Content uploaded by Spyros Schismenos
Author content
All content in this area was uploaded by Spyros Schismenos on Jul 11, 2020
Content may be subject to copyright.
SafeKozani2018‐5thInternationalConferenceonCivilProtection&NewTechnology‐Proceedings
358
‐PosterPresentations‐
RENEWABLEENERGYANDDRONESINSEARCHANDRESCUE:
AUTOMATEDNETWORKFORAIR‐SEAACTIONS
SpyrosSchismenos1,MichailChalaris2,DimitriosEmmanouloudis3,and
NikolaosKatopodes4
1MSc,AnalysisandManagementofManmadeandNaturalDisasters,EasternMacedoniaandThraceInstitute
ofTechnology&HellenicFireAcademy/SchoolofFireOfficers,Kavala,Greece;FocalPointfortheWider
RegionofAsiaandthePacific,UNESCOChaironConservationandEcotourismofRiparianandDeltaic
Ecosystems,Worldwide,spyros.yuntech@gmail.com
2Professor,HellenicFireAcademy/SchoolofFireOfficers,MScinAnalysisandManagementofManmadeand
NaturalDisastersandMscinOilandGasTechnology,Coordination&OperationCenter‐JointCoordination
OperationalCenterAthens,HellenicFireCorps,Greece,chalarismichail@gmail.com
3Professor,DepartmentofForestryandNaturalEnvironmentManagement,EasternMacedoniaandThrace
InstituteofTechnology,Kavala,Greece;Chairholder,UNESCOChaironConservationandEcotourismof
RiparianandDeltaicEcosystems,Worldwide,demmano@teiemt.gr
4Professor,DepartmentofCivilandEnvironmentalEngineering,UniversityofMichigan,USA,ndk@umich.edu
Abstract
Humanmigrationhasbecomeamajorconcernfortheexpertsinsearch and rescue. In 2018 alone, almost
80,000migrantsenteredEuropebysea(MediterraneanSea),whilemorethan2100othersdiedtrying.These
numbers highlight that the early detection of the migrant boatsandseasurvivorsisessentialinorderto
minimize casualties, especially during extreme weather events. For that reason, unmanned aerial vehicles
(UAVs)arewidelyusedinair‐searescue(ASR)missions.TheUAVssurveillargeareasinshortperiodsoftime;
however,theirpowerdependencylimitstheirpotential.TheinsiturechargeoftheUAVsthatsurveilremote
seaareascouldbe a possible solutiontothisproblem. Tidal energygenerators and wave energyconverters
(TWCs)combinedwithsolarcollectorscouldrechargethem.Moreover,pre‐installednavigationsystemscould
reducethe needsinrecoursesand overall costs.Thisresearchinvestigatesthesescenariosby introducing an
automated network o f multifunctional buoys and U AVs. Specifically, it presents the concept of TWC buoys
capableofrechargingoneormoreUAVsdependingontheavailableenergygeneration.Theyarealsoequipped
withmini solarcollectors,meteorologicalsensors,warning systems andsurvivalkits.TheUAVsare equipped
withthermalandcolorsensorsinordertodetectdisturbancesontheseasurface.Byestablishingthisnetwork
inremoteseaareasthatincludemigrantsearoutes,thisstudyaimstoprovidethecoastguardwithareliable,
automatedandself‐poweredtoolthatcoulddetectseasurvivorsorthreatswithinsufficientgiventime.
Keywords:tidalenergy,waveenergy,air‐searescue,automatedsurveillance,first‐aidbuoy
1.Introduction
Scienceandtechnologyhaveundoubtedlyimprovedthecrucialmechanismsfortheprotectionofhumanlifein
every phase of disaster management. Specifically, in disaster response,theroboticsystems,suchasthe
unmannedaerialvehicles(UAVs),alsoknownasdronesareoftenenhancedwithartificialintelligence (AI),as
wellasscientificandothertypesofinstruments,allowingthemtoinformtheiroperatorsinsufficientlead‐time
orevenself‐actdirectly.Inadditiontothat,therecentinnovationsinrenewableenergygenerationandtheir
applicationinrobotics,opennewhorizons tosuchanextentthat they furtherupgradeAI‐baseddevicesand
provide reliablepower efficiency. Tidalpower thatisaform ofhydropower,as well as wave power are two
SafeKozani2018‐5thInternationalConferenceonCivilProtection&NewTechnology‐Proceedings
359
‐PosterPresentations‐
noteworthyexamples,astheyhaveturnedouttobeverypromising energy sources due to their emerging
technologyandincreasingdemand.Itisestimatedthattheannualtidalenergygenerationcanreachupto800
TWh (terawatt‐h ours); whereas, the annual wa ve energy generation from 8,000 TWh to 80,000TWh (Tidal
Energy,2015).Aportionofthisenergycouldbesufficientforpoweringmarineandcoastalinfrastructuresorto
beusedincoastguardoperations.
The “self‐response” and power autonomy of automated mechanical tools are critical factors, as they may
determine the success of an action, especially in the search and rescue missions that occur under extreme
conditions.Specifically,inair‐searescue(ASR),theuseofUAVsoftenresultsinthe“early‐detection”ofmarine
accidentsandthreats.MountedsensorsontheUAVscollectvaluabledatathataresenttotheiroperatorsin
time.Inordertominimizeorevenpreventcompletelyunpleasant outcomes, efforts are made so the
emergencyrescueUAVstobehavemoreindependentlyandrespondimmediatelyonceananomalyisobserved,
atleastuntilthefirstrespondersreachthedisasterarea(Marquesetal.,2016).However,despitethepotential
ofthepresentachievements,deficienciesinbothtechnicalaspectsandoperationtechniquesremainamajor
unsolvedissuefortheauthorizedpersonnel.
Inseveralmarinecountriesaroundtheworld,thecoastguardusestheUAVsforthedetectionofmigrantboats,
seasurvivorsandsharksduringorafterextremeweatherevents.Thesemissionsareoperatedfromeitherthe
shoreorrescuevehicles.Nevertheless,thesescenariosrequireasatisfyingnumbermanpowerandresources,
including the continuous power charging for all the available UAVsinorderforthemtobeeffective.This
increasesthecost,aswellasthetimeofsuchoperations,especiallyiftheyoccuroftenandfarfromthecoast
(e.g.the 24/7 surveillanceofMediterraneanSeaformigrantpresence). Inordertominimizesuchproblems,
thisstudyintroducestheAutomatedNetworkforAir‐SeaActions(ANASA)thatemphasizesthecombineduse
of“smart”buoysandUAVsestablishedperimetricallyofaselecteddistantseaarea.Thisinnovativeconceptis
basedon technologies andproductsthatarecurrentlyavailablebutnotlinkedwitheachother,especiallyin
disasterresponsemechanisms.Thecontinuationofthisstudycanhelpimprovingtheaerialsurveillanceinsea
withaminimumnumberofmanpower and resources. Furthermore, it can increase the surv ival rate of sea
survivors,especiallythosemigratingthroughtheMediterraneanroutestoEurope.
2.GeneralUnderstandingofTidalandWaveEnergy
The tidal power is a unique method that derives directly from the tides that are generated by the relative
motionsofEarthandMoon.TidescanalsobegeneratedbytheinfluenceoftheEarthandSunoracombination
ofallthesesystems;however,thisisnotafrequentphenomenon.Thetidalpowerisusuallyclassifiedintothe
followinggeneratingmethods:
TidalStreamGenerators:Similarlogictowindturbines(exceptthattheyusewater).Theimpellerof
theturbineispushedbythetideflows.
TidalBarrage:Thisisadam‐likestructurethat“traps”waterfromhightidesandreleasesitthrough
channels.Thechannelswillcarryitthroughtheturbine.
DynamicTidalPower:This scheme uses protruded wallsthat will “trap” atidein suchawaysoto
createahead.Thetidewillbedirectedthoughchannelstotheturbine.
TidalLagoon:SimilarlogictotheTidalBarrage.Insteadofadam‐likestructure,itusesanenclosurein
ordertocreateapool.
Despiteitshighcostandneedsinresources,tidalenergyisaveryreliablerenewableenergysource.Firstofall,
it can be predictable; it is not influenced by the weather conditions unlike otherre newableenergy types.
Secondly,the energy densityofthetidescanbe extremely high, compared tosolarandwindenergy. Lastly,
mostofitsschemescanassistinfloodcontrolscenariosandprotectcoastalpopulationsandinfrastructures.
Table1showstheadvantagesanddisadvantagesofeachtidalpowertype.Itshouldbenotedthattheamount
ofgeneratedenergydependsonseveralfactors,suchasthesizeand the tidalconditions (Kanemoto et al.,
2001;TidalPower,2015).
SafeKozani2018‐5thInternationalConferenceonCivilProtection&NewTechnology‐Proceedings
360
‐PosterPresentations‐
Table1.AdvantagesandDisadvantagesofTidalPowerTypes
Classification Advantages Disadvantages
TidalStream
Generator
‐Moderatepowergenerationcapability
‐Modularscheme
‐Low‐costscheme
‐Environmental‐friendlyscheme(leastimpacts
inmarineecosystems)
‐ Highmaintenance
‐Corrosion
‐Thespinningbladesmayharmmarine
wildlife
TidalBarrage
‐Highpowergenerationcapability
‐Provendesign
‐Longlifespan
‐Lowmaintenance
‐Suitableforfloodcontrol
‐ Limitedsitesforinstallation
‐Hightidalflowsarerequired
‐Highenvironmentalimpacts
‐High‐costscheme
DynamicTidal
Power
‐Veryhighpowergenerationcapability
‐Singleinstallation
‐ Unprovendesign
‐Veryhigh‐costscheme
‐Alternationsincoastalenvironments
‐Limitedsitesforinstallation
TidalLagoon
‐ High power generation capacity (less
comparedtothetidalbarrage)
‐Provendesign
‐ Environmental‐friendly scheme (less
comparedtothetidalbarrage)
‐Lowmaintenance
‐ Hightidalflowsarerequired
‐High‐costscheme
‐Generateslesspowerthanbarrage
Thewavepoweristheresultofthewavesthataregeneratedbythewind(dependedonweatherconditions).
Wavepowercanbegeneratedwhenthereisamotionofobjectsthatfloatintheocean.Thewavecrestcanlift
anobjectagainstgravityendowingitwithenergy. Whenitpasses,theobject falls intothewavetrough;this
kineticpowercanbeusedtogenerateelectricity.Image1showstheconceptofwavepowergeneration.This
renewable energy type is relatively old, as it first started in 1799 but it quickly lost popularity due to the
difficultiesinproducinglargequantitiesofenergyatalow‐costprice.Nowadayswavepowerisgettingpopular
againandwavefarmsinUSA,Australiaandothercountries,aretestingitscapabilities.Itshouldbenotedthat
relatedstudiesfocusonwavepowerapplicationsinbuoysbutmainlyforlightorGPStrackingpurposes(Tidal
Power,2015;MarineEnergy,2018).
SafeKozani2018‐5thInternationalConferenceonCivilProtection&NewTechnology‐Proceedings
361
‐PosterPresentations‐
Figure1.ConceptofWavePowerGeneration
Air‐SeaRescueandMigrationRoutes:ThecaseofMediterraneanSea
From2014todate,mostEuropeancitizensandgovernmentshavebeeninengagedinan ongoingdiscussion
about migration and the pr otection and surveillance of the Mediterranean borders. This matter increased
significantlywhenrefugeesandother migrantsfromAfricaandMiddleEast(especially Syria),fledfromtheir
countriesduetocivilconflicts,terrorism(Islamic State), poverty and corruption to Europe inordertofinda
betterlivingconditions for them andtheir families. The migrationproblemreacheditszenith in 2015 when
morethanonemillionpeoplearrivedinEuropethroughTurkey,GreeceandtheBalkans.Thiseventresultedin
agreat influence inlocaleconomiesandsocietiesthatin turn lead to changes intheEuropeanpoliticalfield
(Euroscepticpartiesgainedmorepowerandsupporters).AccordingtoUnitedNationsHighCommissionerfor
Refugees,theroutesmigrantsusetocometoEuropearenotstandard;however,theMediterraneanroutesare
the most frequent. Table 2 shows the number of refugees and migrantsthatusedordiedwhileusingthe
Mediterraneanroutesfrom2014to2018.
Table2.MediterraneanRoutesandNumberofRefugeesandMigrants*
Year Western Route(Spain) SouthernRoute(Italy) EasternRoute(Greece) Deaths
2014 4,632 170,100 41,038 3,184
2015 5,238 153,842 856,723 3,558
2016 8,162 181,436 173,450 4,757
2017 22,103 119,369 29,710 3,079
2018** 35,653 21,024 22,821 2,119
*sourcesandmoreinformationat:https://missingmigrants.iom.int/,https://openmigration.org/,
https://www.ecfr.eu/
**January1st–November28th
In 2013, European Union (EU) established the European Border Surveillance System (Eurosur). The main
purposesoftheEurosuraretheinformationexchangeandtheoperationalcooperationbetweentheMember
States and Frontex Border Agency (Seiffarth, 2011). When the migration issue arose, EU focused on their
interestsinmorerestrictedsafetymeasures,includingseabordercontrolandsecuritysurveillanceinorderto
limitthe migratory flows.Specifically,theplanincludedthe establishmentofhotspotsinthirdcountriesthat
areneighbored to Europe (e.g. Turkey, Libya) and the increased surveillance in both the Mediterranean and
externalizedbordersinAfricaandMiddleEast.However,dueto the current policies and conditions, this
SafeKozani2018‐5thInternationalConferenceonCivilProtection&NewTechnology‐Proceedings
362
‐PosterPresentations‐
strategyhighlightedmanylegalandethicaldilemmas.Severaldecisionscouldnotbefullyimplementedmainly
duetothelackofpersonnelandresources,civilrightsandcross‐countrypoliticaldisputes(Gabrielsen,2013).
Figure 3 shows the concept of southern border surveillance for restricting the migration flows (Torelli,and
Ugolini,2018).
Figure2.SecurityplaninMediterraneanandexternalizedboardsformigrationflowreduction
DespitetheeffortsofEUtoalleviatethisproblem,theflowsexist(Table2)andtheyareestimatedtocontinue
oreventoincrease,dependingonthegeopoliticalstabilityinAfricaandMiddleEast.Eventhoughin2018,the
migrantsarrivingtoEuropethroughthe Mediterranean Sea havebeenreducesinnumbers,thefatalitiesare
stillataconcerningrate.Morethan15,000confirmeddeathshavebeenrecorded since 2014; among those
severalinfants and children. Theefficientand integrated model forsurveilling sea zonescan be the key for
minimizingthefatalities.
3.ConceptofAutomatedNetworkforAir‐SeaActions
Sincetidalenergygeneratorsandwaveenergyconverters(TWCs)mainlyapplyinthesea,theirapplicationsin
ASRmissionsandseasurveillanceshouldbefurtherinvestigated,especiallyiftheuseofUAVsisrequired.The
ARSthatisthecoordinate dsearchandrescueofemergencywaterlandingsurvivorsorthosewhohavesurvived
the loss of their seagoing vessel, usually involves a variety ofresourcesincluding rescue boats, helicopters,
seaplanesandofcourseUAVs.TheUAVisatypeofaircraftthatoperateswithoutahumanpilotonboardand
itfliesautonomouslyusingpre‐programmedflightpathdataorremotely,ifitiscontrolledbyanoperatorfrom
agroundstation(Yeong,King,andDol,2015).Duetotheiradvantagesinagility,portability,cost‐effectiveness
(comparedtoconventionalmannedaircrafts),andaerialaccess,theUAVsareoftenusedinsearchandrescue
SafeKozani2018‐5thInternationalConferenceonCivilProtection&NewTechnology‐Proceedings
363
‐PosterPresentations‐
missionsorintheaftermathofanaturaldisaster.Theirmainpurposeistodetectandidentifypossiblerescue
targets(Matosetal.,2013).
Furthermore,inARSmissions,varioussensorsanddevicesareaddedonthemwhiletheyflyoverlargeareasin
shortperiodsof time.Iftheydetectadisturbance,theysendthecollectedinformationtotheiroperatorsfor
furtheraction(Lin,Roscheck,Goodrich,andMorse,2010;Waharte,andTrigoni,2010).However,basedonthe
currenttechnologydevelopment,theUAVs arenothighlyeffectiveunderextremeweatherconditions.Their
resistance level to disasters is corresponded to their design andcost.Whatismore,duetotheirpower
limitations,theyarenotfullyefficientwhentheymustoperatefarawayfromtheshore.Anaverageflighttime
ofacommonbattery‐poweredUAVisusually10to30minutes(similartoitsrechargetime);therefore,itisstill
difficulttodeployUAVsfarfromtheirbase,especiallyinemergencyincidents,suchasthesuddenoccurrence
ofheavyrainstormsormigrants’shipfailures(Yeongetal.,2015).
Whenextremeeventsoccuratsea,accidentsarealmostinevitableifthefloatingvesselsarenotdesignedfor
suchconditions(Wagenaar&Groeneweg,1987).Inthesecases,thecorrespondingASRpersonnelisnotalways
capableofdetectingsurvivorsintimeandasaresult,fatalities are inevitable (Fargues & Bonfanti, 2014).
AnotherproblemwiththecurrentUAVusageinmanyARSmissionsisthateachdroneinspectsselectedareas
inaspecificdurationoftime.Therefore,itispossibleforanincidenttooccurinanareathattheUAVhasalready
inspected.ThechancesofsuchscenariosincreasewhenalownumberofUAVsoperatesinlargeseaareas(e.g.
MediterraneanSea). This, in combination with the power limitationsperplex theprocedures and reducethe
efficiency of the ASR missions. To alleviate theseissues, the ANASA concept suggest the development of a
networkofautomatedUAVsthatoperateinlargeseazonesandrechargeinsitu.TheTWCbuoyswillcharge
theUAVsthatoperateinfrequenttimeperiods.Additionally,thebuoyswillprovideemergencyassistanceto
survivors,aswellasweatherinformationtotheiroperators.Figure2showshowthisnetworkoperates.
Figure3.VisualdescriptionoftheAutomatedNetworkforAir‐SeaActions:EachbuoychargesoneUAVper
time.Theaerialsurveillanceisdividedinto2sets.TheUAVsofeachsetareactivatedsimultaneouslyand
movetotheirfollowingbuoy(clockwiseorder).Whenasetisoperating,theUAVSoftheothersetare
recharging.Thisloopcontinuesthroughoutthedayandprovidesa24/7surveillance.
Tofurtherincreasetheefficiencyofthenetwork,thebuoysmustbeplacedinappropriatedistances,sotobe
abletorechargetheUAVsbeforetheyrunoutofpower.Asthebuoyscoverlargeareas,theirmeteorological
systemscandetectweatherchangesatthelocallevelandwhennecessary,warnthecoastguardaccordingly.
Thealarmsystemscanactivatelightsandotherwarningalertsduringthenight‐timeorextremeweatherevents
inordertoguidesurvivorsandotherboatstowardsthemincaseofemergency.AsitcanbeobservedinFigure
3,theANASAUnitisacombinationof:
SafeKozani2018‐5thInternationalConferenceonCivilProtection&NewTechnology‐Proceedings
364
‐PosterPresentations‐
1. aTWCthatprovidesenergy,atleastfortheinstalledinstruments.For that reason, the systemsfor
emergencysignalsandfirstaidareprioritized
2. aminilighthouse(lightsignal)thatisactivatedduringthenight‐timeandextremeweatherevents
3. anemergencysignaltransmissionconnectedtoanSOSbutton(italsoincludesanemergencykit)
4. ameteorologicalsystemforweatherchangesatthelocallevel
5. batterychargingspace(s)forUAVs(wirelesscharging).OncetheUAVisattached,itautomaticallylocks
intoitsposition.IftheUAVisviolentlydislocatedfromits positionwhilecharging,arelevantsignalis
senttotheoperator.
Figure3.PartdescriptionoftheANASAUnit(designisstillunderdevelopment)
3.Conclusions
Theinvestigationoftidalandwaveenergycanbeverypromisingastheypresentmanyadvantagesoverother
renewable. Following this approach, the ANASA focuses in marine disaster response mechanisms and more
specifically,theautomatedASRmissions.ThebuoysthatareTWCs,arecapableofrechargingoneofmoreUAVs
depending on theavailable amount of generated energy.Moreover, theyare equipped withmeteorological
sensors,warningsystemsand emergencytransmitters.SetsofUAVsoperatesubsequentlysotoinspectlarge
sea areas non‐stop. To further maximize the energy generation of the buoys, the study suggests the
investigationofsmallsolarthermalcollectorsmountonthebuoysasanadditionalrenewableenergyresource.
It should be noted that the conceptual idea of the ANASA is based on technological features and AI‐based
applicationsthatcurrentlyexist but not used combined. Future studies could evaluate thesuggested system
under realistic cond itions and verify its feasibil ity, cost to benefit analysis, and its impact, contribution and
alternativeuseinmarineecosystems.ByestablishingtheANASAinseaareaswithhighdisasterriskprobability,
thisresearchaimstoprovidethecoastguardareliable,automatedandself‐poweredtoolthatcandetectsea
survivorsorthreats under a sufficient given time.Furthermore,itaimsto providean alternativesolutionfor
surveillingseamigrationroutesthatcanpotentiallydetectshipwrecksontimeandincreasethesurvivalrate.
SafeKozani2018‐5thInternationalConferenceonCivilProtection&NewTechnology‐Proceedings
365
‐PosterPresentations‐
4.Acknowledgement
Theauthors would like to thank My Safety Approved LLC, the Association of Officers and Sub‐Officers with
UniversityDegreesofHellenicFireCorps,andUNESCOChaironConservationandEcotourismofRiparianand
DeltaicEcosystemsforthesupportinthisresearch.
References
Fargues,P.,andBonfanti,S.(2014)Whenthebestoptionisaleakyboat:whymigrantsrisktheirlivescrossing
the Mediterranean and what Europe is doing about it. Available at:
http://cadmus.eui.eu/bitstream/handle/1814/33271/MPC_PB_2014‐05.pdf?sequence=1&isAllowed=y
(Downloaded01September2018).
Gabrielsen Jumbert, M. (2013) ‘Controlling the Mediterranean space through surveillance. The politics and
discourseofsurveillanceasanall‐encompassingsolutionto EU maritime border management issues’, Space
PopulationsSocieties,pp.35‐48.
Kanemoto,T., Tanaka,D.,Kashiwabara,T.,Uno,M.,and Nemoto, M.(2001)‘Tidalcurrent powergeneration
system suitable for boarding on a floating buoy’,International Journal of Offshore and Polar
Engineering,11(01).
Lin,L.,Roscheck,M.,Goodrich,M.A., and Morse, B.S. (2010)Supporting Wilderness Searchand Rescue with
Integrated Intelligence: Autonomy and Information at the Right TimeandtheRightPlace. A tlanta: Twenty‐
FourthAAAIConferenceonArtificialIntelligence.
MarineEnergy(2018)TheEuropeanMarineEnergyCentreLTD.Availableat:http://www.emec.org.uk/marine‐
energy/wave‐devices/(Accessed:29November2018).
Marques, M.M., Parreira, R., Lobo, V., Martins, A., Matos, A., Cruz, N., Almeida, J.M., Alves, J.C., Silva, E.,
Będkowski,J.,andMajek,K.(2016)‘Useofmulti‐domainrobotsinsearchandrescueoperations—contributions
oftheICARUSteamtotheeuRathlon2015challenge’,IEEE,pp.1‐7.
Matos,A.,Silva,E.,Cruz,N.,Alves,J.C.,Almeida,D.,Pinto,M.,Martins,A.,Almeida,J.,andMachado,D.(2013)
‘Developmentofanunmannedcapsuleforlarge‐scalemaritimesearchandrescue’,IEEE,pp.1‐8.
Seiffarth,O.(2011)‘ThedevelopmentoftheEuropeanbordersurveillancesystem(EUROSUR)’,Athreatagainst
Europe?Security,migrationandintegration,pp.133‐152.
TidalPower(2015)TidalPower.co.uk.Availableat:http://tidalpower.co.uk/(Accessed:29November2018).
Torelli, S.M., and Ugolini, M. (2018) ‘Migration through the Mediterranean:MappingtheEUResponse’,
European Council on Foreign Relations. Available at: https://www.ecfr.eu/specials/mapping_migration
(Accessed01November2018).
Waharte,S.,and Trigoni, N.(2010), ‘Supporting search andrescue operations with UAVs’Emerging Security
Technologies(EST),2010InternationalConferencepp.142‐147.
Wagenaar, W.A., and Groeneweg, J. (1987) ‘Accidents at sea: Multiple causes and impossible
consequences’,InternationalJournalofman‐machinestudies,27(5‐6),pp.587‐598.
Yeong,S.P.,King,L.M.andDol,S.S.(2015)‘Areviewonmarinesearchandrescueoperationsusingunmanned
aerial vehicles’.International Journal of Mechanical, Aerospace, Industrial, Mechatr onic and Manufacturing
Engineering,9(2),pp.396‐399.