ArticlePDF Available

Quaternary stratigraphic architecture and sedimentaryevolution from borehole GB014 in the westernXiong’an New Area

Authors:
  • Tianjin Center, China Geological Survey
Quaternary stratigraphic architecture and sedimentaryevolution from borehole GB014 in the westernXiong’an New
Area
刘开明, 胥勤勉, 段连峰2, 牛文超2, 滕飞2, 王小丹2, 张伟3 and 董杰1
Citation: 科学通报 65, 2145 (2020); doi: 10.1360/TB-2020-0021
View online: https://engine.scichina.com/doi/10.1360/TB-2020-0021
View Table of Contents: https://engine.scichina.com/publisher/scp/journal/CSB/65/20
Published by the 《中国科学》杂志社
Articles you may be interested in
New discoveries from the classic Quaternary mammalian fossil area of Yanjinggou, Chongqing, and their chronological explanations
Chinese Science Bulletin 58, 3780 (2013);
3-D geologic architecture of Xiong’an New Area: Constraintsfrom seismic reflection data
SCIENCE CHINA Earth Sciences 61, 1007 (2018);
Discovery of a new vertebrate fauna of Late Permian from western Gansu and its stratigraphic significance
Chinese Science Bulletin 41, 1271 (1996);
STRATIGRAPHIC AND GEOCHRONOLOGIC ANALYSES OF THE QUATERNARY DEPOSITS IN THE THREE-LAKE REGION OF QAIDAM
BASIN
Science in China Series B-Chemistry, Life Sciences & Earth Sciences 34, 987 (1991);
A new species of Lepidopteris discovered from the Upper Permian of China with its stratigraphic and biologic implications
Chinese Science Bulletin 57, 3603 (2012);
雄安新区西部GB014孔第四纪地层结构与演化过程
刘开明1,2,胥勤勉1,2*,段连峰2,牛文超2,滕飞2,王小丹2,张伟3,董杰1
1. 聊城大学环境与规划学院,聊城 252000;
2. 中国地质调查局天津地质调查中心,天津 300170;
3. 泰山学院旅游学院,泰安 271000
*联系人, E-mail: xuqinmian@163.com
2020-01-08 收稿, 2020-04-05 修回, 2020-04-08 接受, 2020-04-10 网络版发表
中国地质调查项目(DD20190035)和国家自然科学基金(41877442)资助
摘要 对雄安新区西部GB014孔进行了岩石磁学古地磁和沉积学研究,建立了第四纪地层结构,为更科学利用
地下空间提供基础地质支撑.岩石磁学和系统退磁实验揭示钻孔沉积物的载磁矿物主要为磁铁矿,其次为赤铁矿.
依据古地磁和区域沉积特征,建立了GB014孔的磁性地层年代框架,-中更新统界线(M/B界线)和第四系底界(G/
M界线)埋深分别为33.8135.0 m. 依据沉积物岩性结构,以及自然伽玛曲线粒度色度环境磁学参数等将
GB014孔划分为5个沉积体系,自下而上依次为:沉积体系为粗颗粒的冲积扇相,埋深为200~146.6 m, 年龄为
3.90~2.81 Ma, 沉积速率为4.9 cm/ka; 沉积体系为细颗粒的泛滥平原相,埋深为146.6~108.0 m, 年龄为2.81~1.88
Ma, 沉积速率为2.76 cm/ka; 沉积体系为粗颗粒的辫状河道相,埋深为108.0~57.6 m, 年龄为1.88~1.02 Ma, 沉积速
率为5.86 cm/ka; 沉积体系为细颗粒的泛滥平原相,埋深为57.6~35.8 m, 年龄为1.02~0.79 Ma, 沉积速率为
9.48 cm/ka; 沉积体系为夹决口扇的泛滥平原相,埋深为35.8~0 m, 年龄为0~0.79 Ma, 沉积速率为4.53 cm/ka.
上新世以来GB014孔记录了3.90~2.811.88~0.79 Ma两次构造活跃期,其中1.88~1.02 Ma时期可能发生物源变化.
太行山山前普遍存在这两期构造活动形成的粗颗粒沉积物,而中晚更新世的砂层则可能与海侵进入渤海湾
域降水增多有关.
关键词 雄安新区,第四纪,磁性地层,地层结构
雄安新区横跨太行山山前冲积扇和白洋淀,其第
四纪地层影响了区域水文地质工程地质条件,亦是
利用不同深度地下空间和国土空间规划的基础.雄安
新区第四纪研究最初集中在白洋淀的形成演化和古环
境等方面[1~5],近年来开展了一些全新世地层的研究工
[6,7],但对影响其工程地质和水文地质的第四纪地层
缺少研究.
雄安新区位于华北平原第四系建组的固2
西孔和欧54孔之间,第四纪地层划分为下更新统固安
中更新统杨柳青组上更新统欧庄组,以及全新
统杨家寺组高湾组和岐口组.其中,固安组建组剖面
为固2,深度为344~503 m; 杨柳青组建组剖面为津西
,深度为180~311 m; 欧庄组建组剖面为欧54,深度
31.8~165.7 m[8,9].近年来,该区域多个标准孔的地层
年代学研究成果较先前的地层年代划分认识具有较大
差异[10~12],例如,距固2孔东北向8 kmPGZ01孔中更
新统底界与第四系底界埋深分别在78.35280 m[13],
距固2孔南2.5 kmG01孔中更新统底界与第四系底界
引用格式:刘开明,胥勤勉,段连峰,.雄安新区西部GB014孔第四纪地层结构与演化过程.科学通报, 2020, 65: 2145–2160
Liu K M, Xu Q M, Duan L F, et al. Quaternary stratigraphic architecture and sedimentary evolution from borehole GB014 in the western Xiong’an New Area
(in Chinese). Chin Sci Bull, 2020, 65: 2145–2160, doi: 10.1360/TB-2020-0021
© 2020《中国科学》杂志社 www.scichina.com csb.scichina.com
2020 65 20 : 2145 ~ 2160
论 文
https://engine.scichina.com/doi/10.1360/TB-2020-0021
埋深分别在105.5183.7 m[14];距津西孔东南向16 km
BZ2孔中更新统底界与第四系底界埋深分别在56.2
162.4 m[15],距津西孔东南向50 kmG3孔中更新统
底界与第四系底界埋深分别在85240 m左右[16].中更
新统底界与第四系底界的埋深较之前的认识分别减小
200~250220~340 m, 因此,固安组和杨柳青组就归
属于新近系.上述研究所采用的年代学手段均为古地
,然而受限于分析测试技术,早期的研究主要使用交
变退磁方法,利用旋转磁力仪测量剩磁[17,18],而华北平
原北部晚新生代沉积物的载磁矿物除了磁铁矿外,
有针铁矿赤铁矿[10,19],交变退磁常常无法提取出可
靠的特征剩磁.现今古地磁实验主要采用逐步热退磁
方法,并利用超导磁力仪测量剩磁,获得可靠的特征剩
,建立更准确的磁性地层年代框架[10,20,21].因此,有必
要重新厘定华北平原地区第四纪地层的年代属性.
,现今华北平原北部仍属于构造活动区域[22],发生过
1679年三河-平谷Ms8级地震和1976年唐山Ms7.8级地
震等强震[23,24].建立不同区域钻孔地层的年代框架也
能为研究新构造提供更准确的年代约束
本研究利用雄安新区工程地质调查钻取的GB014
孔岩芯,首先利用岩石磁学方法确定沉积物的载磁矿
,再采用古地磁学建立磁性地层年代框架;利用测井
曲线粒度色度和磁化率等确定沉积相和沉积体系;
结合区域地层结构沉积特征,确定钻孔年代地层,
复沉积演化过程;结合已有钻孔,进一步讨论了太行山
前晚新生代盆地发育过程;为厘定区域岩石地层和年
代地层新构造运动分析提供新材料.
1区域地质概况
雄安新区在构造背景上属于渤海湾盆地中的冀中
坳陷,西侧边界断裂分别为大城-武清断裂和太行
山山前断裂(1), 次级构造包括属于容城凸起牛驼
镇凸起保定凹陷和霸州凹陷等[25,26].雄安新区新生
代地层发育也与构造相关,古近纪主要为断陷时期,
凹陷区形成厚约3 km的沉积物,凸起区沉积缺失,凹陷
和凸起区沉降差异较大;新近纪至第四纪主要为裂陷
时期,整体沉降,地层厚度差异减小,厚约1 km[8,27,28].
华北平原北部张家口-蓬莱断裂带以南区域第四系
厚约160~300 m, 其中坳陷内多为200~300 m, 隆起区多
160~200 m[9,29,30].雄安新区缺少钻透第四系的钻孔,
西部全新世地层厚约4 m[6,7],经历了两次成湖期,分别
8.3~6.95.9 ka至今[7].雄安新区内白洋淀是华北平
原最大的淡水湖,包括143个大小不等的淀泊[2],9
河流汇入.
2采样与研究方法
GB014孔位于河北省雄安新区容城县小里镇胜利
庄东北,钻孔坐标39°0′58″N, 114°47′15″E, 孔口高程
9.3 m; 采用旋转机械钻取芯,岩芯管直径108 mm,
200 m, 孔斜小于0.4°, 钻孔取芯率98.7%. 岩芯劈成两
,依次平摆照相取样.古地磁样品以0.5 m间隔采集,
每个样品在室内加工成两套2 cm×2 cm×2 cm的立方体
样品.散样以0.2 m间隔采集.
145块古地磁样品的系统退磁和剩磁测试在中国
科学院地质与地球物理研究所古地磁与地质年代学实
验室磁屏蔽空间(300 nT)完成.采用逐步热退磁方法,
室温至610°C,退磁间隔为20~50°C; 610~690°C,退
磁间隔为10°C. 剩磁测量在2G-755卧式低温超导磁力
仪上进行.
对不同深度沉积物的代表性样品进行磁化率-温度
(χ-T)曲线磁滞回线等温剩磁(IRM)获得曲线等岩
石磁学测量,这些实验是在中国科学院地质与地球物
理研究所古地磁与地质年代学实验室进行.χ-T曲线采
AGICO公司生产的KLY-3s KappabridgeCS3温度
控制系统测量,加热过程中为防止氧化反应,均在氩气
环境下进行,从室温加热至700°C左右,再冷却至室温;
磁滞参数(包括饱和剩磁Mrs饱和磁化强度Ms矫顽
Bc和剩磁矫顽力Bcr)IRM获得曲线及反向场退磁曲
线均采用美国普林斯顿仪器公司的MicroMag3900型振
动样品磁力仪测量.
526个样品进行了色度和磁化率测试.色度样品
在室温下进行自然风干,研磨至200,采用Konica-
Minolta SPAD503光谱仪进行测量,每个样品测量3,
取平均值.L*值为亮度值,数值为0~100, 在黏性土中主
要反映碳酸钙(白色)和有机质(黑色)含量的差异.a*
红度值,b*值为黄度值,两者数值变化趋势一致,本次
只选用a*.a*值受控于铁锰的含量,以及铁的氧化
氢氧化物的含量[31].赤铁矿和红度呈线性相关[32],
反映了氧化程度的高低.
磁化率样品装入8 cm3的无磁性塑料盒后,采用英
Bartington MS2B型磁化率仪测量低频磁化率,并用
精度为0.001 g的电子天平测量每个样品的质量,再计
算每个样品的质量磁化率.
189个粒度样品在泰山学院进行测试,采用10%
2020 7 65 20
2146 https://engine.scichina.com/doi/10.1360/TB-2020-0021
H2O2去除有机质,再用10%HCl去除碳酸盐;每一步
处理过程中均煮沸使其充分反应,然后加水,静置一夜,
再抽去水;最后加入10 mL浓度为0.05 mol/L
(NaPO3)6静置24 h,采用Mastersizer-2000粒度仪进行
测试.采用矩法计算平均粒径偏差峰态标准差
等粒度参数[33].
测井曲线中选取自然伽玛曲线,测试间隔为5 cm.
自然伽玛指示砂黏比,黏土含量增高,自然伽玛增大;
井曲线的幅度形态波动性和锯齿化程度组合成箱
钟形漏斗形等基本形态,反映沉积相的变化[34].
3结果
3.1 沉积相
依据沉积物的结构构造颜色和粒度等, GB014
包含河间洼地决口扇河床冲积扇扇上河道和扇
1(网络版彩色)京津冀平原区构造简图和钻孔位置图.底图为数字高程模型
Figure 1 (Color online) The tectonic map of Beijing-Tianjin-Hebei Plain and the locations of boreholes. The base map is digital elevation model
image
论 文
2147
https://engine.scichina.com/doi/10.1360/TB-2020-0021
上洼地等沉积亚相.河间洼地相岩性均以砂质粉砂
土质粉砂和粉砂质黏土为主,偶夹中厚层状粉砂质砂和
粉细砂.平均粒径为6.1~7.5Φ,以细颗粒沉积物为主;
准差为1.4~2.1, 在全孔沉积物中分选较好;偏度范围为
0.6~0.4, 峰态为2.3~3.5; 砂的含量普遍小于10%. 上部
以棕黄色为主,含少量弱还原斑块和钙质结核(2(a));
中部颜色主要为黄棕色,含有少量的钙质淀积斑点
铁锰质淀积斑点和有机质斑点(2(b)(c)); 下部多为
红棕色和棕红色,含有钙质淀积结核灰绿色还原条
,以及蜡状光泽的劈理(2(d)(e)).
决口扇相岩性为黄棕色粉砂质砂,质地较均一(2
(f)), 平均粒径为5.9Φ,标准差为1.9, 偏度为1.0, 峰态为
3.3, 砂的含量为14%; 沉积物中粗颗粒含量增加.
河床相为棕黄色黄灰色细砂中砂(2(g)),
2GB014孔典型沉积相岩芯照片. (a)~(e) 河间洼地相,埋深分别为4.0~5.038.0~39.0112.0~113.0114.0~115.0173.0~174.0 m, 随深度
增加,沉积物逐渐增加红度; (f) 决口扇相,埋深17.0~18.0 m, 岩性为黄棕色粉砂质砂; (g) 河床相,埋深69.0~70.0 m, 岩性为黄灰色细砂; (h) 扇上
河道相,埋深159.0~159.8 m, 岩性为分选磨圆均较差的细砂中砂; (i) 扇上洼地,埋深184.0~184.5 m, 岩性为红棕色含细砂颗粒的粉砂质砂
Figure 2 Photos of typical sedimentary facies in boreholes GB014. (a), (e) Interfluvial lowland facies, the depth of 4.05.0, 38.039.0, 112.0113.0,
114.0115.0 and 173.0174.0 m, respectively, with a downwards reddening trend. (f) Crevasse splay facies, the depth of 17.0–18.0 m, yellowish-brown
silty sands. (g) Fluvial bed facies, the depth of 69.0–70.0 m, yellowish-grey fine sands. (h) Fluvial bed facies in alluvial fan, the depth of 159.0–159.8 m,
poor-sorted and rounded fine sands and medium sands. (i) Lowland facies in alluvial fan, the depth of 184.0–184.5 m, reddish-brown silty sands
including some fine sands
2020 7 65 20
2148 https://engine.scichina.com/doi/10.1360/TB-2020-0021
均粒径为2.4Φ,标准差为1.9, 偏度为2.1, 峰态为7.3,
的含量为86%; 沉积物以粗颗粒砂为主.
冲积扇相包括扇上河道和扇上洼地.扇上河道岩
性为黄棕色红棕色细砂中砂和粉砂质砂,砂层中
多含有细小砾石,分选磨圆均较差(2(h)); 河道相顶
部多形成钙质淀积层,50~100 cm. 扇上洼地岩性为
红棕色粉砂质砂(2(i)), 平均粒径为5.4Φ,标准差为
2.9, 偏度为0.1, 峰态为1.6, 砂的含量为38%; 扇上洼
地粒度较细,分选差,偏差和峰态均较小,但砂的含量
却较高.
3.2 沉积体系
依据钻孔岩性组合测井曲线粒度色度和磁
化率等参数,GB014孔沉积序列划分为5个沉积体系,
分别为Ⅰ~(3).
()沉积体系Ⅴ.埋深200~146.6 m, 岩性主要为红
棕红色泥质细砂中砂夹少量粉砂质砂砂质粉
,发育钙质淀积层和结核,具有灰绿色还原条带,
量粉砂质泥发育劈理,具蜡状光泽.自然伽玛曲线数值
较小, 32~80 API, 平均为55 API, 下部为两个钟形,上部
为箱式,夹少量指状高值;和岩相一致,均指示了粗颗
粒夹少量细颗粒的沉积类型.沉积物的平均粒径为
2.8~7.5Φ,标准差为1.5~3.2, 平均为2.5; 偏度范围为
0.6~1.3, 峰态为1.6~3.7, 砂质含量达78%. 该段整体
粒度较粗,标准差为全孔最大,分选较差,为冲积扇扇
中部位.
该段沉积物的L*值为53.8~67.4, 平均值为60.91, a*
值为1.2~8.7, 平均值为5.5. a*值为全孔的高值段,反映
了该段沉积物经历较强的风化作用.L*的高值和砂层
相对应,反映了砂层以石英长石为主.磁化率值为
(1.5~108.3)×108m3/kg, 数值平缓,仅砂层略具有小的
波峰.
()沉积体系Ⅳ.埋深146.6~108.0 m, 岩性主要为
黄棕红棕色砂质粉砂和粉砂质砂互层,含钙质淀积
和铁锰质淀积结核.自然伽玛曲线数值较大, 36~95
API, 平均为72 API, 呈现为箱式,夹少量谷状低值;
岩相相关,均指示了相对较细的沉积物类型.沉积物平
均粒径为5.5~7.4Φ,偏度为0.6~0.7, 峰度为2.1~3.1,
砂组分含量达70%. 岩性自然伽玛曲线和粒度,均指
示该段为细颗粒沉积物.该段沉积物的L*值为
56.8~65.4, 平均为61.72; a*值为1.5~7.2, 平均为5.4. a*
值和沉积体系Ⅴ相似,均大于2.5, 指示了氧化环境[35].
L*值也有上升,可能指示了沉积物中钙质含量增加.
化率为(4.44~59.3)×108m3/kg, 数值平缓,且较低,和岩
性相对应,为细颗粒沉积物.
()沉积体系Ⅲ.埋深108.0~57.6 m, 岩性主要为
黄棕色砂质粉砂粉砂质砂细砂和中砂组成的4
厚度不一的正粒序旋回,少量钙质结核.自然伽玛值为
36.9~88.1 API, 平均值为63.8 API, 和岩性相对应,也具
4个厚度不一的钟形.沉积物平均粒径2.4~7.2Φ,标准
差为1.1~2.7, 偏度为0.6~2.1, 峰态为1.8~7.4. 黏性土和
砂层厚度基本相等,但砂层的分选比黏土层较差,说明
其更靠近物源,整体应为辫状河道.砂层的峰态明显增
,相对应的磁化率值也较高,相比于沉积组合Ⅴ中冲
积扇中的砂层具有较高的峰态和磁化率值,可能指示
了河流上游水系的变化,物源中磁性矿物含量增加.
段沉积物的L*值为53.4~66.1, 平均为60.74; a*值为
0.9~7.1, 平均为4.68. 亮度值也和沉积相对应,砂层中
亮度值低,黏性土中较高,可能反映了砂层中碎屑成分
增加,黏性土中钙质含量增高.
()沉积体系Ⅱ.埋深57.6~35.8 m, 岩性主要为黄
红棕色粉砂夹少量砂质粉砂,含少量碳质斑点.
然伽玛数值为46.5~90.9 API, 平均值为77.3 API, 整体呈
箱式,夹有小型波状起伏.该段沉积物的平均粒径
4.4~7.6Φ,标准差为1.4~2.8, 偏度为0.2~0.8, 峰度为
2~3, 平均为2.6, 峰形较平缓.沉积物的L*值为55.0~
65.1, 平均为60.6; a*值为3.4~7.0, 平均为4.9. 磁化率为
(5.4~53.6)×108m3/kg, 数值平缓,和岩性相对应,反映
了细颗粒为主的沉积.岩性自然伽玛色度和磁化
率均反映了该层氧化的细颗粒沉积物,为泛滥平原相.
()沉积体系Ⅰ.埋深35.8~0 m, 岩性主要为黄棕
色粉砂质砂夹砂质粉砂,少量钙质淀积结核.自然伽玛
50.9~97.0 API, 平均值为77.3, 整体呈现为钟形,向上
增大,反映了泥质含量增大.但该段平均粒径为
3.9~7.2Φ,除底部砂层粒度为4Φ,其余均相对均一,
且以粉砂组分为主,含量达70%. 该段沉积物的L*值为
50.7~68.4, 平均为60.8; a*值为2.4~7.0, 平均为4.7, 显示
为氧化环境.磁化率为(4.0~82.5)×108m3/kg, 数值平
,振幅较小.沉积体系Ⅰ岩性和粒度均较Ⅱ有增加,
但仍以较细颗粒沉积为主,推断为决口扇夹河间洼地
,属于曲流河或冲积扇之间的泛滥平原相.
3.3 岩石磁学性质
4(a)GB014孔不同深度代表性样品的χ-T曲线.
论 文
2149
https://engine.scichina.com/doi/10.1360/TB-2020-0021
3(网络版彩色)GB014孔岩性自然伽玛色度粒度和磁化率参数曲线图
Figure 3 (Color online) The lithology, gamma ray, L*, a*, grain size and magnetic susceptibility of borehole GB014
2020 7 65 20
2150 https://engine.scichina.com/doi/10.1360/TB-2020-0021
4(网络版彩色)雄安新区西部GB014孔不同深度沉积物岩石磁学特征. (a) 磁化率随温度变化曲线(χ-T); (b) 等温剩磁曲线(IRM)及反向场退
磁曲线; (c) 顺磁校正后的磁滞回线
Figure 4 (Color online) Rock magnetic characteristics of selected samples according on the different depth in GB014 borehole, western Xiong’an
New Area. (a) The temperature-dependence of magnetic susceptibility (χ-T); (b) the isothermal remnant magnetization (IRM) acquisition curves and its
back-filed demagnetization curves; (c) the Hysteresis loops after slope correction for paramagnetic contribution
论 文
2151
https://engine.scichina.com/doi/10.1360/TB-2020-0021
所有样品的加热曲线均显示磁化率在580°C左右迅速
下降,冷却曲线显示磁化率在580°C左右快速上升,
一现象说明磁铁矿为主要磁性矿物. GB014-1样品冷却
时的磁化率高于加热时的磁化率,指示了在加热过程
,含铁硅酸盐矿物/黏土矿物转化为强磁性磁铁矿[36].
其余样品的加热和冷却后磁化率相近,说明没有强磁
性矿物的转化.样品GB014-3GB014-4GB014-5
GB014-6GB014-7GB014-8在加热至580°C之后,
化率仍在降低,加热温度升至700°C,磁化率才最终
降至0,说明样品中含有赤铁矿[37].样品GB014-1在加
热至300°C过程中,磁化率缓慢增加,可能是纤铁矿脱
水转化为磁赤铁矿[38].样品GB014-1GB014-2
300~450°C之间随着温度的升高而下降,其中GB014-2
更为明显,这反映了亚稳定强磁性的磁赤铁矿受热
转化为热稳定弱磁性的赤铁矿[39].样品GB014-5
GB014-6GB014-7GB014-8300~450°C加热过程
中磁化率迅速增加,并在510°C形成峰值,冷却曲线也
在约510°C形成峰值,且加热和冷却后磁化率相近,
强磁性矿物转化;这说明510°C的峰值为Hopkinson,
样品中含有SD颗粒磁铁矿,当温度上升至磁铁矿的解
阻温度和居里温度之间,样品中SD颗粒表现出SP颗粒
的性质,磁化率迅速升高[40,41].
4(b)GB014孔代表性样品的IRM获得曲线与
反向场退磁曲线,1 T的等温剩磁近似饱和等温剩磁.
300 mT,等温剩磁达到饱和等温剩磁的70%~94%,
S-ratio值也在0.73~0.89, 说明这类型的沉积物中均以低
矫顽力的磁铁矿与磁赤铁矿为主,同时含有高矫顽力
的赤铁矿针铁矿,但不同样品的磁性矿物组成略有
差异.样品GB014-2的剩磁矫顽力为32.37 mT(4(b)-
), 这与单畴磁铁矿的理论剩磁矫顽力值相近[41],
明这些样品的载磁矿物以单畴磁铁矿或磁赤铁矿为主.
其他样品的剩磁矫顽力为51.25~135.5 mT(4(b)-
), 反映了低矫顽力与高矫顽力矿物共存.
4(c)GB014孔代表性样品的磁滞回线,最大外
加磁场为1.0 T. 样品GB014-2的磁滞回线在300 mT
上闭合(4(c)-), 说明载磁矿物主要为亚铁磁性矿
.样品GB014-1GB014-6GB014-7的磁滞回线在
500 mT以上闭合(4(c)-), 说明样品中的
载磁矿物主要为亚铁磁性矿物,同时含有少量的反铁
磁性矿物.样品GB014-3GB014-4GB014-5的磁滞
回线呈蜂腰状,其中样品GB014-3的蜂腰状形态更为明
(4(c)-), 这种曲线形态一般是由于软磁
性矿物与硬磁性矿物混合所致.
上述岩石磁学实验说明GB014孔沉积物中的磁性
矿物主要为磁铁矿,少量赤铁矿和磁赤铁矿.
3.4 古地磁结果
多数样品在150~200°C清洗掉黏滞剩磁,
250~610°C获得稳定的特征剩磁,还有一部分样品直到
670~690°C, 剩磁才衰减为零(5), 这些特征说明
GB014孔剩磁载体以磁铁矿为主,部分层位的剩磁载
体为赤铁矿.
样品通过主成分分析法并过原点线性拟合得到特
征剩磁方向[42],选择的退磁温度步骤至少为4,对于
最大角偏差(MAD)大于15°的样品予以剔除.共有54
(37.2%)样品获得了稳定的特征剩磁方向,埋深135 m
以下,沉积物中砂层增多,且样品的稳定特征剩磁难以
获得,故以3个以上样品和深度相结合划分极性时.
GB014孔包括7个极性段,其中4个正极性,分别为N1
(0~33.8 m)N2(60.7~66.0 m)N3(94.0~116.8 m)N4
(135.0~140.0 m); 3个负极性,分别为R1(33.8~60.7 m)
R2(70.0~77.8 m)R3(116.8~135.0 m). 另外3个埋深段,
分别为U1(66.0~70.0 m)U2(77.8~94.0 m)U3
(140.0~200.0 m), 特征剩磁难以获得或为砂层,极性模
(6) .
4讨论
4.1 GB014孔磁性地层
白洋淀周边普遍发育全新世地层,在南部厚度约
4 m, 发育早全新世和中晚全新世两期湖泊[6,7];在中
部三台镇附近厚约7.8 m[44]. GB014孔位于三台镇西北
7 km, 上部埋深3.3~5.0 m为河间洼地相,含有少量灰
绿色还原斑块(2(a)), 指示了偶尔的淹水环境,可对应
白洋淀区域早全新世湖相地层. GB014N1极性时上
部为早全新世地层,故此对应布容正极性时(C1n, 6).
GB014孔磁性地层和标准极性时对比的难点在于
确定高斯/松山(G/M)地磁极性倒转界线. U3模糊极性
段内获得稳定特征剩磁样品太少,且连续性差,其与地
磁极性年表的对比具有多解性,我们借助于区域岩石
地层对比确定其时代属性.
PGZ01孔埋深365.0~266.6 m为粗颗粒的泥包砾
沉积,时代为Gauss正极性时;上覆地层以泛滥平原和
分支河道相为主,多细颗粒的砂质粉砂[13]. G01孔埋深
2020 7 65 20
2152 https://engine.scichina.com/doi/10.1360/TB-2020-0021
317~185 m为三套砂质粉砂和粗砂的沉积旋回,砂层
中含卵砾石,时代也为Gauss正极性时;上覆地层以泛
滥平原和分支河道相为主[14]. GB014孔沉积单元Ⅴ为
冲积扇相,砂层中含有少量卵砾石,且为全孔岩芯最粗
的层位;沉积单元Ⅳ为沉积物相对较细的泛滥平原相.
依据岩性组合特征,推测GB014孔沉积体系Ⅴ的时代
大致为Gauss正极性时.
G4孔埋深190 mCK03孔埋深185 m, 均开始出现
灰绿色还原条带和劈理结构,并具有蜡状光泽,其时代
Gauss正极性时中的C2An. 1n正极性亚时[16]. GB014
孔埋深140 m开始出现灰绿还原条带,埋深164 m开始
出现劈理结构和蜡状光泽.这均指示了沉积单元Ⅴ为
晚新近纪沉积物.
综合GB014孔沉积和岩性组合特征,并和区域的
PGZ01G01G4CK03孔相对比,确定沉积单
元Ⅴ晚新近纪沉积物,大致相当于Gauss正极性时. R3
N4的界线为Gauss正极性时和Matuyama负极性时
的界线. R1~R3Matuyama负极性. N2对应于Jaramil-
lo (C1r.1n)正极性亚时,其下的U1为河流相砂层,属于
快速堆积物. N3则对应于Olduvai(C2n)正极性亚时
(6).
GB014M/B界线(下更新统与中更新统的界
线)G/M界线(上新统与更新统的界线)埋深分别为
33.8135.0 m. 通过边界年龄间的线性内插计算出沉
积组合Ⅰ-Ⅳ的沉积年龄,沉积体系Ⅰ的年龄为0.79~0
Ma, 沉积体系Ⅱ的年龄为1.02~0.79 Ma, 沉积体系Ⅲ的
年龄为1.88~1.02 Ma, 沉积体系Ⅳ的年龄为2.81~1.88
Ma, 沉积体系Ⅴ的年龄约为3.9~2.81 Ma.
4.2 GB014孔晚新生代沉积过程
沉积体系Ⅴ埋深200~146.6 m, 年龄为3.90~2.81
Ma, 沉积速率为4.9 cm/ka, 以粗颗粒的冲积扇相为主.
同期,雄安新区北部以泥石流[13]和冲积扇相[14]为主;
京平原南部整体以泥石流相的泥包砾为主,且直接
5GB014孔代表性样品的退磁正交矢量投影图.方块和空心圆分别代表在水平面和垂直面的投影, NRM为天然剩磁
Figure 5 Orthogonal vector plots of stepwise thermal demagnetization for representative samples. The empty circles (solid squares) represent the
vertical (horizontal) planes. NRM is the natural remanent magnetization
论 文
2153
https://engine.scichina.com/doi/10.1360/TB-2020-0021
6(网络版彩色)GB014孔的岩性磁倾角地磁极性序列及其与地磁极性年表(GPTS)的联系[43]
Figure 6 (Color online) Lithology, inclination, polarity stratigraphy of GB014 boreholes their correlation with the geomagnetic polarity time scale[43]
2020 7 65 20
2154 https://engine.scichina.com/doi/10.1360/TB-2020-0021
上覆在基岩之上[45].上新世晚期,太行山山前普遍以粗
颗粒沉积物为主,主要为泥石流和冲积扇相,反映了山
区剥蚀物质向平原大量堆积.上新世晚期,无论是海洋
氧同位素[46],还是南海记录[47],以及西部黄土[48,49],
显示了东亚气候开始由暖湿逐渐变冷干[50].该段沉积
物红度a*也为全孔最高,并向浅部逐渐降低,和新生代
气候变化一致.上新世晚期,气候逐渐向冷干转变,
动增大,形成洪水事件,将山体隆升形成的粗颗粒沉积
物带入平原形成泥石流和冲积扇相.这反映了该沉积
体系以构造作用为主,同时受到气候因素的控制.
沉积体系Ⅳ埋深146.6~108.0 m, 年龄为2.81~1.88
Ma, 沉积速率为2.76 cm/ka, 以细颗粒的泛滥平原相为
.沉积速率较低,沉积物颗粒较细,但分选性变好,
积物搬运距离增加,这都反映了该时期为构造平稳期.
气候可能控制了沉积相的差异,相对温湿的气候多形
成决口扇相,而冷干气候则以河间洼地相为主.
沉积体系Ⅲ埋深为108.0~57.6 m, 年龄为1.88~1.02
Ma, 沉积速率为5.86 cm/ka, 以粗颗粒的辫状河道相为
.沉积物速率增加,沉积物颗粒变粗,a*值依然在
减低,这反映了该层沉积物应由构造活动引起.渤海湾
沿岸钻孔,尤其是北岸,显示了2.0 Ma的构造活动[15,16],
应和GB014孔为同期构造.该层砂层分选明显较差,
磁化率却是全孔最高的,可能为构造活动引起河流上
游水系的变化,导致河流中磁性矿物含量的增加.
沉积体系Ⅱ埋深57.6~35.8 m, 年龄为1.02~0.79
Ma, 沉积速率为9.48 cm/ka, 以细颗粒的泛滥平原相为
.该层沉积速率高,沉积物颗粒细,其分选性和沉积
体系Ⅲ中细颗粒物质基本相近,也应为构造活动期,
能主河流摆动到其他位置.
沉积体系Ⅰ埋深35.8~0 m, 年龄为0.79~0 Ma, 沉积
速率为4.53 cm/ka, 为夹决口扇相的泛滥平原.该层沉
积物颗粒增粗,分选性较差,且磁化率也较小,反映了
近源河流的性质,且和沉积组合Ⅲ具有不同的物源,
示了河流上游水系的再次变迁,和现在水系基本相当,
沉积物以侵蚀的灰岩为主.
4.3 山前盆地发育过程
太行山山前普遍存在一套泥包砾或卵砾石层,
为杨柳青组下段沉积[9].依据北京平原多个钻孔[13,45],
该套粗颗粒沉积物的时代为上新世晚期. GB014孔中
该套粗颗粒沉积物也位于G/M界线之下,推测年龄为
3.90~2.81 Ma. 因此,太行山山前的这套泥包砾或卵
砾石层冲积扇相沉积物时代为上新世末期.本次将
ZK12-2孔和PGZ01G/M界线舍弃原文中的位置,
调至上新世卵砾石层之上最近的正负极性时的界线,
其埋深分别为465205 m. 太行山前GB014
PGZ01[13]X5[45]ZK17[51]ZK12-1[52]ZK12-2[53]
钻孔的第四系底界埋深分别约为135205247
310220465 m, 自南向北逐渐加深(7). ZK12-1
泥包砾直接覆盖在基岩之上,北京南部平原新8
1011和新12孔也为泥包砾直接覆盖在基岩之
[45],这说明上新世末期,太行山燕山山前发生一期
盆山分离,北京南部和北部一些山体沉降为山前平原,
沉积大量太行山和燕山隆起带来的泥石流相和冲积扇
相沉积物.这次构造活动应该和华北唐县期夷平面的
解体有关,华北多个钻孔在上新世晚期均有反映[10],
门峡泥河湾等盆地也有相关记录[54,55].
上新世末期之后,构造趋于平静,山前各孔沉积一
套细颗粒沉积物,以泛滥平原相为主.至约2.0 Ma时期,
山前各孔普遍发育河流相,且以曲流河相为主,其中南
GB014PGZ01孔底界埋深约100 m, 中部X5
ZK17孔底界埋深约220~200 m, 北部ZK12-2孔底界埋
深约380 m, 自南向北呈阶梯状增深.这说明北部为第
四纪构造沉降中心,和渤海湾沿岸第四纪的构造模式
一致,京津冀平原北部的张家口-蓬莱断裂带为第四纪
构造沉降中心[10,11]. 2.0 Ma构造事件,渤海湾北岸开始
形成湖相沉积[11], ZK12-2孔也是以灰色沉积物为主的
湖相沉积[53],张家口-蓬莱断裂带可能普遍以湖相为主,
而其南部断裂带外,山前发育一些曲流河.
GB014M/B界线埋深仅有33.8 m, 但山前
PGZ01[13]X5[45]ZK17[51]ZK12-1[52]ZK12-2[53]
等钻孔的M/B界线埋深分别约为789698115
170 m(7). 中更新世,太行山前继承了早更新世的构
造特征,成箕状盆地,且北断南超,北部为构造沉降中
,向南则为斜坡区域,中更新统底界埋深逐渐减小.
太行山山前各孔上更新统普遍在为曲流河相或辫状河
相沉积物,且埋深和时代均具有差异(7). 晚更新世以
,渤海湾显著的地质事件是海侵过程,共发生了三期
海侵,且和氧同位素531阶段相对应[56], 3次海侵向
内陆扩展到静海廊坊一带.同时,海侵时陆地也形成
大范围湖沼相,例如全新世白洋淀早全新世湖沼就和
全新世海侵相一致.华北平原水域(海洋和湖沼)面积扩
,叠加MIS531阶段的暖湿气候,导致太行山前多
发育河流.
论 文
2155
https://engine.scichina.com/doi/10.1360/TB-2020-0021
7(网络版彩色)太行山山前各孔岩性和磁性地层
Figure 7 (Color online) Lithology, magnetostratigraphic framework for various boreholes in Taihang Mountain Piedmont Plain
2020 7 65 20
2156 https://engine.scichina.com/doi/10.1360/TB-2020-0021
5结论
本研究利用GB014孔分析了雄安新区西部第四纪
地层结构和地质演化过程,为雄安新区规划建设
下空间和国土空间规划提供基础地质年代学支撑.
GB014孔代表性样品的岩石磁学实验结果揭示其
载磁矿物主要为磁铁矿,少量赤铁矿和磁赤铁矿.依据
磁性地层和区域地层结构沉积特征, GB014孔下部
冲积扇相的时代为新近纪晚期, M/B界线和G/M界线埋
深分别为33.8135.0 m.
依据沉积物岩性结构,以及自然伽玛曲线
磁化率和色度等, GB014孔经历了5个阶段的沉积
演化过程.上新世末期,年龄约为3.90~2.81 Ma, 在构
造和气候作用下, GB014孔形成冲积扇相,沉积物颗粒
较粗,分选磨圆均较差;沉积速率为4.9 cm/ka; 暖湿
的气候使得沉积物的红度为全孔最高值.早更新世早
,2.81~1.88 Ma, GB014孔形成以细颗粒沉积为主
的泛滥平原相;构造比较稳定,沉积速率为2.76 cm/ka;
气候向冷干转变,沉积物的红度明显减小.早更新世中
,1.88~1.02 Ma, GB014孔形成粗颗粒的辫状河道
;构造初始活跃期,沉积速率增高为5.86 cm/ka; 沉积
物红度继续降低,但砂层的磁化率显著增大,指示了太
行山水系的变化带来了磁性矿物.早更新世晚期,
1.02~0.79 Ma, GB014孔形成细颗粒的泛滥平原相;
造活跃期,沉积速率为9.48 cm/ka. 中更新世至今,
GB014孔形成夹决口扇的泛滥平原相;构造相对稳定,
沉积速率为4.53 cm/ka. GB014孔晚上新世以来记录了
3.90~2.811.88~0.79 Ma两次构造活跃期,其中
1.88~1.02 Ma时期发生物源变化.
太行山山前平原普遍存在三层砂层,下部年龄为
3.90~2.81 Ma, 反映了盆山的一次分离过程,以泥石流
相和冲积扇相沉积物为主;中部年龄为1.88~0.79 Ma,
对应渤海湾北部2.0 Ma的构造事件,以曲流河和辫状
河相沉积物为主;上部时代为中晚更新世,可能海侵
至渤海湾,海平面上升气候暖湿,季风增强等因素导
致河流相砂层发育.
致谢 感谢河北省地质矿产勘查开发局郜洪强教授级高工在野外提供的帮助.
参考文献
1 Xu Q H, Chen S Y, Kong Z C, et al. Preliminary discussion of vegetation succession and climate change since the Holocene in the Baiyangdian lake
district (in Chinese). Chin J Plan Ecol, 1988, 12: 143–151 [许清海,陈淑英,孔昭宸,.白洋淀地区全新世以来植被演替和气候变化初探.
物生态学学报, 1988, 12: 143–151]
2 Zhu X Q, Gong R, Mu Z Y, et al. Environment Evolution and Forecast of Baiyangdian Lake (in Chinese). Xi’an: Xi’an Map Publishing House,
1993. 82–99 [朱宣清,弓冉,穆仲义,.白洋淀环境演变及预测.西安:西安地图出版社, 1993. 82–99]
3 Wu C, Xu Q H. Formation or development stage—A discussion on the cause of the formation of Baiyangdian Lake, China (in Chinese). J Lake
Sci, 1998, 10: 91–96 [吴忱,许清海. “演变阶段成因不能混为一谈──也谈白洋淀的成因.湖泊科学, 1998, 10: 91–96]
4 Li Y C, Zhang C L, Duan H Z, et al. Paleoenvironment change and prehistoric culture in Baiyangdian area (in Chinese). J Tongji Univ (Soc Sci
Sec), 2000, 11: 22–33 [李月丛,张翠莲,段宏振,.白洋淀地区古环境变迁与史前文化.同济大学学报(社会科学版), 2000, 11: 22–33]
5 Wang R B, Su J F. Historic landform in central Hebei Plain and cause of formation of Baiyangdian Lake (in Chinese). Sci Geogr Sin, 2008, 28:
501–506 [王若柏,苏建锋.冀中平原历史地貌研究与白洋淀成因的探讨.地理科学, 2008, 28: 501–506]
6 Wang Y, Min L R, Dong J, et al. Sedimentary characteristics and stratigraphic dicision of Holocene series in Baiyangdian, Hebei Province (in
Chinese). Acta Geosci Sin, 2015, 36: 575–582 [王永,闵隆瑞,董进,.河北白洋淀全新统沉积特征与地层划分.地球学报, 2015, 36: 575–582]
7 Shen G H, Ding G Q, Yang X L, et al. Holocene climate and environment change in the Baiyangdian area (in Chinese). Quat Sci, 2018, 38: 756–
768 [申改慧,丁国强,阳小兰,.白洋淀地区全新世以来的气候环境变化.第四纪研究, 2018, 38: 756–768]
8 Geological and Mineral Bureau of Hebei Province. Regional Geological Annals of Hebei Province, Beijing and Tianjin (in Chinese). Beijing:
Geological Publishing House, 1989. 566–590 [河北省地质矿产局.河北省北京市天津市区域地质志.北京:地质出版社, 1989. 566–590]
9 Chen W H, Ni M Y, Shi D G, et al. Some problems on Quaternary geology of the Hebei Plain (in Chinese). Quat Sci, 1985, 1: 2–14 [陈望和,倪明
,施迪光,.河北平原第四纪地质的若干问题.第四纪研究, 1985, 1: 2–14]
10 Xu Q, Yang J, Hu Y, et al. Magnetostratigraphy of two deep boreholes in southwestern Bohai Bay: Tectonic implications and constraints on the
ages of volcanic layers. Quat Geochronol, 2018, 43: 102–114
11 Xu Q, Yuan G, Yang J, et al. Plio-Pleistocene magnetostratigraphy of northern Bohai Bay and its implications for tectonic events since ca. 2.0 Ma. J
Geodyn, 2017, 111: 1–14
论 文
2157
https://engine.scichina.com/doi/10.1360/TB-2020-0021
12 Yuan G B, Xu Q M, Wang Y, et al. Magnetostratigraphy and tectonic significance of Bg10 borehole in northern coast of Bohai Bay (in Chinese).
Acta Geol Sin, 2014, 88: 285–298 [袁桂邦,胥勤勉,王艳,.渤海湾北岸Bg10孔磁性地层研究及其构造意义.地质学报, 2014, 88: 285–298]
13 Zhao Y, Wang Q, Li R J, et al. Quaternary stratigraphic division and its environmental significance of Borehole PGZ01 in southern Beijing plain
area (in Chinese). J Palaeogeogr, 2018, 20: 337–348 [赵勇,王强,李瑞杰,.北京平原南部PGZ01孔第四纪地层划分及其环境意义.古地理学
, 2018, 20: 337–348]
14 Dai P, Deng X H, Wang S D, et al. Core characteristics and stratigraphic classification of G01 borehole in Gu’an, Hebei Plain (in Chinese). Quat
Sci, 2019, 39: 399–407 [代鹏,邓晓红,王盛栋,.河北平原区固安G01孔岩芯特征及第四纪地层划分.第四纪研究, 2019, 39: 399–407]
15 Yao Z Q, Guo Z T, Chen Y K, et al. Magnetostratigraphy of marine-terrigenous facies deposits in Bohai Bay (in Chinese). Mar Geol Quat Geol,
2006, 26: 9–15 [姚政权,郭正堂,陈宇坤,.渤海湾海陆交互相沉积的磁性地层学.海洋地质与第四纪地质, 2006, 26: 9–15]
16 Zhou X, Yang J, Wang S, et al. Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in
temperate northern East Asia. Palaeogeogr Palaeoclimatol Palaeoecol, 2018, 505: 287–294
17 An Z S, Wei LY, Lu Y C, et al. Magnetostratigraphy of the core S-5 and the transgression in the Beijing area during the Early Matuyama Epoch (in
Chinese). J Geochem, 1979, (4): 343–346 [安芷生,魏兰英,卢演俦,.5孔的磁性地层学和早松山世的北京海侵.地球化学, 1979, (4): 343–
346]
18 Li H M, Wang J D. Palaeomagnetic study on drill core from northern Bohai Coastal Plain (in Chinese). J Geochem, 1983, (2): 196–204 [李华梅,
俊达.渤海湾北岸平原钻孔岩心的古地磁研究.地球化学, 1983, (2): 196–204]
19 Fan Y L, Xu Q M, Qi X F, et al. Rock magnetic properties of Quaternary sediments from the central North China Plain (in Chinese). Quat Sci,
2017, 37: 612–623 [范友良,胥勤勉,齐晓风,.华北平原中部第四纪沉积物的岩石磁学性质.第四纪研究, 2017, 37: 612–623]
20 Zeng L, Lu H Y, Yi S W, et al. Magnetostratigraphy of loess in northeastern China and paleoclimatic changes (in Chinese). Chin Sci Bull, 2011, 56:
2267–2275 [曾琳,鹿化煜,弋双文,.我国东北地区黄土堆积的磁性地层年代与古气候变化.科学通报, 2011, 56: 2267–2275]
21 Deng C L, Hao Q Z, Guo Z T, et al. Quaternary integrative stratigraphy and timescale of China. Sci China Earth Sci, 2019, 62: 324–348 [邓成龙,
郝青振,郭正堂,.中国第四纪综合地层和时间框架.中国科学:地球科学, 2019, 49: 330–352]
22 Deng Q D, Zhang P Z, Ran Y K, et al. Basic characteristics of active tectonics of China. Sci China Earth Sci, 2003, 46: 356–372 [邓起东,张培震,
冉勇康,.中国活动构造基本特征.中国科学:地球科学, 2002, 32: 1020–1030]
23 Chen W P, Nábelek J. Seismogenic strike-slip faulting and the development of the North China Basin. Tcetonics, 1988, 7: 975–989
24 Suo Y H, Li S Z, Liu X, et al. Structural characteristics of NWW-trending active fault zones in East China: A case study of the Zhangjiakou-Penglai
Fault Zone (in Chinese). Acta Petrol Sin, 2013, 29: 953–966 [索艳慧,李三忠,刘鑫,.中国东部NWW向活动断裂带构造特征:以张家口-
莱断裂带为例.岩石学报, 2013, 29: 953–966]
25 Zhao Z Y, Windley B F. Cenozoic tectonic extension and inversion of the Jizhong Basin, Hebei, northern China. Tectonophysics, 1990, 185: 83–89
26 He D F, Shan S Q, Zhang Y Y, et al. 3-D geologic architecture of Xiong’an New Area: Constraints from seismic reflection data (in Chinese). Sci
China Earth Sci, 2018, 48: 1207–1222 [何登发,单帅强,张煜颖,.雄安新区的三维地质结构:来自反射地震资料的约束.中国科学:地球科
, 2018, 48: 1207–1222]
27 Qi J, Yang Q. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China. Mar Pet Geol, 2010, 27: 757–771
28 Allen M B, Macdonald D I M, Xun Z, et al. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai
basin, Northern China. Mar Pet Geol, 1997, 14: 951–972
29 Zhang Z Y, Fan Y E, Jin S, et al. Establishment of the Mid-Pleistocene Weixian Formation of non-marine sedimentary system in the Mid-West
Hebei Plain (in Chinese). Geol Sur Res, 2015, 38: 89–99 [张兆祎,樊延恩,靳松,.河北平原中西部中更新世非海相沉积体系魏县组的建立.
地质调查与研究, 2015, 38: 89–99]
30 Yang J L, Liang M Y, Algeo T J, et al. Upper Miocene-Quaternary magnetostratigraphy and magnetic susceptibility from the Bohai Bay Basin
(eastern China) and implications for regional volcanic and basinal subsidence history. Palaeogeogr Palaeoclimatol Palaeoecol, 2020, 538: 109469
31 Nagao S, Nakashima S. The factors controlling vertical color variations of North Atlantic Madeira Abyssal Plain sediments. Mar Geol, 1992, 109:
83–94
32 Torrent J, Schwertmann U, Fechter H, et al. Quantitative relationships between soil color and hematite content. Soil Sci, 1983, 136: 354–358
33 McManus J. Grain size determination and interpretation. In: Tucker M, ed. Techniques in Sedimentology. Oxford: Backwell, 1988. 63–85
34 Song F, Hou J G, Zhang Z, et al. Application of log curves in indicating sedimentary micro-facies of Lake Facies Basins (in Chinese). Well Logg
Technol, 2009, 33: 589–592 [宋璠,侯加根,张震,.利用测井曲线研究陆相湖泊沉积微相.测井技术, 2009, 33: 589–592]
35 Gao F, Xu Q M, Yuan G B, et al. Sedimentary environment evolution of borehole TZ02 in the northern Bohai Bay during Late Cenozoic (in
Chinese). Quat Sci, 2017, 27: 667–678 [高峰,胥勤勉,袁桂邦,.渤海湾北岸TZ02孔晚新生代沉积环境演化过程.第四纪研究, 2017, 27:
667–678]
36 Deng C L, Liu Q S, Pan Y X, et al. Environmental magnetism of Chinese loess-paleosol sequences (in Chinese). Quat Sci, 2007, 27: 193–209 [
成龙,刘青松,潘永信,.中国黄土环境磁学.第四纪研究, 2007, 27: 193–209]
2020 7 65 20
2158 https://engine.scichina.com/doi/10.1360/TB-2020-0021
37 Deng C, Wei Q, Zhu R, et al. Magnetostratigraphic age of the Xiantai Paleolithic site in the Nihewan Basin and implications for early human
colonization of Northeast Asia. Earth Planet Sci Lett, 2006, 244: 336–348
38 Florindo F, Zhu R, Guo B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese Loess
Plateau. J Geophys Res, 1999, 104: 645–659
39 Deng C, Zhu R, Verosub K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE
transect in the Chinese Loess Plateau. Geophys Res Lett, 2000, 27: 3715–3718
40 Roberts A P, Phillans B J. Rock magnetism of Lower/Middle Pleistocene marine sediments, Wanganui Basin, New Zealand. Geophys Res Lett,
1993, 20: 839–842
41 Dunlop D J, Özdemir O. Rock Magnetism: Fundamentals and Frontiers. New York: Cambridge University Press, 1997. 1–573
42 Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Int, 1980, 62: 699–718
43 Hilgen F J, Lourens L J, Van Dam J A. The neogene period. In: Gradstein F M, Ogg J G, Schmitz M D, et al, eds. The Geologic Time Scale.
Amsterdam: Elsevier, 2012. 923–978
44 Chen T T, Yang Z J, Liu R F, et al. Grain size characteristics and sedimentary environment analysis of Baiyangdian ZK-1 borehole since Late
Pleistocene (in Chinese). J Hebei Geo Univ, 2017, 40: 1–7 [陈亭亭,杨振京,刘荣访,.白洋淀ZK-1钻孔晚更新世以来的粒度特征及其沉积环
境分析.河北地质大学学报, 2017, 40: 1–7]
45 Cai X M, Zhang L, Guo G X, et al. New progress in the study of Quaternary geology in Beijing Plain (in Chinese). Chin Geol, 2016, 43: 1055–1066
[蔡向民,张磊,郭高轩,.北京平原地区第四纪地质研究新进展.中国地质, 2016, 43: 1055–1066]
46 Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 2008, 451: 279–
283
47 Wang P X, Jian Z M, Zhao Q H, et al. Evolution of the South China Sea and monsoon history revealed in deep sea records (in Chinese). Chin Sci
Bull, 2003, 48: 2228–2239 [汪品先,翦知湣,赵泉鸿,.南海演变与季风历史的深海证据.科学通报, 2003, 48: 2228–2239]
48 Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6 Ma grain size record from the Chinese loess based on five sections and correlation with the
deep-sea δ18O record. Paleoceanography, 2002, 17: 5–21
49 Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416:
159–163
50 Lu H Y, Guo Z T. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review (in Chinese). Sci China Earth Sci, 2013,
43: 1907–1918 [鹿化煜,郭正堂.晚新生代东亚气候变化:进展与问题.中国科学:地球科学, 2013, 43: 1907–1918]
51 Zhang L, Bai L Y, Cai X M, et al. Magnetostratigraphy study on the south segment of Nankou-Sunhe fault at Beijing Plain and its implications for
the fault activity during Quaternary (in Chinese). Quat Sci, 2014, 34: 381–390 [张磊,白凌燕,蔡向民,.北京平原南口-孙河断裂南段第四纪
活动性的磁性地层学研究.第四纪研究, 2014, 34: 381–390]
52 Bai L Y, Zhang L, Cai X M, et al. Quaternary magetostratigraphic time framework contraints on activity characteristics of the Shunyi Fault, Beijing
Plain (in Chinese). Geoscience, 2014, 28: 1234–1242 [白凌燕,张磊,蔡向民,.磁性地层年代对北京平原顺义断裂第四纪活动性的约束.
代地质, 2014, 28: 1234–1242]
53 Zhao Y, Cai X M, Wang J M, et al. Quaternary magnetostratigraphy of the Shunyi area in Beijing Plain using ZK12-2 borehole profile (in Chinese).
Acta Geo Sin, 2013, 87: 288–294 [赵勇,蔡向民,王继明,.北京平原顺义ZK12-2钻孔剖面第四纪磁性地层学研究.地质学报, 2013, 87:
288–294]
54 Wang S M, Wu X H, Zhang Z K, et al. Sedimentary records of environmental evolution in the Sanmen Lake basin and the Yellow River running
through the Sanmenxia Gorge eastward into the sea (in Chinese). Sci China Ser D Earth Sci, 2001, 31: 760–768 [王苏民,吴锡浩,张振克,.
门古湖沉积记录的环境变迁与黄河贯通东流研究.中国科学D:地球科学, 2001, 31: 760–768]
55 Yuan B Y, Tong H W, Wen R L, et al. The formation mechanism of the Nihewan Palro-lake and its relationship with living environment for early
ancient human (in Chinese). J Geomech, 2009, 15: 77–87 [袁宝印,同号文,温锐林,.泥河湾古湖的形成机制及其与早期古人类生存环境的
关系.地质力学学报, 2009, 15: 77–87]
56 Xu Q M, Yuan G B, Zhang J Q, et al. Stratigraphic division of the Late Quaternary Strata along the Coast of Bohai Bay and its geology significance
(in Chinese). Acta Geol Sin, 2011, 85: 1352–1367 [胥勤勉,袁桂邦,张金起,.渤海湾沿岸晚第四纪地层划分及地质意义.地质学报, 2011,
85: 1352–1367]
论 文
2159
https://engine.scichina.com/doi/10.1360/TB-2020-0021
Summary for 雄安新区西部GB014孔第四纪地层结构与演化过程
Quaternary stratigraphic architecture and sedimentary
evolution from borehole GB014 in the western
Xiong’an New Area
Kaiming Liu1,2, Qinmian Xu1,2*, Lianfeng Duan2, Wenchao Niu2, Fei Teng2, Xiaodan Wang2,
Wei Zhang3& Jie Dong1
1School of Environment and Planning, Liaocheng University, Liaocheng 252000, China;
2Tianjin Center, China Geological Survey, Tianjin 300170, China;
3School of Tourism, Taishan University, Tai’an 271000, China
* Corresponding author, E-mail: xuqinmian@163.com
To scientifically utilize underground space and to explore the regional structural characteristics and processes of basin
evolution of the North China Plain, we combine paleomagnetic and sedimentary analyses of sediments from borehole
GB014, which extends 200 m deep, in the western Xiong’an New Area. Magnetostratigraphy and regional sedimentary
characteristics were determined to establish a chronological framework. Sedimentary facies and sedimentary systems were
reconstructed by considering the lithology, geophysical logs gamma ray (GR), and grain size, sediment color (L*, a* and
b*) and magnetic susceptibility measurements.
To determine the remanence carriers and magnetic mineralogy of the sediments, rock magnetic measurements were
performed on 8 representative samples from various depths. A total of 145 specimens were subjected to progressive
thermal demagnetization up to a maximum temperature of 690°C, with intervals of 25−50°C below 585°C and 10−25°C
above 585°C, using a Magnetic Measurements Thermal Demagnetizer (TD48) with a residual magnetic field less than 10
nT. Paleomagnetic measurements were made using a 2G Enterprises Model 760-R cryogenic magnetometer installed in a
magnetically shielded space (<300 nT) in the Paleomagnetism and Geochronology Laboratory of the Institute of Geology
and Geophysics, Chinese Academy of Sciences. GR logs obtained at 20-cm intervals were used to analyze the sedimentary
facies. For measurements of sediment color, 526 powder samples were air-dried and then disaggregated, passed through a
200-mesh sieve and measured using a Konica-Minolta SPAD503 spectrometer. The 526 powder samples were packed into
8-cm3plastic boxes and used to obtain measurements of magnetic susceptibility (χ) using a Bartington Instruments MS2B
sensor. Electronic scales with a resolution of 0.001 g were used to weigh the samples to enable the mass-specific
susceptibility to be calculated. For grain-size measurements, 189 powder samples were pretreated with 10% H2O2to
remove organic matter and 10% HCl to remove carbonates. After standing for 24 h, the residues were dispersed with 10%
(NaPO3)6and ultrasonicated for 10 min. The grain size measurements were made using a Mastersizer-2000 laser analyzer
(relative error <3%) at Taishan University.
The main findings are as follows: (1) Magnetite is the main carrier of the characteristic remanent magnetization in these
sedimentary sequences, and the secondary carrier is hematite. (2) The borehole measurements recorded the Brunhes and
Gauss normal chrons and the Matuyama reversed chron. The depths of the Matuyama/Brunhes and Gauss/Matuyama
boundaries are 33.8 m and 135 m, respectively. (3) According to the chronological framework and sedimentary facies, five
sedimentary units have been identified, from bottom to top: Unit V, with a depth of 200−146.6 m and sedimentary rate of
4.9 cm/ka, whose age is 3.90−2.81 Ma, is dominated by alluvial fan facies with coarse grain sediments. Unit IV, with a
depth of 146.6−108.0 m and sedimentation rate of 2.76 cm/ka, whose age is 2.81−1.88 Ma, is dominated by flood plain
facies with fine grain sediments. Unit III, with a depth of 108.0−57.6 m and sedimentation rate of 5.86 cm/ka, whose age is
1.88−1.02 Ma, is dominated by braided channel facies with coarse particle sediments. Unit II, with a depth of 57.6−35.8 m
and sedimentation rate of 9.48 cm/ka, whose age is 1.02−0.79 Ma, is dominated by flood plain facies with fine grain
sediments. Unit I, with a depth of 0−35.8 m and sedimentation rate of 4.53 cm/ka, whose age is 0.79−0 Ma, is dominated by
flood plains interbedded with crevasse fan facies. At borehole GB014, evidence of two tectonic movements that occurred at
3.90−2.81 and 1.88−0.79 Ma have been preserved since the late Pliocene, and sediment provenance probably changed
during 1.88−1.02 Ma. The piedmont area of Taihang Mountain hosts two widely deposited layers of coarse-grained
sediments resulting from these two tectonic movements, and the Middle and Late Pleistocene sand layers are mainly related
to the marine transgression in Bohai Bay and the enhancement of the East Asian monsoon system.
Xiong’an New Area, quaternary, magnetostratigraphy, stratigraphic architecture
doi: 10.1360/TB-2020-0021
2020 7 65 20
2160 https://engine.scichina.com/doi/10.1360/TB-2020-0021
... The surface outcrop layer in Xiong'an New Area is an unconsolidated Quaternary layer. According to preliminary survey results, the thickness of the Quaternary sediments in the study area is generally 135 m [25], and the genetic types are predominantly alluvial, proluvial and lacustrine. The Quaternary aquifer is the research object of this study. ...
Article
Full-text available
Xiong’an New Area, located in the middle of the North China Plain, will have been built as a “city of the future.” Urban planning and construction need to comprehensively consider the constraints of hydrogeological conditions such as aquifer structure and parameters. As the main aquifer in this area, the paleo-channel is heterogeneous and anisotropic, and the two-dimensional hydraulic conductivity in each horizontal direction cannot be obtained from aquifer tests. Therefore, this study adopts a chemical kinetics method to calculate the ionic activity and mineral saturation indices of shallow groundwater, determine the groundwater chemical potential field, and construct a horizontal two-dimensional groundwater chemical kinetics model. This model is used to calculate the hydraulic conductivity, flow rate and retention time of groundwater in areas of different chemical kinetics, as well as evaluate horizontal heterogeneity of the Quaternary paleo-channel aquifer. The results indicate that the groundwater chemical potential field can reflect the characteristics of the groundwater seepage field in each horizontal direction. The paleo-channel is the main channel of groundwater circulation, which shows the statistical difference of its permeability. Alluvial and lacustrine strata affect groundwater circulation due to their different hydrogeological structures and permeability. The groundwater chemical kinetics results of hydraulic conductivity along the paleo-channel are approximately consistent with traditional hydrogeological calculation results derived from aquifer test data. Hydraulic conductivity is higher in the extension direction of the paleo-channel, and lower if the path crosscuts multiple paleo-channels. This feature can be used to build a hydrogeological structure model combined with drilling data. Furthermore, excessive groundwater exploitation will change the actual flow rate and retention time of groundwater, thereby affecting the groundwater circulation conditions. This study of groundwater circulation in Xiong’an New Area by means of chemical kinetics makes up for the deficiency in the study of the unconsolidated sedimentary aquifer anisotropy within the paleo-channel.
Article
Full-text available
Studying the geologic architecture of the Xiong’an New Area will provide important basis for the evaluation of crustal stability, urban planning and infrastructural projects in this region, and it is also of great significance in exploring the occurrence of oil and gas, geothermal, hot dry rock and other resources. The stratigraphic system of the study area is established by using latest high quality seismic reflection and deep borehole data. Characteristics of the major faults developed in the study area are finely depicted with the method of structural analysis. Tectonic evolution of Xiong’an and adjacent areas is reconstructed by using balanced geological cross-section technique. The tectonic activity of the study area is discussed on the basis of the development of secondary faults and the distribution of active earthquakes across the region. This study demonstrates that Xiong’an New Area is located at the transfer zone of the central and northern Jizhong Depression. There are three regional unconformities developed in this area, by which four structural layers are sub-divided. Controlled by the Taihang Mountain piedmont fault, the Daxing fault, the Rongcheng fault and the Niudong fault, the structural framework of the study area is characterized by intervening highs with sags. This structural pattern has an important controlling over the reservoir characteristics, hydrocarbon accumulation and the distribution of geothermal resources and hot dry rock within this region. Rifting in this area began in the early Paleogene, exhibiting typical episodic character and became inactive in Neogene. The development feature of secondary faults along with the distribution of active earthquakes indicate that Xiong’an New Area has been in a relatively stable tectonic setting since the Neogene, while the Baxian Sag and other structural units to the east of it have obviously been in a rather active environment.
Article
The thick Cenozoic sequence of alluvial, lacustrine, volcaniclastic, and marine sediments in the Bohai Bay Basin (BBB) of eastern China is an important sedimentary archive for studying the regional Late Cenozoic history of volcanism, tectonism, and paleoclimate changes, as well as the evolution of the East Asian monsoon system. However, well-dated deep drillcores are sparse in this region, which has prevented a comprehensive analysis of these issues. Here, we present the results of a detailed magnetostratigraphic and magnetic susceptibility study of two deep drillcores (G2 and G3) from the Huanghua Depression, with the aims of (1) refining the upper Miocene-to-Recent chronostratigraphic framework and subsidence history of the BBB, and (2) investigating its relationship to regional volcanic and tectonic events. The observed pattern of paleomagnetic polarity zones in Core G3 can be correlated well to the geomagnetic polarity time scale (GPTS). Quaternary-age peaks in the magnetic susceptibility profiles of Cores G2 and G3 may record large volcanic eruptions―they can be matched to similar peaks in other BBB drillcores, demonstrating their potential utility as regional marker horizons. Increased sedimentation rates in the study cores at ~8.0–6.4 Ma and 3.6–3.0 Ma reflect late Miocene uplift of the Taihang and Lvliang Mountains and late Pliocene BBB subsidence, respectively. Integrated into a regional framework for the upper Miocene to Recent, our magnetostratigraphic data show that subsidence of the Huanghua Depression increased from southwest to northeast.
Article
We present new pollen data from a drilling core from the North China Plain which illustrate the nature of vegetation evolution in the temperate zone of Asia during an interval containing the Mid-Pleistocene Transition (MPT), ~1.2–0.7 Ma. Results show that, from 1.7–1.2 Ma, closed needle-leaved and broadleaved mixed forest predominated. The most important vegetation change event occurred at 1.2 Ma when there was a decline in coniferous forest and a significant increase in Artemisia, Chenopodiaceae and Poaceae grassland. There was a continued degradation of the regional forest vegetation and its replacement by woody grassland about 0.7 Ma. Patterns of vegetation change correlate closely with the key climate fluctuations of the MPT and coincide with major turnover events of large mammalian fauna (>10 kg) in China. In particular, >50% of large mammalian species became extinct in the course of the forest decline; however, they were replaced by new mammalian species after 0.7 Ma. Comparison of the vegetation and faunal records indicates that the process of forest replacement by grassland in the northern temperate zone during the MPT was associated with an acceleration of the rate of turnover of the large mammalian fauna, in terms of extinction and speciation.
Article
Quaternary strata in China mainly comprise continental deposits in a variety of depositional settings. The continental Quaternary in temperate northern China consists mainly of eolian and fluvio-lacustrine deposits; that in subtropical southern China, mainly of vermiculated red soils, cave/fissure deposits, and fluvio-lacustrine deposits; and that in the alpine Tibetan Plateau, mainly of fluvio-lacustrine and piedmont deposits. The marine Quaternary in China consists of detrital deposits and biogenic reef deposits. The integration of biostratigraphy, magnetostratigraphy, climatostratigraphy and an astronomically calibrated chronology has led to the establishment of high-precision climatochronostratigraphic timescales for the detrital marine Quaternary in the South China Sea and the loess-paleosol sequence in the Chinese Loess Plateau. Extremely high-precision 230Th dating has provided a high-precision absolute age model for cave stalagmites over the past 640000 years as well as high-resolution oxygen isotope records representing orbital- to suborbital-scale climate changes. By combining magnetic stratigraphy and biostratigraphy, robust chronostratigraphic frameworks for non-eolian continental Quaternary deposits on the scale of Quaternary geomagnetic polarities have been established. The continental Pleistocene Series consists, from oldest to youngest, of the Nihewanian Stage of the Lower Pleistocene, the Zhoukoudianian Stage of the Middle Pleistocene, and the Salawusuan Stage of the Upper Pleistocene. Stages of the continental Holocene Series have not yet been established. This review summarizes recent developments in the Quaternary chronostratigraphy of representative Quaternary strata and associated faunas, and then proposes an integrative chronostratigraphic framework and a stratigraphic correlation scheme for Quaternary continental strata in China. In the near-future, it is hoped to establish not only a Chinese continental Quaternary climatochronostratigraphic chart on the scale of glacial-interglacial cycles but also a Quaternary integrative chronostratigraphic chart including both continental and marine strata in China.
Article
The sediments of Bohai Bay Basin have recorded the processes of basin infilling and structural evolution, reflecting the destruction of the North China Craton during the late Mesozoic and the early Cenozoic. However, the absence of a reliable chronostratigraphic framework for the sedimentary sequences in the basin has precluded a comprehensive understanding of these processes. This is especially the case for southwestern Bohai Bay, the evolution of which has been affected by two Quaternary volcanoes, Dashan and Xiaoshan. In this study, we combine paleomagnetic and sedimentary analyses of the sediments from two boreholes (CK3 and G4) from southwestern Bohai Bay Basin in order to provide new insights into the sedimentary history and regional tectonic processes since the Pliocene. The main findings are as follows. (1) Magnetite and hematite are the main carriers of the characteristic remanent magnetization in these sedimentary sequences, with hematite the main component. (2) The two drill cores record the Brunhes, Olduvai and Gauss normal chrons, and the Matuyama and Gilbert reverse chrons. (3) Subsidence-related differences in the depths of the Matuyama/Brunhes (M/B) and Gauss/Matuyama (G/M) boundaries in boreholes across Bohai Bay, distributed within different structural units, reflect the fact that northern Bohai Bay is the regional subsidence center and that the development of the WNW-orientated structures of the basin has intensified during the Quaternary. (4) The trend of changes in the elevation of three marine layers is similar to that of the M/B and G/M boundaries across Bohai Bay. Based on magnetostratigraphic constraints of the boreholes, the ages of the second and third marine layers are assigned to Marine Oxygen Isotope (MIS) 3 and MIS 5, respectively. The WNW-orientated structures and ‘super interglacials’ resulted in the formation of transgressions in the Huanghua depression. (5) In borehole CK3, the ages of four volcanic layers at the depth intervals of 13.14–16.18 m, 33.37–48.02 m, 145.8–154.05 m and 222.16–233.80 m, are 10–18 ka BP, 80–90 ka BP, 2.2 Ma and 3.1 Ma, respectively. In borehole G4, the age of the volcanic layer at the depth of 46.4–55.8 m is 0.33–0.55 Ma. Comparative analysis of subsidence-related differences between the NEE and NE-orientated uplifts and depressions in western and southern Bohai Bay indicates that structural evolution in the vertical plane during the Quaternary was mainly controlled by the subduction of the Pacific Plate.
Article
The sediments of Bohai Bay Basin in North China have recorded the processes of basin filling and structural evolution, which may have resulted from the destruction of the North China Craton during the late Mesozoic and early Cenozoic. However, the absence of a reliable chronostratigraphic framework for the sedimentary sequences in the basin has prevented a comprehensive understanding of these processes. In this study, we combine paleomagnetic and sedimentary analyses of the sediments from two new boreholes (NY05 and TZ02) from northern Bohai Bay to provide new insights into the sedimentary history and regional tectonic processes since the Pliocene. The main findings are as follows: (1) Magnetite and hematite are the main carriers of the characteristic remanent magnetization. (2) The boreholes record the Brunhes and Gauss normal chrons, and the Matuyama reversed chron. (3) Subsidence-related differences in the depths of the Matuyama/Brunhes (M/B) and Gauss/Matuyama (G/M) boundaries, sediment accumulation rates, and the sedimentary environments of the different tectonic units, enable us to identify that tectonic movements started in the Olduvai normal subchron and the development of the WNW-orientated tectonic features were intensified. (4) In the Huanghua depression, comparative analysis of subsidence-related differences between western and northern Bohai Bay indicates that the subsidence of the northern Bohai Bay may have been superimposed on the WNW-orientated tectonic activity and faulting associated with the collision between the Indian and the Eurasian Plates, in the context of localized subsidence.
Article
Beijing plain, located in the piedmont alluvial fan area, has lots of lakes and rivers in its administrative area. Because of the variability of sedimentary environment, the three-dimensional structure is very complex. Due to the complexity of the three-dimensional structure of the Quaternary strata, the Quaternary stratigraphic division is relatively difficult to some extent. Some researcher have established the lithostratigraphic units such as Nihewan Group, Zhoukoudian Group and Malan Group based on some geological data from different sources. These stratigraphic units are mainly based on fossil pollen, foraminifera, and Ostracoda in sedimentary sag drill holes, and a small amount of paleomagnetic data, and are actually the chronostratigraphic units. Because the units are not uniform and the identification mark is not clear, it is difficult to get a broad consensus. In the past 10 years, the increase of the accumulation of data, the understanding of the three-dimensional structure of the Quaternary, and especially the popularity of the ancient magnetic prospecting technology have laid the foundation for the division of the Quaternary strata in Beijing plain. Based on paleomagnetic data from more than 40 drill holes, the authors initially established the bottom boundaries of lower, middle and upper Pleistocene series. According to the engineering geological prospecting, hydrogeological drilling, archaeological excavations and peat investigation materials, the authors compiled a Holocene isopach map for Beijing Plain.
Article
According to the ages of magnetostratigraphic sequences, this marine bed composed of silts and sands with foraminiferal fossils marked by classical Hyalinea baltica, has been dated to be about 2.26 my BP, approximating the age of FAD of Hyalinea baltica in the section of Santa Maria in Italy (c. 2.1 my BP). Its equivalent is also found in the other cores from the Beijing Plain. From these facts, it is postulated that during the early Matuyama epoch, an extensive transgression took place on the Beijing Plain. -from English summary