Content uploaded by Danung Nur Adli
Author content
All content in this area was uploaded by Danung Nur Adli on Jul 06, 2020
Content may be subject to copyright.
Osfar Sjofjan et al./Animal Production. 22(1): 24-30, 2020
Accredited by Kemenristek Dikti No 32a/E/KPT/2017. ISSN 1411-2027
24
Utilization of Biogas Liquid Waste For Starter
In The Fermentation of Rice Husk As A Potential Feedstuff
Osfar Sjofjan*, Danung Nur Adli, Irfan Hadji Djunaidi and Ariwandika Sapto Kuncoro
Faculty of Animal Science, University of Brawijaya, Malang, Indonesia
*Corresponding author e-mail: osofjan@yahoo.com
Abstract. The research was aimed to evaluate the effect of biogas liquid waste as a fermentation starter of
rice husk on the nutrient content, gross energy and bulk density. A laboratory experiment was conducted in a
Completely Randomized Design (CRD) with a factorial pattern (6 x 5) using different levels of biogas waste
liquid, namely P0-treatment (0% negative control), P0+ (Cellulomonas sp as positive control), P1 (5%), P2
(10%), P3 (15%), P4 (20%) ml/g. The experiment also included various incubation time, i.e. T0 (0 day as control
group), T1 (7 days), T2 (14 days), T3 (21 days) and T4 (28 days). The variables measured was the content of
ash, crude protein, crude fiber, crude fat, gross energy and bulk density. Data were subject to analysis of
variance (Anova) and CRD Factorial pattern, as well as Duncan’s Multiple Range Test for any significant
difference. The results revealed that the level of biogas liquid waste and the incubation time significantly
affected the nutrient content, gross energy and bulk density of rice husk. The interaction between the level of
liquid waste biogas and incubation time was highly significant on the nutrient content, gross energy and bulk
density. It can be concluded that the liquid waste of biogas as a starter in the fermentation of rice husk could
increase the content of inorganic material, crude protein, crude fat, and gross energy, and lower content of
crude fiber and total density of rice husk.
Keywords: rice husk, biogas liquid waste, fermentation, alternative feed
Abstrak. Tujuan dari penelitian ini adalah untuk mengetahui jumlah penggunaan limbah cair biogas dan lama
inkubasi yang digunakan agar menghasilkan komposisi sekam padi yang paling baik sebagai bahan pakan
alternatif. Materi yang digunakan adalah limbah cair biogas dan sekam padi. Metode yang digunakan adalah
metode percobaan Laboratorium dengan menggunakan Rancangan Acak Lengkap (RAL) pola Faktorial (6x5)
dengan 4 ulangan. Faktor pertama adalah level pemberian limbah cair biogas (P) yang terdiri dari perlakuan
P0- (0% kontrol negatif), P0+ (Cellulomonas sp kontrol positif), P1 (5%), P2 (10%), P3 (15%), dan P4 (20%) ml/g,
serta faktor kedua adalah waktu inkubasi yang terdiri dari T0 (0 hari kontrol), T1 (7 hari), T2 (14 hari), T3 (21
hari), dan T4 (28 hari). Variabel yang diamati adalah kandungan nutrisi yang meliputi bahan anorganik, protein
kasar, serat kasar, lemak kasar, gross energy, dan kerapatan jenis. Hasil dari penelitian ini menunjukkan bahwa
pemberian limbah cair biogas dan waktu inkubasi memberikan pengaruh yang sangat nyata terhadap
kandungan nutrisi , gross energy dan kerapatan jenis sekam padi. Hasil interaksi penggunaan level pemberian
dan waktu inkubasi limbah cair biogas sebagai starter dalam proses fermentasi sekam padi memberikan
pengaruh yang sangat nyata terhadap kandungan nutrisi, gross energy dan kerapatan jenis sekam padi.
Peningkatan kualitas sekam padi yang meliputi peningkatan kandungan protein kasar, gross energy, lemak
kasar, dan penurunan serat kasar, perlakuan terbaik terdapat pada pemberian limbah cair biogas sebanyak
15% (ml/g) dengan waktu inkubasi selama 21 hari.
Kata kunci: sekam padi, limbah cair biogas, fermentasi, pakan alternative
Introduction
Rice bran has been widely used as a
livestock feed but it is susceptible to be mixed
with other materials to make refined rice bran
and milled husk rice milled (Sjofjan et al., 2019)
to produce low quality feed that may reduce
the performance of livestock.
According to the Badan Pusat Statistik
(2014), rice production in 2013 reached 71.28
million tons of dry milled grain. Meanwhile,
22% of the weight of paddy is husk (Nasution,
2006). However, rice husk exhibits nutrient
digestibility and it contains ash/silica which is a
potentially limiting factor in the use of chaff
(Aderolu et al., 2007).
Fermentation is a method of processing feed
material that aims to improve the quality of the
feed material using microbes (Yunilas, 2009).
Osfar Sjofjan et al./Animal Production. 22(1): 24-30, 2020
Accredited by Kemenristek Dikti No 32a/E/KPT/2017. ISSN 1411-2027
25
Liquid waste biogas derived from an
expenditure of biogas is rich in microorganisms;
the microorganism that help to increase
fermentation were cellulomonas sp (Gamayanti
et al., 2012). Types of bacteria found in the
biogas are genus Clostridium which is a
fermentative bacteria that produce hydrogen
(Fang et al., 2006). Based on the study above,
the research was conducted to investigate the
influence of liquid waste of biogas as a starter in
the fermentation process of rice husk terms on
the nutrient content and density of livestock
feed ingredients.
Materials and Methods
The materials for this research were liquid
waste of biogas and rice husk. The liquid waste
biogas was derived from the waste of the
biogas unit which was filtered and added
micronutrients for the fermentation. Rice husk
was milled to obtain the size of ±1 mm, then
sterilized and added with liquid waste biogas.
The rice husk was fermented and heated up to
60oC for 24 hours.
The tools to withdraw liquid waste biogas
included glass beaker, filter cloth, and
measuring cup. The fermentation was
conducted using an analytical balance,
autoclave, tray, sheet fabric, grinder and oven.
For observation, a set of analysis tools
proximate and gross energy were utilized. The
bulk density was measured using analytical
scales and measuring cups.
The experimental method was a laboratory
experiment in a Completely Randomized Design
(CRD) with a factorial pattern (6x5) with the
treatment the level of provision of liquid waste
biogas (P) consisting of P0- (0% negative
control), P0+ (Cellulomonas sp as positive
control), P1 (5%), P2 (10%), P3 (15%), and P4
(20%) ml/g, and incubation time consisting of
T0 (0 day control), T1 (7 days), T2 (14 days), T3
(21 days), and T4 (28 days). The observed
variables were the nutrients contents, i.e.
inorganic materials, crude protein, crude fiber,
crude fat, gross energy, and the density of the
type. Data were analyzed by analyze of variance
(anova) Factorial and any difference would be
subjected to the Duncan’s Multiple Range Test
(Adli et al., 2018)
Results and Discussion
The effect of The Treatment level of Liquid
Waste of Biogas and Incubation Time on The
Proximate Composition of Rice Husk.
Table 1 demonstrated that the effect biogas
liquid waste as a starter is significantly different
(P<0.01) across treatment to increase the ash,
CP, fat, and gross energy, as well as to reduce
the content of CF and number density of rice
husk. The observation on different incubation
time of rice husk fermented with liquid waste of
biogas showed a significant difference result
(P<0.01), where the longer the incubation time,
the higher the content of ash, CP, fat, and gross
energy, but the lower the CF and total density.
Inorganic Materials
Table 1 shows that the level of liquid waste
of biogas as a starter showed a significantly
different result (P<0.01) on the ash content of
rice husk. Adli et al. (2017) explained that the
higher the population of microbes, the more
organic materials contained in the main
ingredient that were utilized for the growth and
development of microbes; as a result, the
inorganic material in the fermentation was
increased. It shows that the higher amount of
liquid waste biogas as a starter would result in a
bigger population of microbes.
Based on Table 1, the incubation time during
the fermentation using liquid waste of biogas as
a starter showed a significantly different result
(P<0.01) to increase the content of rice husk
ash. The longer the time spent for the
fermentation process, the higher the ash
content. Adli et al. (2018) stated fermentation
on organic materials used carbohydrates as the
energy source for the growth and activity of
Osfar Sjofjan et al./Animal Production. 22(1): 24-30, 2020
Accredited by Kemenristek Dikti No 32a/E/KPT/2017. ISSN 1411-2027
26
microbes and mold; therefore, so the ash
content in rice husk increased.
Crude Protein
Table 1 demonstrated that the level liquid
waste of biogas as a starter was significantly
different (P<0.01) on the CP of the rice husk.
The CP of the control reached 6.60% where the
rice husk was suspected to have been mixed
with bran which contains a CP raised 6.88 %
(Adli et al., 2019). The increase in CP was linear
to that of the starter. Mangunwidjaja et al.
(2015) mentioned that one way to increase the
protein content material was by cultivating
microbial cells as a source of protein or so-
single cell protein (SCP).
The protein content of fermented rough rice
husk increased very significantly (P<0.01) than
T0 (without incubation) up to the time of
incubation in T3 (21 days). The increase in the
protein content of rough rice husk fermented
with liquid waste biogas could be derived from
microbes and mold that were growing within
the incubation period. Suparjo and Nelson
(2011) reported that the increase in protein
content occurs because of the bioconversion of
sugar to protein of the mycelium or single cell
protein.
Crude Fiber
Based on Table 1, the level of liquid waste
biogas provides a significant influence (P<0.01)
to the content of the crude fiber of the rice
husk. Using liquid waste biogas by 20% (ml/g)
produced the lowest percentage of crude fiber
(CF) in the fermentation result. This result
showed that the bigger the microbial
population, the higher the crude fiber
digestibility. Dosage was related to the
magnitude of the microbial populations that
determined whether or not the development of
microbes to produce enzymes to remodel the
substrate into simpler components (Lunar et al.,
2012).
The incubation time significantly affected
(P<0.01) the crude fiber content in the rice
husk. The longer incubation time as in T3 (21
days) would decrease the crude fiber. Adli et al.
(2019) stated that the crude fiber decreased
because of the formation of xylanase enzyme
by microorganisms which increased up to day-
28 (Adli et al., 2019). Xylanase is an enzyme that
could hydrolyze xylene or polymer contained in
the hemicellulose (Ligyarohman et al., 2014).
Table 1. The effect of the level of provision and time of incubation on the nutrient content of rice
husk
Treatment
The treatment level
ash (%)
CP (%)
CF (%)
Fat (%)
GE (Kcal/kg)
Density (g/L)
P0-(negative )
18,58±0,34a
6,60±0,69a
34,95±0,9c
6,34±0,34a
1939,12±100,45a
296,83±16,18d
P0+ (positive)
18,57±0,48a
6,88±0,4b
35,89±0,85e
6,76±0,3b
1953,72±114,02b
292,85±15,33c
P1 (5%)
19,07±0,61b
7,34±0,33c
34,11±0,71b
7,05±0,32f
1975,85±53,51c
291,19±21,91b
P2 (10%)
20,21±0,79d
7,32±1,01c
35,35±1,44d
6,94±0,41e
2007,88±60,52d
290,55±25,61b
P3 (15%)
20,94±0,86e
7,66±1,04d
35,5±3,09d
6,87±0,45d
2016,24±130,53d
283,66±23,78a
P4 (20%)
19,99±0,86c
7,95±0,66e
33,7±1,63a
6,81±0,55c
2034,45±99,2e
283,61±27,76a
The effect of incubation time
T0 (0days)
18,72±0,49a
6,91±0,9a
36,63±2,13e
7,05±0,64d
1916,60±52,53a
314,48±3,31e
T1 (7 days)
19,44±1,28b
7,35±0,4d
36,04±1,16d
6,63±0,39a
1930,54±46,15b
303,59±6,58d
T2 (14 days)
19,55±1,01b
7,02±0,82b
34,43±0,75c
6,89±0,39c
1927,69±17,51b
292,35±6,78c
T3 (21 days)
19,94±1,22c
8,01±1,03e
33,55±1,07a
6,78±0,41b
2034,84±91,24c
285,56±8,6b
T4 (28 days)
20,16±0,85d
7,17±0,51c
33,94±1,19b
6,62±0,24a
2129,69±59,08d
252,93±10,9a
*Superscript different on the same column indicate differences that were significant different (P<0,01)
Osfar Sjofjan et al./Animal Production. 22(1): 24-30, 2020
Accredited by Kemenristek Dikti No 32a/E/KPT/2017. ISSN 1411-2027
27
Fat
Table 1 demonstrated that the level of
liquid waste biogas significantly affects (P<0.01)
the fat content of the rough rice husks. The
highest fat content was observed in the use of
5% ml/g liquid waste biogas rather than control
group or the higher level. Safitri (2014) reported
that using a wide variety of bacteria and levels
of provision would decrease the fat content of
substrate. The increase of crude fat was linear
to that of cell mass of fungi and yeast. Yeast cell
has a high potential to increase the fat content
of the rough substrate because yeast cell
contains 4.9% crude fat (Safitri and Wahyudi,
2011).
The fat content of rough rice husk
fermented with different incubation time
showed a significantly different decrease
(P<0.01). The highest crude fat was observed in
T0 (without incubation) and the lowest was in
treatment T4 (28 days). According to
Mirwandhono et al. (2006), fermentation time
could increase the levels of fat in the
fermentation of 6 days. The increased fat
content during the fermentation process was
due to the mass of microbial cells that grew and
multiplied on the media. The content of crude
fat increased in the early phase (day 7) and
decreased until day-28. A study by Joseph et al.
(2008) reported that after 96 hours the fat
content in the substrate decreased because it
could have been used to form the enzyme
lipolytic extracellular by fungi in the lipid and
fatty acid of the substrate (Sjofjan et al., 2020)
Gross Energy
Table 1 indicates that the level of liquid
waste biogas significantly affects (P<0.01) the
gross energy content of the rice husk. The
higher level of liquid waste biogas could
increase the gross energy of rice husk due to
microbial decomposition of components of the
complex cellulose into glucose more (Telew et
al., 2013). The gross energy of rice husk
increased because of the formation of the
xylanase enzyme during the fermentation which
degraded xylene to simple sugars (Suryanata
et al., 2013).
Based on Table 1, incubation time
significantly affects (P<0.01) the gross energy
content of rice husk. The increased levels of
energy gross could be due to the reorganization
of carbohydrates easy to digest (NFE) and the
compound of N by decomposing
microorganisms. Aderolu et al. (2007) reported
an increase in the content of gross energy of
rice husk fermented with Trichoderma viride on
the incubation period in days to 30.
Bulk Density
The liquid waste biogas significantly
affected (P<0.01) the decrease of rice husk
density. The decrease was suspected to have
derived from a large number of microbes that
changed the conditions of the substrate (more
acidic) so the bonding fibers in the rice husk is
became increasingly tenuous, hence, lowering
the total density of the type and improving the
bulky properties. Daniel et al. (2014) explained
that the nature of bulky is the level of feed
material due to the density of the feed material.
Table 1 demonstrates that the time of
incubation was significantly different (P<0.01) in
decreasing the numbers of density type. Prabhu
et al. (2014) stated that the fermentation of rice
bran using yeast has reduced the bulk density
up to 37.5% when incubated for 24 and 48
hours. Rice bran and rice husk share almost
similar characteristics, and both are derived
from the waste of rice milling. The increase in
the pores of the rice husk due to the
atmosphere of acid during the fermentation
process can loosen the bonds of fiber (Bata,
2008).
Osfar Sjofjan et al./Animal Production. 22(1): 24-30, 2020
Accredited by Kemenristek Dikti No 32a/E/KPT/2017. ISSN 1411-2027
28
Table 2. The interaction between the treatment Levels and the incubation time on the content
proximate the Rice Husk
P0-
P0+
P1
P2
P3
P4
Total
Inorganic material (%)
T0
18,23±0,06
18,31±0,1
18,32±0,04
19,13±0,05
19,51±0,05
18,79±0,14
112,29
T1
18,48±0,06
18,09±0,07
18,66±0,04
21,48±0,01
20,79±0,02
19,16±0,07
116,67
T2
18,35±0,04
18,52±0,04
18,96±0,09
19,99±0,07
20,87±0,09
20,59±0,06
117,29
T3
18,69±0,01
18,46±0,01
19,48±0,14
20,47±0,05
21,89±0,08
20,64±0,1
119,62
T4
19,16±0,01
19,45±0,05
19,95±0,23
19,99±0,08
21,64±0,1
20,76±0,07
120,95
Crude Protein (%)
T0
6,46±0,02
6,39±0,04
7,14±0,02
6,48±0,02
6,21±0,02
8,77±0,07
41,45
T1
6,70±0,02
6,92±0,03
7,63±0,02
7,76±0,001
7,52±0,01
7,55±0,03
44,09
T2
5,73±0,01
6,49±0,01
6,91±0,03
7,28±0,03
8,34±0,03
7,38±0,02
42,13
T3
6,34±0,002
7,19±0,004
7,79±0,05
8,94±0,02
9,15±0,03
8,67±0,04
48,06
T4
7,79±0,003
7,41±0,02
7,22±0,09
6,16±0,02
7,07±0,03
7,36±0,02
43,01
Crude Fibre (%)
T0
36,59±0,12
37,14±0,21
33,02±0,07
36,77±0,09
40,16±0,1
36,07±0,28
219,76
T1
35,03±0,12
36,19±0,13
35,08±0,08
37,30±0,01
37,73±0,03
34,93±0,13
216,26
T2
34,55±0,07
35,73±0,07
34,02±0,16
34,48±0,13
34,49±0,14
33,29±0,1
206,56
T3
34,09±0,01
34,59±0,02
34,01±0,24
34,38±0,08
32,32±0,12
31,90±0,15
201,28
T4
34,48±0,02
35,80±0,1
34,41±0,4
33,82±0,13
32,79±0,14
32,31±0,1
203,61
Fat (%)
T0
6,36±0,02
6,24±0,04
6,74±0,01
7,56±0,02
7,57±0,02
7,82±0,06
42,29
T1
6,17±0,02
6,68±0,02
7,35±0,02
6,77±0,001
6,45±0,01
6,35±0,02
39,77
T2
6,18±0,01
6,89±0,01
7,34±0,04
7,05±0,03
7,20±0,03
6,73±0,02
41,38
T3
6,01±0,002
7,10±0,004
7,22±0,05
6,99±0,02
6,60±0,03
6,77±0,03
40,69
T4
6,97±0,003
6,87±0,02
6,63±0,08
6,33±0,03
6,52±0,03
6,38±0,02
39,69
Gross energy (Kkal/kg)
T0
1849,19±6,25
1847,83±10,53
1925,77±4,01
1942,97±4,76
1952,49±4,87
1981,36±15,14
11499,61
T1
1897,91±6,42
1899,57±6,92
1972,29±4,56
1995,35±0,36
1868,83±1,68
1949,25±7,13
11583,21
T2
1903,46±3,99
1923,70±3,61
1917,53±9,06
1951,10±7,18
1925,10±7,92
1945,30±5,6
11566,18
T3
1915,55±0,68
1929,39±1,03
2012,52±14
2093,39±4,62
2145,42±7,99
2112,78±10,16
12209,06
T4
2129,48±0,91
2168,10±5,76
2051,10±24,07
2056,59±8,08
2189,34±9,63
2183,56±6,82
12778,17
Bulk Density (g/L)
T0
315,18±1,07
309,58±1,76
315,50±0,66
313,83±0,77
313,14±0,78
319,63±2,44
1886,86
T1
303,43±1,03
296,13±1,08
309,07±0,72
314,20±0,06
296,94±0,27
301,80±1,1
1821,58
T2
301,26±0,63
301,05±0,56
290,08±1,37
290,98±1,07
285,60±1,18
285,14±0,82
1754,10
T3
296,48±0,11
292,06±0,16
286,64±1,99
287,95±0,64
279,13±1,04
271,07±1,3
1713,34
T4
267,82±0,11
265,41±0,71
254,63±2,99
245,77±0,97
243,49±1,07
240,42±0,75
1517,55
The interaction between the levels of
treatment and incubation time using liquid
waste biogas as a starter in the fermentation
process of rice husk significantly affected
(P<0.01) the content of proximate, gross energy
and the density of rice husk. The optimum
interaction was observed in the provision of
15% liquid waste biogas which was incubated
for 21 days.
The interaction between the level of
provision and incubation time was associated
with the number and growth of microorganisms
in the liquid waste biogas. Microorganisms in
the phase of balanced growth (metabolic
activity constant) can concentrate decompose
organic material contained in the substrate
(Adli et al., 2019). Hidayat et al. (2013)
explained that the bacterial cells would reach
an optimum growth in media which provide
sufficient nutrients. Lashkari et al. (2014)
reported that supplementing a source of
nitrogen in the raw silage material could
increase total microbes and lower the pH. The
decreased pH due to the increasing total
microbes during the fermentation would
increase the digestibility of organic matter,
protein production single cell; reshuffle the
components of crude fiber and crude fat,
carbohydrate formation; and increase the pores
Osfar Sjofjan et al./Animal Production. 22(1): 24-30, 2020
Accredited by Kemenristek Dikti No 32a/E/KPT/2017. ISSN 1411-2027
29
of the walls of the fibers which decreased the
density of rice husk (Widiyawati, 2020).
Conclusions
Liquid waste biogas as a starter in the
fermentation of rice husk could increase the
content of inorganic material, crude protein,
crude fat, and gross energy, and decrease the
content of crude fiber and total density of rice
husk.
References
Aderolu, A. Z., E. A. Ayiyi, and A. A. Onilude. 2007.
Changes in Nutritional Value of Rice Husk during
Trichoderma viride Degradation. Bulgarian
Journal of Agricultural Science. 13 (7): 583-589.
Adli, D. N., O. Sjofjan and Mashudi. 2017. Dried of
Poultry Waste Urea-Molasses Block (dpw-umb)
as Potential for Feed Supplementation. Jurnal
Agripet. 17(2): 144-149.
Adli, D. N. and O. Sjofjan. 2018. Nutrient content
evaluation of dried poultry waste urea molasses
block (DPW-UMB) on In-vitro analysis. Sains
Peternakan. 16(2): 50-53.
Adli, D. N., O. Sjofjan and Mashudi. 2018. Nutrient
content evaluation of dried poultry waste urea-
molasses block (dpw-umb) on proximate
analysis. Jurnal Ilmu-Ilmu Peternakan. 28(1): 84-
89.
Adli, D. N., Y. Chi, J. W. Lee and O. Sjofjan. 2019.
Supplementation Mannan-Rich Fraction (MRF)
and/or Combination with Probiotic-Enhanced
Water Acidifier on Dietary Female Broiler at 28
days as Natural Growth Promoters (NGPs).
Research Journal of Advanced Engineering and
Science. 4(3): 427-429.
Adli, D. N., O. Sjofjan and Mashudi. 2019. Nutrient
content evaluation of dried of poultry waste
urea-molasses block (dpw-umb) on proximate
analysis. Jurnal Ilmu dan Teknologi Peternakan.
6(2): 72-76.
Badan Pusat Statistik. 2014. Berita Resmi Statistik.
Produksi Padi, Jagung, dan Kedelai: Angka
Ramalan 1 Tahun 2014 : 1-10.
Bata, M. 2008. Pengaruh Molases pada Amoniasi
Jerami Padi Menggunakan Urea terhadap
Kecernaan Bahan Kering dan Bahan Organik In-
Vitro. Jurnal Agripet, 1(3) : 15-20.
Daniel, O Sjofjan and I. H. Djunaidi. 2014. Kajian
Kandungan Zat Makanan dan Pigmen Antosianin
Tiga Jenis Kulit Buah Naga (Hylocereus sp)
sebagai Bahan Pakan Ternak. Jurnal Ilmu-ilmu
Peternakan, 12(5): 1-9.
Fang, H. H. P., C. Li and T. Zhang. 2006. Acidophilic
Biohydrogen Production from Rice Slurry.
International Journal of Hydro gen Energy. 11(3) :
683-692.
Gamayanti, K. N., A. Pertiwiningrum and L. M.
Yusiati. 2012. Pengaruh Penggunaan Limbah
Cairan Rumen dan Lumpur Gambut sebagai
Starter dalam Proses Fermentasi Metanogenik.
Buletin Peternakan. 3(4) : 32-39.
Hidayat, I. R., Kusrahayu and S. Mulyani. 2013. Total
Bakteri Asam Laktat, Nilai ph dan Sifat
Organoleptik Drink Yoghurt dari Susu Sapi yang
diperkaya dengan Ekstrat Buah Mangga. Animal
Agriculture Journal. 17(6) : 162-163.
Joseph, I., R. P. Raj and D. Bhatnagar. 2008. Effect of
solid state fermentation on nutrient composition
of selected ingredients. Indian Journal of Fish.
12(1) : 327-332.
Lashkari, S., A. Taghizadeh, J. Selfidayati and A. Z. M.
Salem. 2014. Qualitative Characteristics,
Microbial Populations and Nutritive values of
Orange Pulp Ensiled with Nitrogen
Supplementation. Slovakian Journal Animal
Science. 8(9) : 90-99.
Ligyarohman, F., M. H. Natsir and I. H. Djunaidi.
2014. Pengaruh Pemberian Level Dedak yang
berbeda dengan Penambahan Xilanase dalam
pakan terhadap Berat Organ Dalam dan Kualitas
Karkas Ayam Pedaging. Jurnal Ilmu-ilmu
peternakan. 5(6) : 1-6.
Lunar, A. M., H. Supratman and Abun. 2012.
Pengaruh Dosis Inokulum dan Lama Fermentasi
Buah Ketapang (Ficus lyrata) oleh Aspergilus
niger terhadap Bahan Kering, Serat Kasar, dan
Energy Bruto. Jurnal nutrisi ternak dan pakan
tropis, 2(3) : 1-6.
Mangunwidjaja, D., T. E. Sukmaratri and C. Setiyarto.
2015. Peningkatan Kadar Protein Kasar Ampas
Kulit Nanas melalui Fermentasi Media Padat.
Buletin Peternakan. 3(4): 12-16.
Mirwandhono, E., I. Bachari and D. Situmorang.
2006. Uji nilai nutrisi kulit ubi kayu yang
difermentasi dengan Aspergillus niger. Jurnal
Agribisnis Perternakan. 2 (3): 91-95.
Nasution, D. Y. 2006. Pengaruh Ukuran Partikel dan
Berat Abu Sekam Padi sebagai Pengisi terhadap
Sifat Kuat Sobek, Kekerasan, dan Ketahanan
Abrasi Kompon. Jurnal Sains Kimia. 10 (2): 86-91.
Prabhu, A. A., C. M. Mrudula and J. Rajesh. 2014.
Effect of Yeast Fermentation on Nutraceutical
and Antioxidant Properties of Rice Bran.
International Journal of Agricultural and Food
Science. 2(3) : 59-65.
Safitri, R. 2014. The Influence of Fermentation by
Bacillus circulans, Micrococcus sp., and B.
coagulans Towards Fat, Crude Fiber and Protein
Osfar Sjofjan et al./Animal Production. 22(1): 24-30, 2020
Accredited by Kemenristek Dikti No 32a/E/KPT/2017. ISSN 1411-2027
30
Content of Palm Oil Empty Fruit Bunches Waste
(Elaeis guineensis Jacq.). University of
Agricultural Sciences and Veterinary Medicine,
Surabaya.
Safitri, R. and R. R. Wahyudi. 2011. Effect of
Consortium Trichoderma viride, Trichoderma
reesei, Aspergillus oryzae and Rhizopus
oligosporus, and Dose on Inoculant Viability,
Reducing Sugar and Nutritional Value of Corn
Cobs. International Seminar Biotechnology :
Agustus 2011. Pp:33-46.
Sjofjan, O., D. N. Adli, P. K. Hanani and D.
Sulistiyaningrum. 2019. The utilization of bay leaf
(SyzygiumpolyanthumWalp) Flour in feed on
carcass quality, microflora instestine of broiler.
International Journal of Engineering Technologies
and Management Research. 6(11):1-9.
Sjofjan, O., D. N. Adli, M. H. Natsir and A.
Kusumaningtyaswati. 2020. Pengaruh kombinasi
tepung kunyit (curcuma domestica val.) dan
probiotik terhadap penampilan usus ayam
pedaging. Jurnal Nutrisi Ternak Tropis dan Ilmu
Pakan. 2 (1):19-24.
Suparjo and Nelson. 2011. Penentuan Lama
Fermentasi Kulit Buah Kakao dengan
Phanerochaete chrysosporium : Evaluasi Kualitas
Nutrisi secara Kimiawi. Agrinak. 1(2) : 1-10.
Suryanata, I. K., I. H. Djunaidi and M. H. Natsir. 2013.
Pengaruh Penambahan Xylanase dalam pakan
dengan Level Dedak yang Berbeda terhadap
Kualitas Fisik Daging Ayam Pedaging. Jurnal Ilmu-
Ilmu Peternakan. 1(3): 1-8.
Telew, C., V. G. Kereh, I. M. Unt and B. W. Rembet.
2013. Pengayaan Nilai Nutritif Sekam Padi
berbasis Bioteknologi "Effective Mikroorganisms"
(EM4) sebagai Bahan Pakan Organik. Jurnal
Zootek. 32 (5): 1-8.
Widiyawati, I., O. Sjofjan and D. N. Adli. 2020.
Peningkatan Kualitas dan Persentase Karkas
Ayam Pedaging dengan Subtitusi Bungkil Kedelai
Menggunakan Tepung Biji Asam (Tamarindus
indica L) Fermentasi. Jurnal Nutrisi Ternak Tropis.
3(1): 35-40.
Yunilas. 2009. Bioteknologi Jerami Padi melalui
Fermentasi sebagai Bahan Pakan Ternak
Ruminansia, Medan.