiversity recovery of
Neotropical secondary forests. Science Advances, 5, eaau31146.
https://doi.org/10.1126/sciadv.aau3114
Silva de Miranda, P., Oliveira-Filho, A. T., Pennington, R. T., Neves, D. M.,
Baker, R. T., & Dexter, K. G. (2018). Using tree species inventories
to map biomes and assess their climatic overlaps in lowland tropical
South America. Global Ecol ogy and Biogeogra phy, 27, 1–14. https: //doi.
org /10.1111/geb.12749
Sullivan, M. J. P., Talbot, J., Lewis, S. L., Phillips, O. L., Qie, L., Begne,
S. K., … Zemagho, L. (2017). Diversity and carbon storage across
the tropical forest biome. Scientific Repor ts, 7, 39102. https://doi.
org/10.1038/srep3 9102
ter Steege, H., Henkel, T. W., Helal, N., Marimon, B. S., Marimon-Junior,
B. H., Huth, A ., … Melgaço, K. (2019). Rarity of monodominance in
hyperdiverse Amazonian forests. Scientific Reports, 9, 13822. htt ps://
doi.org/10.1038/s41598-019-50323-9
ter Steege, H., Pitman, N. C. A., Phillips, O. L., Chave, J., Sabatier, D.,
Duque, A., … Vásquez, R. (2006). Continental-scale patterns of can-
opy tree composition and function across Amazonia. Nature, 443,
444–447. https://doi.org/10.1038/natur e05134
ter Steege, H., Pitman, N. C., Sabatier, D., Baraloto, C., & Salomão, R. P.
(2013). Hyperdominance of the Amazonian tree flora. Science, 342,
1243092. https://doi.org/10.1126/science
Torello-Raventos, M., Feldpausch, T. R., Veenendaal, E., Schrodt, F.,
Saiz, G., Domingues, T. F., … Lloyd, J. (2013). On the delineation
of tropical vegetation types with an emphasis on forest-savanna
transitions. Plant Ecology and Diversity, 6, 101–137. https://doi.
org /10.1080/17550 874.2012.762812
Vicuña-Minaño, E., Baker, T. R., Banda-R., K., Honorio-Coronado, E.,
Monteagudo, A., Phillips, O. L., … Vasques Martinez, R. (2018). El
sumidero de carbono en los bosques primarios Amazónicos es una
oportunidad para lograr la sostenibilidad de su conservación. Folia
Amazónica, 27, 101–109. https://doi.org/10.24841/ fa.v27i1.456
SUPPORTING INFORMATION
Additional supporting information may be found online in the
Supporting Information section.
How to cite this article: Moonlight PW, Banda-R K, Phillips
OL, et al. Expanding tropical forest monitoring into Dry
Forests: The DRYFLOR protocol for permanent plots. Plants,
People, Planet. 2020;00:1–6. https://doi.org/10.1002/
ppp3.10112