BookPDF Available

The Status of Indonesian Coral Reefs 2019

Authors:
Tri Aryono Hadi
Muhammad Abrar
Giyanto
Bayu Prayudha
Ofri Johan
Agus Budiyanto
Ahmad Reza Dzumalek
La Ode Alifatri
Siti Sulha
Suharsono
RESEARCH CENTER FOR OCEANOGRAPHY (RCO)
Coral Reef Rehabilitation and Management Program
Coral Triangle Initiative (COREMAP – CTI)
2020
ii
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
THE STATUS OF INDONESIAN CORAL REEFS 2019
© Research Center for Oceanography - Indonesian Institute of Sciences
Authors : Tri Aryono Hadi, Muhammad Abrar, Giyanto, Bayu Prayudha,
Ofri Johan, Agus Budiyanto, Ahmad Reza Dzumalek, La Ode Alifatri,
Siti Sulha, Suharsono
Photo : Agus Budiyanto, Muhammad Abrar, Tri Aryono Hadi, Yunaldi
Design : Dudy Ramdhana
ISBN : 978-602-6504-29-6
RHM Secretariat
Research Center for Oceanography (RCO)
Pasir Putih 1, Ancol Timur
North Jakarta 14430
Telp. 021-64713850
Email: rhmsekretariat@gmail.com
http://indocoasting.id
http://oseanogra.lipi.go.id
The Status Of Indonesian Coral Reefs 2019
Tri Aryono Hadi...et al.,2019
 --Jakarta:PuslitOseanogra-LIPI.
vi + 88 hlm.; 17,6 cm x 25 cm
Bibliogra:hlm.27
iii
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
As the global climate is unpredictable and the human population is
rising up gradually, the ecosystems are prone to degradation both in
the land and seas. As an archipelagic country, coastal ecosystems play
important roles, not only protecting the shorelines from abrasion
but also supporting economic sectors for local communities. In
thiscase,thedegradedcoastalecosystemcouldimpacttheshery
production and ecotourism sectors and eventually threaten the
national economy. Therefore, it is vital to inform the current status
of coral reefs as well as the trend so that the policymakers can
address the issues which can be different among the regions.
The Research Center for Oceanography (RCO), through COREMAP-
CTI, has responsibility for monitoring coral reefs across the
Indonesian waters to provide information regarding the coral reef
condition as well as the trend, and feasible solutions to maximize
the management system. In addition, RCO has been appointed to
provide Indonesia’s coral reef map to support the one map policy.
Lastly, it is important to improve people’s awareness as early as
possible so that their contribution will be real and massive in the
future.
I would like to thank the team that has worked hard to make this out
and wish it will be meaningful for stakeholder, coastal communities,
conservationists, and even science.
Jakarta, June 2020
Director of Research Center for Oceanography
Dr. Augy Syahailatua, M. Sc
Foreword
iv
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Chelonia mydas, Komodo National Park, NTT
v
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
TABLE OF CONTENTS
TABLE OF TABLE
TABLE OF FIGURES
Table 1. Criteria of coral reef damage according to
the Ministry of Environment and Forestry ... ..... .... . .... ..... ..... .... . . 7
Introduction ......................................................................................... 1
Distribution of coral reefs in Indonesia................................................ 2
Categorization of coral reef condition ................................................... 7
Status of Indonesian coral reefs ........................................................... 9
The various threats on Indonesian coral reefs ........................................ 17
Reef Restoration ................................................................................... 19
Acknowledgement.................................................................................. 23
Conclusion ............................................................................................ 25
Bibliography ......................................................................................... 27
Appendix 1 ........................................................................................... 32
Appendix 2 ........................................................................................... 36
Indonesian version ............................................................................... 44
Figure 1. a) Acropora suharsonoi, b) Euphyllia baliensis (courtesy
of mahagirinusalembongan.blogspot.com), c) Indophyllia
macassarensis, d) Isopora togianensis ..................................... 3
Figure 2. Coral reefs in a) Weh, b) Bintan, c) Prigi Bay, d) Seribu Islands .... . .. 4
Figure 3. Distribution of stony corals in Indonesia ......................................... 5
Figure 4. Trend of coral reef conditions from 1993 to 2019.... . .... ..... .... . .... ..... 9
Figure 5. Trend of coral cover from COREMAP-CTI monitoring sites
(n: number of reefs monitored) ........................................................ 10
Figure 6. Changes in benthic communities using Underwater photo
transect (lefts : 2016, rights : 2017) ................................................. 11
Figure 7. Trend of coral reef conditions in western Indonesia .... .... . .... . .... ..... . 12
Figure 8. a) Bleaching event in 2016, b) the reef at “no return point”
(algae dominated reef) ..................................................................... 13
Figure 9. Trend of coral reef conditions in central Indonesia ... ..... .... . .... ..... .... 14
Figure 10. Trend of coral reef conditions in eastern Indonesia .... .... . .... ..... .... . . 15
Figure11.a)localparticipationinanarticialreefcompetition,
 b)dome-shapedarticialreef;c)Acropora transplanted on
iron racks; d) spider web like structure (credit Alicia McArdle);
e) biorock; f) reef restoration using coral transplants .. ..... .... . .... ..... .. 21
vi
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Wakatobi National Park, Southeast Sulawesi
1
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Introduction
Indonesia is an archipelagic country with 16.056 veried islands
situated in the tropical zone. This makes the water warm throughout
the year and this is suitable for plenty of marine creatures to strive.
Besides, Indonesia is a part of the coral triangle region, the world’s
highest marine biodiversity. In this case, there are about 569 species
and 83 genera of stony corals recorded, representing approximately
69% and 76% for species and genera respectively of stony corals around
the world. Interestingly, there are 4 endemic species recorded, namely 
Acropora suharsonoi (Lombok),Euphyllia baliensis (Bali), Indophyllia
macassarensis (Makassar), and Isopora togianensis (Togean) (Figure 1). To
conserve the marine habitats and biodiversity, by the middle of 2019
the government has already had a 22.68 million hectares of marine
conservationarea,approximately6%ofIndonesianmarineareas.
As the world’s fourth most populous country by around 270 million
people, Indonesia’s coastal areas are prone to degradation due to human
activities. The impact can be seen in front of some big cities located close
to coastal areas, such as in Jakarta, Surabaya, Makassar, and Batam. Natural
disasters, such as earthquakes and tsunami, also sometimes occur and
affect negatively the coral reefs. Another main problem is the elevated sea
temperature which causes bleaching events in many locations, especially
in the southern and western parts of Indonesia. Although these factors
are inevitable, it appears that the reefs are able to recover, depending on
the intensity and frequency of the stressors, resilience potential, and the
environmental conditions.
I
2
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Coral reef rehabilitation and management program (COREMAP) is a
long term national program that aims to manage Indonesia’s coral reefs
anditsrelatedcoastal ecosystemstoremain sustainable and benet the
coastal communities. One main component of the program is monitoring
the condition of coastal ecosystems, especially coral reef, seagrass, and
mangrove (the last two ecosystems have been being monitored since 2015).
The other component is to improve people’s awareness through education,
dissemination, and training in which people are expected to participate
actively in ecosystem conservation. In short, the program focuses not only
on the ecosystem management, but also the people as the key success
factor of the program.
Distribution of coral reefs
in Indonesia
II
Coral reefs in Indonesia spread from Rondo Island (Aceh), the outermost
island in the northwest of Indonesia’s archipelago, to the north of Jayapura,
the easternmost city in Indonesia. Coral reefs on the west coast of Sumatra
- including the outer islands such as Rondo Island, Weh Island, Banyak
Islands, Simeulue Island, Nias Island, Batu Islands, Siberut Island, Pagai
Island, Sipora Island and Enggano Islands - are characterized by low to fair
coralcoversand low diversityof stonycoralsasit is strongly inuenced
by the Indian Ocean. Not all of the islands are surrounded by coral reefs,
but instead only patches especially in the outermost islands. On the other
hand, the reefs on the east coast of Sumatra cannot develop well as many
riversowtotheeast,resultinginlowsalinityandhighturbidity.However,
off the shore, the patchy reefs commonly occur, such as in Balerang Islands,
Senayang Lingga, Bangka Belitung, and Karimata Islands. The reefs develop
well particularly in the middle of the Natuna Sea, including Anambas
Islands, Natuna Islands, and Tambelan Islands.
Dominated by peatland and big rivers, Borneo Island has poorly
developing reefs. Close to the mainland, the reefs are patchy like in
3
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 1. a) Acropora suharsonoi, b) Euphyllia baliensis (courtesy of
mahagirinusalembongan.blogspot.com), c) Indophyllia macassarensis,
d) Isopora togianensis
a
c
b
d
Sangkulirang. The reefs commonly strive well off the coast of Borneo
Island, such as in Derawan Islands, Matasiri Islands, and Karimata Islands.
The reefs along the coast of Java are typically patchy, such as in
Banten Bay, Jakarta Bay, Jepara, Pasir Putih, Baluran, Nusa Kambangan,
Wediombo, and Prigi Bay. The reefs grow well off the north coast of Java
Island and commonly occurred in a group of islands, including Seribu
Islands, Karimun, Bawean, and Kangean Islands. In addition, the corals are
more diverse in the north compared to the south as it is curtailed by the
extreme environmental condition of the Indian Ocean.
Coral reefs strive well and reach the peak of biodiversity in the coral
triangle area, including Sulawesi, Maluku, Halmahera, West Papua, Raja
Ampat Islands, Aru Islands, Kei Islands, East Nusa Tenggara, West Nusa
4
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 2. Coral reefs in a) Weh, b) Bintan, c) Prigi Bay, d) Seribu Islands
a
c
b
d
Tenggara, and Bali. The reefs develop horizontally and vertically up to
more than 30 meters in depth. Such fascinating conditions are attributed to
excellent environmental conditions; typically warm and clear water from
thewestPacicowscontinuouslytotheIndianOceanthroughthislarge
area(knownasIndonesianthroughow(ITF))and thismakescoralsgrow
better than the surrounding areas. Nevertheless, the reefs cannot develop
well along the south coast of Papua due to high sedimentation which
results from river discharge. Interestingly, especially in Merauke, corals can
be found on the limestone substrate although the water is very turbid.
Distribution of stony corals shows the common pattern in which the
diversity of coral genera is getting lower as the distance is getting farther
from the biodiversity center (Figure 3). In the coral triangle area, the number
5
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 3. Distribution of stony corals in Indonesia
TOTAL NUMBER OF GENERA: 83
of genera is about more than 60 and then to decline in the periphery (west
coast of Sumatra and south coast of Java) by less than 50 genera. Uniquely,
Lesser Sunda, the southernmost of Indonesia and spanning from Bali to
East Timor, has a number of coral genera around 60 and still belongs to the
coral triangle area. This area is the exit of ITF and also known as refugia
where many biota are trapped and survive, making the biodiversity high.
For example, there are 36 and 39 species of mushroom corals recorded
in Bali and Komodo Islands respectively, representing about 77 - 83% of
mushroom corals in the world.
6
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Coral transplantation in Bayuwangi, East Java
Euphyllia divisa
7
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Categorization
of coral reef condition
III
The condition of coral reef is determined by the percentage of live
coral cover. Then, it is divided into 4 categories according to the Ministry
of Environment and Forestry decree No 4 the year 2001 regarding the
criteria of coral reef damage (Table 1).
Table 1. Criteria of coral reef damage according to the Ministry of Environment
and Forestry
No Hard coral cover (HC) Category
1HC≤25% Poor
225%<HC≤50% Fair
350%<HC≤75% Good
4 HC > 75% Excellent
8
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Kendari, Southeast Sulawesi
9
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 4. Trend of coral reef conditions from 1993 to 2019
Status of Indonesian
coral reefs
IV
General status
Based on the 2019 data from 1153 reefs, there are about 390
reefs (33.82%) categorized poor, 431 reefs (37.38%) categorized fair,
258 reefs (22.38%) categorized good and 74 reefs (6.42%) categorized
excellent (Appendix 1). During the period of 1993 to 2019, in general,
there were about 30.85 ± 0.29% of reefs having more than 50 % coral
cover (good and excellent reefs) and these were relatively stable despite
upward and downward trends for excellent and good reefs respectively
inthelastveyears(Figure4).Ontheotherhand,69.15±0.29%ofthe
reefs had less than 50 % coral cover (poor and fair reefs) and the trends
wereuctuating.Inthiscase,thesereefsareunlikelystable,havingmore
space for coral recruits to attach and grow but very vulnerable to stressors.
10
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
2015
31,48
26,18 26,13
29,42
0
5
10
15
20
25
30
35
2016 2017 2018 2019
Coral Cover (%)
n = 325
n = 270
n = 201
n = 286
n = 202
27,96
Figure 5. Trend of coral cover from COREMAP-CTI’s monitoring sites
(n: number of reefs monitored)
However, the poor reefs may be at “no return point” when they are under
intense chronic stress, causing the reefs to perish. In some cases, the poor
reefs are at a stable state due to its extreme environmental conditions.
Global stressor, especially elevated sea surface temperature, has a
huge impact on Indonesia coral reefs. The trend of coral reef condition
appears to be declining between 2015 and 2016 due to mainly bleaching
event. However, such bleaching event did not occur at all locations as
Indonesiacoral reefsareinuencedbydifferent types ofhydrodynamic
regimes of two oceans (Pacic and the Indian Ocean). In addition, the
geomorphological conditions of Indonesia’s Islands are quite diverse,
making the impact of elevated sea surface temperature vary among reefs.
Data from COREMAP-CTI’s monitoring locations also conrms that
there was a signicant decline in coral cover between 2015 and 2016
and followed by a gradual increase until 2019 (Figure 5). The data was
collected by using underwater photo transect (Figure 6) from plenty
of reefs across Indonesian waters (Appendix 1). In short, the recovery
process after the bleaching event has been progressing and this evidence
gives hope to the management regime amid the global declining trends
of coral cover.
11
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 6. Changes in benthic communities using underwater photo transect
(lefts : 2016, rights : 2017)
Western Indonesia
In western Indonesia, the coral reef condition appears to be better,
given that the percentage of excellent and fair reefs are improving
(Figure 7). This condition may be related to the change of natural resource
exploitationarea; people usedtoexploitthe western area tofulllthe
high demand of shery products but then moved away to the eastern
part which is much promising. Furthermore, the people awareness had
been improved; COREMAP phase II encouraged law enforcement to
combatdestructiveshingpractices, and community-based management
which involved local communities to participate actively in managing the
coastal ecosystem and this occurred at 8 locations in the west.
Apart from the human factors, the western part is prone to
bleaching related to elevated sea temperature. For example, in the
marine conservation area of Pieh, the coral cover dropped from 41.4% in
12
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 7. Trend of coral reef conditions in western Indonesia
2015 to 28.38% in 2016 (Figure 8a). Likewise, coral cover in the marine
conservation area of Nias declined from 26.76% in 2015 to 13.82%
in 2016. In contrast, in Riau Islands province, the coral covers were
increasing between 2015 and 2016; in Bintan, the coral cover increased
from 35.61% to 37.97%, and in Batam the coral cover increased from
36.28% to 39.44%. This might be related to the hydrodynamic regime in
whichRiauwaterishighlyinuencedbyPacicNorthEquatorialCurrent,
whereas the 2015-2016 bleaching occurred severely on the west coast of
Sumatra and south coast of Java which are bordered by the Indian Ocean.
In addition to anthropogenic stressors, marine pollution,
sedimentation, and low salinity are the main stressors in western
Indonesia. In Jakarta Bay, for instance, the reefs are suffering high-
intensity chronic stress due to sewage from the capital city of Indonesia
(13 rivers are passing through the capital and discharging to the bay),
causing the reefs to be at “no return point” (Figure 8b). The same situation
also occurs in Bangka Island where massive offshore tin mining activities
are very intense and thus cause the reefs to die due to sedimentation. If
13
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 8. a) bleaching event in 2016, b) the reef at “no return point” (algae dominated reef )
a b
these stressors remain intense, the area impacted will be wider and the
number of potentially degraded reefs will increase.
Central Indonesia
In central Indonesia, the coral reef condition, in general, was
improvinguntil2015(Figure9).Afterward,thereweresignicantdeclines
on the trends of the fair and good reefs as a result of the bleaching event
that occurred in many locations. The most suffering area was the Lesser
Sunda, especially Bali and West Nusa Tenggara, as this area borders the
Indian Ocean. For instance, In Bali, the coral cover declined from 60.3%
(2015) to 29.6% (2016). In West Lombok, the coral cover declined from
36.09% (2015) to 18.23% (2016) and in the marine conservation area of
Gili Matra also declined from 23.43% (2015) to 18.48% (2016). It is typical
that during the El Nino event, the warm phase of the El Nino Southern
Oscillation (ENSO), the Indian Ocean is getting warmer and this affects
the reefs in the western and southern parts of Indonesia. In addition,
human factors, such as coastal development, land-based pollution, blast
shing, mining activities, and tourismalsocontributetothedeclineof
coral covers in the last 5 years.
14
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 9. Trend of coral reef conditions in central Indonesia
Eastern Indonesia
In contrast to the western and central parts, the condition of coral
reefs in the eastern appears to be declining, especially in the 2000s
(Figure10).It shows that the trend ofpoorreefincreased signicantly
at the beginning of the 2000s but gradually declined at the end of the
2000s. It is likely related to the exploitation that moved away from the
west to the east. Other main issues on the east are poor community
awareness and poor law enforcement. Lack of job opportunities also leads
local communities to depend much on nature. Furthermore, there are
plenty of remote areas that have poor surveillance, causing the reefs to
bevulnerabletodestructiveshingpractices, and exploitation. However,
therecoveryhasbeenstillprogressing,particularlyinthelastveyears.
In Ternate and surrounding, the coral cover increased from 29.26% in
2015 to 32.83% in 2016. Likewise, in the marine conservation area of
Padaido, the trend of coral cover was increasing between 2015 and
2019 (from 29.92% to 35.25%). A similar result also occurs in the marine
15
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 10. Trend of coral reef conditions in eastern Indonesia
conservation area of Raja Ampat (Waigeo) which increased from 32.24%
in 2015 to 37.84% in 2019. The eastern part might be less affected by the
2015-2016 bleaching event as it is passed by Indonesian throughow
which delivers continuously clear and nutritious water from Pacic to
the Indian Ocean. This can reduce the heat stress by increasing the rate
of dilution, making the impact of elevated sea temperature less severe.
16
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Banggai, Central Sulawesi
17
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
The various threats
on Indonesian coral reefs
V
Climate changes and anthropogenic factors have become the main causes
of reef degradations. Elevated sea temperature has caused mass bleaching
events and it takes years to recover. The effect will be even multiplying when
theanthropogenic stressors also occur, such as blast shing,pollution,mining
activities, and terrestrial runoff due to land use. Although reefs are able to adapt
to the changing environment, complex and high intensity of stressors can cause
the reefs to collapse. For instance, when the reefs are exposed to chronic stress
which pushes it close to the threshold, then another chronic or acute stress that
occurs at the same time will cause the reefs to fail to resist and recover.
In general, anthropogenic factors are the prominent stressor in the central
and eastern parts, while natural stressors appear to be noticeable in the west
and south (Appendix 2). There are many poor locations, mainly spreading in
the periphery (west coast of Sumatra, south coast of Java, and south of Lesser
Sunda). These poorly categorized locations do not always mean that the reefs
are terribly degraded. In normal conditions, the reefs have less than 25% coral
cover as a result of extreme environmental conditions, such as poor habitat
variability and high energy waves. However, the reefs are able to recover slightly
when suffering acute stress. In contrast, poor locations in South and Southeast
Sulawesi, North Moluccas, and Papua are attributed to anthropogenic factors,
especially blast shing. Not all of these areas belong to marine conservation
areas,thereforedestructiveshingisstillundergoing.Inaddition,thedestructive
shingcommonlyoccursfarfromvillagesandmanytakeplaceinremoteareas
Fair locations appear to dominate and occur from the west to east, commonly
close to the mainland (nearshore reefs). These locations are prone to degradation
due to anthropogenic stressors, such as coastal development, pollution, and
mining. Sedimentation and low salinity also aggravate the situation, especially
in the west due to river discharge. Farther from the mainland, the good and
excellent locations commonly occur, typically offshore reefs, like in Tambelan and
Lucipara which are located in the middle of Natuna and Banda Sea respectively.
18
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Biorock, Bali
19
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
VI Reef Restoration
As the reefs have been being affected by human factors and
natural disturbances, it is necessary to monitor the condition over
time whether it is improving or degrading. Minimizing the stressors
especially human anthropogenic to allow the reefs to recover naturally
is a passive way to improve coral reef conditions. In order to boost
the ecosystem recovery, ecological intervention is certainly needed.
This could be coral transplantation, substrate modification, artificial
reefs, assisted coral recruitment, eliminating coral predators, and
macroalgae removal. However, these passive and active efforts have
to be integrated with the social perspective of people who depend or
use the ecosystem.
The most common effort of coral restoration is coral transplantation
which is aimed to improve reef conditions in terms of live coral cover,
biodiversity, and topographic complexity (Figure 11). This also offers
fast and wide coverage by commonly using local sources that have
adapted to the local environment. In this case, the transplants are taken
from neighboring healthy reefs without causing a significant impact.
Fast-growing corals, including family Acroporidae and Pocilloporidae,
are the most common corals for transplantation but need to be
enriched with slow-growing corals, such as Faviidae, Poritidae, and
Mussidae. Such mixed combination makes the reef more diverse and
able to withstand disturbances without losing all the populations; in
normal condition, the fast-growing corals will dominate the space, but
in reverse when disturbances occur. The size of fragments and methods
of transplantation also determine the growth rate of transplants that
eventually contributes to the live coral cover.
Coral transplantation will be appropriate if the recruitment is
poor, indicating that sources is not sufficient for natural recovery. This
could be attributed to a lack of mature individuals for self-recruitment,
poor external recruitment from up-current reefs, and less stable
20
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
substrates. On the other hand, if the poor recruitment is attributed to
poor environmental conditions (low salinity, high turbidity, nutrient
enrichment, algal dominance), therefore coral transplantation is not
feasible. In addition, in areas with high energy waves, transplantation
is also not suitable as many transplants will be broken and lost. When
the recruitment is high and the environmental conditions are favorable,
so artificial reefs or substrate modifications are more preferable than
coral transplantation.
Coral transplantation has been carried out in many locations for
different purposes, including restoration, tourism, and trading. In this
case, coral transplantation not only restores the reefs but also has direct
benefits to the local communities, making this activity more sustain as
the locals are engaged. Bali and Sulawesi are the most active areas
as they have sources and periodical maintenance to ensure that coral
transplantations work.
Monitoring is very important for the management regime to
understand whether the coral restoration works properly or poorly.
Apart from the environmental conditions, reef restoration depends on
the local community engagement, regulation, economic, and political
constraints. These should be integrated and the sustainability of reef
restoration, commonly being neglected, has to be maintained to achieve
the ultimate long term goal.
21
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Figure 11. a) local participation in an articial reef competition, b) dome-shaped
articial reef; c) Acropora transplanted on iron racks; d) spider web like structure
(credit Alicia McArdle); e) biorock; f) reef restoration using coral transplants
a b
c d
e f
22
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Natuna, Riau Islands
23
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Conclusion
VII
In general, long term observation indicates that coral reef condition
in Indonesia is relatively stable, especially for good and excellent reefs.
Incontrast,thepoorandfairreefsappear to be uctuating;therecovery
process may occur when the reefs suffer acute stress but fail when intense
chronic stresses arise. Managing the reefs through the establishment of
marine conservation areas is a feasible option that not only manages the
ecosystem but also the people, minimizing the impact of anthropogenic
factors while maintaining the productivity of the ecosystem. In this case,
improving people’s awareness and making them our valuable asset have to
be the main priority of the management system, considering that they are
able to participate actively in ecosystem conservation. However, natural
disturbances are inevitable and the impacts are somehow devastating.
Thus, community engagement is needed to assist the management regime
to minimize the impacts and boost ecosystem recovery. National support
from the government is certainly necessary to organize both central and
local elements across Indonesia to work together following an integrated
management system that not only considers the sustainability of the
ecosystembutalsothebenetstocommunities.
24
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Komodo National Park, NTT
25
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
VIII Acknowledgement
First and foremost we would like to thank Allah SWT for giving us
knowledge, ability, and opportunity to carry out monitoring surveys and
write this book. We thank COREMAP – CTI and the World Bank that have
been fully supporting this project. We are also grateful to our monitoring
teams (secretariat, scientists, technicians, administrative staffs), Ministry of
Marine Affairs and Fisheries (KKP), Ministry of Environment and Forestry
(KLHK), National Development Planning Agency (Bappenas), Geospatial
Information Agency (BIG), provincial government agencies, Maritime
University of Raja Ali Haji (UMRAH), University of Bung Hatta (UBH),
University of Diponegoro (UNDIP), University of Hasanuddin (UNHAS),
University of Mataram (UNRAM), University of Sam Ratulangi (UNSRAT),
University of Halu Oleo (UHO), University of Syiah Kuala (UNSYIAH),
Indonesian Coral, Shell and Ornamental Fish Association (AKKII), Terangi,
Minang Bahari, Rock n Roll Divers (Buton), Scuba Weh (Sabang), Lini, Karang
Nusantara, and Mars Inc.
26
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Derawan, East Kalimantan
27
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Abrar, M. , Siringoringo, R. M., Hadi, T. A., Putra, R. D., Cappenbergh, H. A. W.,
Sutiyadi, R., Faricha, A., & Suharsono. (2019). Monitoring kondisi
terumbu karang dan ekosistem terkait di TWP Pulau Pieh dan laut di
sekitarnya, Provinsi Sumatera Barat. COREMAP-CTI, Jakarta: 66 pp.
Adam, T. C., Burkepile, D. E., Ruttenberg, B. I., & Paddack, M. J. (2015).
Herbivory and the resilience of Caribbean coral reefs: knowledge
gaps and implications for management. Marine Ecology Progress
Series 520: 1-20.
Bachtiar, I. & Jufri, A. W. (2019). Monitoring kesehatan terumbu karang dan
ekosistem terkait lainnya di Teluk Sekotong Kabupaten Lombok
Barat tahun 2019. UNRAM, Mataram: 71 pp.
Cai, W., Sullivan, S. , & Cowan, T., (2010). Interaction of ENSO, The IOD, and
SAM in CMIP3. Journal of Climate, 24, 1688-1704.
Ceccarelli, D. M., Lofer, Z. , Bourne, D. G.,Al MoajilCole, G. S. , Boström
Einarsson, L., EvansIllidge, E., Fabricius, K., Glasl, B. , Marshall,
P., McLeod, I, Read, M., Schaffelke, B., Smith, A. K., Jorda, G. T.,
Williamson, D. H., & Bay, L. (2018). Rehabilitation of coral
reefs through removal of macroalgae: state of knowledge and
considerationsformanagementandimplementation.Restoration
ecology,26(5), 827-838.
Chou, L. M. (2000). Southeast Asian Reefs-Status update: Cambodia,
Indonesia, Malaysia, Philippines, Singapore, Thailand and Viet
Nam in Wilkinson, C. (Ed.) Status of coral reefs of the world. AIMS,
Townsville, 17-129.
Dharmawan, I. W. E., Utama, R. S., Giyanto, Purwandana, L. A., Makatipu,
P. C., & Irawan, A. (2019). Monitoring kondisi kesehatan terumbu
karang & ekosistem pesisir terkait di TWP. Padaido, Biak-Numfor
2019. COREMAP-CTI, Jakarta: 152 pp.
Direktorat Jenderal Pengelolaan Ruang Laut, Kementerian Kelautan
Perikanan (DJPRL-KKP). (2019). Laporan Kinerja Triwulan II Tahun
2019. DJPRL-KKP, Jakarta: 132 pp.
Edwards, A. J., & Clark, S. (1999). Coral transplantation: a useful management
tool or misguided meddling?. Marine Pollution Bulletin,37(8-12),
474-487.
Bibliography
28
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Edwards, A.J., & Gomez, E.D. (2007). Reef Restoration Concepts and Guidelines:
making sensible management choices in the face of uncertainty. Coral
Reef Targeted Research & Capacity Building for Management
Program, Australia: 38 pp.
Feng, M.,Zhang,N.,Liu,Q.,&Wijffels,S.(2018).TheIndonesianThrough
Flow,itsvariabilityandcentennialchange.Geoscience Letters,5(1),
301-304.
Fox, H. E., Pet, J. S., Dahuri, R., & Caldwell, R. L. (2003). Recovery in Rubble
Fields: Long-Term Impacts of Blast Fishing. Marine Pollution
Bulletin. doi:10.1016/S0025-326X(03)00246-7.
Frias-Torres, S., Montoya-Maya, P., & Shah, N. (2018). Coral Reef Restoration
Toolkit: A Field-Oriented Guide Developed in the Seychelles Islands.
Nature Seychelles, Mahe: 76 pp.
Giyanto, Ulumuddin, Y. I. , Hadi, T. A. , Cappenbergh, H. A. W., Lisdayanti, E. ,
Arafat, Y., Rahmadi, P., Putra, M. Y. , Santoso, P. D., Sutiyadi, R.,
Budiyanto, A., Unyang, S., Nurhasyim, Amat, Otuola, L., & Basir.
(2019). Monitoring kesehatan terumbu karang dan ekosistem terkait
di Kepulauan Derawan. COREMAP-CTI, Jakarta: 132 pp.
Hadi, T. A., Suharsono, Giyanto, Abrar, M., Budiyanto, A., Cappenbergh, H. A.
W., Putra, M. Y., Edrus, N. I., Ulumuddin, Y. I., Sidiq, A., Lisdayanti, E.,
Handayani,N.,Hazt,M.,Nurhasyim,Purwandana,L.A.,Setiastuti,
A.,Dzumalek,A.R.,Ke,A.,Syahidah,A., & Paulus, P. C.(2019).
Monitoring kesehatan terumbu karang dan ekosistem terkait lainnya
di Taman Nasional Komodo dan sekitarnya, Nusa Tenggara Timur.
COREMAP-CTI, Jakarta: 131 pp.
Hoeksema, B. W., & Putra, K. S. (2000). The reef coral fauna of Bali in the
centre of marine diversity. Proceedings 9th International Coral Reef
Symposium Vol 1: 173-178.
Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J., & Steneck, R. S. (2010).
Rising to the challenge of sustaining coral reef resilience. Trends
in ecology & evolution,25(11), 633-642.
Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E. , Cumming, G. S.,
Jackson, J. B., Kleypas, J. , van de Leemput, I. A., Lough, J. M.,
Morrison, T. H., Palumbi, S. R., van Nes, E.H., & Scheffer, M. (2017).
Coral reefs in the Anthropocene. Nature,546(7656), 82-90.
Jaap,W.C.(2000).Coralreefrestoration.Ecological engineering,15(3-4), 345-
364.
29
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Jompa, J. (2019). Monitoring kondisi terumbu karang dan ekosistem terkait di
Kabupaten Kepulauan Selayar COREMAP-CTI tahun 2019. UNHAS,
Makassar: 196 pp.
Kug, J.S., & Kang, I.S. (2006). Interactive feedback between ENSO and the
Indian Ocean. J. Climate, 19, 1784–1801.
Luasunaung, A., Manoppo, V., & Schaduw, J. N. (2015). Monitoring dan
evaluasi lokasi penyelaman Pulau Bunaken Taman Nasional
Bunaken Kota Manado Provinsi Sulawesi Utara. Spatial: Journal of
Geographical Studies,14(2), 1-7.
Marasabessy, I. , Fahrudin, A., Imran, Z., & Agus, S. B. (2019). Identikasi
kondisi ekosistem terumbu karang Pulau Nusa Manu dan Nusa
Leun di Kabupaten Maluku Tengah. Jurnal Riset Perikanan dan
Kelautan,1(1), 1-13.
Mumby, P. J., & Hastings, A. (2008). The impact of ecosystem connectivity
on coral reef resilience. Journal of Applied Ecology,45(3), 854-862.
Mumby, P. J., & Steneck, R. S. (2008). Coral reef management and conservation
inlightofrapidlyevolvingecologicalparadigms.Trends in ecology
& evolution,23(10), 555-563.
Munasik, Pribadi, R., Riniatsih, I., Romadhoni, A. A., Dewi, R. A., Brasmata, A.
F.Y.,Arbanto,B.,Bahari,A.S.,Afkar, M.Z.,Teguh, R.,Aufar, S.N.,
Saragih, J. E., & Widyo, M. A. (2019). Kondisi ekosistem terumbu
karang dan ekosistem terkait di Perairan Bakauheni, Kabupaten
Lampung Selatan. UNDIP, Semarang: 114 pp.
Prayudha, B., Tuti, Y., Utama, R. S., Arbi, U. Y. , Vimono, I. B., Edrus, I. N.,
Faricha, A., Suyadi,R., Renyan, J., Rahmawati, S., Kusnadi, A.,
Alifatri, L., Salatalohi, A., Triandiza, T., & Dzumalex, A. R. (2019).
Baseline terumbu karang dan ekosistem terkait di Pulau Kei Kecil
dan Sekitarnya, Kota Tual dan Kabupaten Maluku Tenggara, Provinsi
Maluku. COREMAP-CTI, Jakarta: 121 pp.
Rahmawati, S., & Hernawan, U. E. (2019). Pemantauan Kesehatan Terumbu
Karang dan Ekosistem Terkait di Kabupaten Bintan Tahun 2019.
COREMAP-CTI, Jakarta: 110 pp.
Razai, T. S., Putra, R. D., Kurniawan, D., Lestari, F., Febrianto, T., & Putra, I. P.
(2019). Monitoring ekosistem terumbu karang dan ekosistem terkait
di Perairan Natuna dan sekitarnya 2019. UMRAH, Tanjung Pinang:
30
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
126 pp.
Rizki, M. P., Souhoka, J., Makatipu, P. C., Purwandana, L. A., Kusnadi, A.,
Nurdiansyah, D., Patty, S. I., & Dzumalek, A. R. (2019). Monitoring
kesehatan terumbu karang dan ekosistem terkait Suaka Alam
Perairan (SAP) Raja Ampat, Provinsi Papua Barat, tahun 2019.
COREMAP-CTI, Jakarta: 81 pp.
Rogers, C. S. (2013). Coral reef resilience through biodiversity. ISRN
Oceanography. http://dx.doi.org/10.5402/2013/739034
Rondonuwu, A., Lumingas, L. J.L., Bataragoa, N. E., Manengkey, H. K., Kondoy,
K. I. F., Rangan, J. K., Makatipu, P. , Nurdiansyah, D., Tampaguma,
B., & Kambey, A. G. (2019). Monitoring kesehatan terumbu karang
dan ekosistem terkait lainnya di Pulau Salawati dan Pulau Batanta
Kabupaten Raja Ampat - Provinsi Papua Barat 2019. UNSRAT,
Manado: 149 pp.
Samsuardi, Bukhari, Eriza, Yennafri, Indra, G., Arafat, Y., Amrullah, M. Y.,
Guswanto, H., & Miswandi, M. (2019). Monitoring kesehatan
terumbu karang dan ekosistem terkait di Taman Wisata Perairan
(TWP) Selat Bunga Laut Kabupaten Kepulauan Mentawai, COREMAP-
CTI Tahun 2019. UBH, Padang: 132 pp.
Saputra, M. T., & Sadarun, B. (2019). Hubungan antara kondisi tutupan
karang hidup dengan kelimpahan ikan Chaetodontidae di
Perairan Lalanu, Kecamatan Soropia, Kabupaten Konawe. Jurnal
Sapa Laut (Jurnal Ilmu Kelautan),4(2), 53-60.
Sari, N. P., Abrar, M., Siringoringo, R. M., Nurhasyim, Putra, R. D., Sinaga,
M., Jumsurizal, Irawan, Lestari, F., Pangenstyansyah, Rasidin,
A., Sutiyadi, R. , Sianturi, O. R., & Perisha, B. (2019). Monitoring
kesehatan terumbu karang dan ekosistem terkait di Kawasan
Konservasi Perairan Nasional, Taman Wisata Perairan, Kepulauan
Anambas dan laut sekitarnya. COREMAP-CTI, Jakarta: 89 pp.
Setiawan, F., Muttaqin, A., Tarigan, S. A., Muhidin, M., Hotmariyah, M., Sabi,
A., & Pingkan, J. (2017). Pemutihan Karang Akibat Pemanasan
Global Tahun 2016 Terhadap Ekosistem Terumbu Karang: Studi
Kasus Di TWP Gili Matra (Gili Air, Gili Meno dan Gili Trawangan)
ProvinsiNTB.Journal of Fisheries and Marine Research,1(2), 39-54.
Siringoringo, R. M., & Hadi, T. A. (2013). Kondisi dan distribusi karang batu
(scleractinia corals) di perairan Bangka. Jurnal Ilmu dan Teknologi
Kelautan Tropis, 5(2), 273-285.
31
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Suharsono. (2008). Jenis-jenis karang di Indonesia. COREMAP II, Jakarta:
372pp.
Suryono, S., Munasik, M. , Ario, R., & Handoyo, G. (2017). Inventarisasi bio-
ekologi terumbu karang di Pulau Panjang, Kabupaten Jepara,
Jawa Tengah. Jurnal Kelautan Tropis,20(1), 60-64.
Suyarso, Suharsono, Supriyadi, H. I., Cappenbergh, H. A. W., Edrus, I. N.,
Utama, R. S., Suharti, S. R., Faricha, A. , Hazt, M., Permadi, S.,
Budiyanto, A., Picasou, J., Salatalohi, A., Rasyidin, A., & Nurjamin.
(2019). Monitoring kesehatan terumbu karang dan ekosistem terkait
Kawasan Konservasi Sumber Daya Alam Taman Laut Nasional
Kepulauan Taka Bonerate Kabupaten Selayar Sulawesi Selatan.
COREMAP-CTI, Jakarta: 92 pp.
Tomascik,T.,Mah,A.J.,Nontji,A.,&Moosa,M.K.(1997).The ecology of the
Indonesian seas part two. Oxford University Press, Oxford: 744pp.
Utama, R. S., Cappenbergh, H. A. W., Anggraeni, D., Edrus, I. N., Makatipu,
P., Irawan, A., Dharmawan, I. W. E., Budiyanto, A. , Dzumalex, A.
R., & Salatalohi, A. (2019). Kondisi kesehatan terumbu karang
dan ekosistem terkait di Kabupaten Wakatobi, Sulawesi Tenggara.
COREMAP-CTI, Jakarta: 102 pp.
Veron J.E.N., Devantier, L. M., Turak, E., Green, A. L., Kininmonth, S., Stafford-
Smith, M., & Peterson, N. (2009). Delineating the coral triangle.
Galaxea, Journal of Coral Reef Studies, 11: 91-100.
Veron, J.E.N. (2000). Corals of the world vol1. AIMS, Twonsville: 463pp.
Welly, M., Lazuardi, M. E., Sanjaya, W., & Prasetya, D. (2016). Kondisi sik dan
social ekonomi pesisir Pulau Sumba, Nusa Tenggara Timur (2015).
The Nature Conservancy, Bali: 124 pp.
Welly, M., Lazuardi, M.E., Sanjaya, W., Prasetya, D., & Hendrawan, G. (2016).
Kondisi biosik dan sosial ekonomi Pesisir Bali (2015). The Nature
Conservancy, Bali: 168 pp.
32
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Appendix 1.
The status of Indonesian coral reefs 2019
No. Location No. of
Reefs Excellent Good Fair Poor
WESTERN
1 Weh, Sabang (Aceh)* 12 0 0 8 4
2 Simeulue Island (Aceh) 5 0 0 3 2
3 Sibolga dan Tapanuli Tengah (Sumatra Utara) 13 0 0 7 6
4 Nias Utara (Sumatra Utara)* 10 0 0 0 10
5 Kepulauan Hinako, Nias Barat (Sumatra Utara) 4 0 0 2 2
6 Teluk Dalam Nias Selatan (Sumatra Utara) 3 0 0 0 3
7 P.P. Batu, Nias Selatan (Sumatra Utara) 9 0 0 0 9
8 Mentawai Islands (Sumatra Barat)* 9 0 0 3 6
9 KKPN Pieh (Sumatra Barat)* 13 1 3 4 5
10 Pieh (Sumatra Barat)* 4 0 0 0 4
11 Enggano (Bengkulu) 12 0 1 3 8
12 Pulau Tikus (Bengkulu) 3 0 0 3 0
13 Kaur (Bengkulu) 7 0 1 3 3
14 Pulau Pisang (Lampung Barat) 14 5 5 4 0
15 Teluk Ratai (Lampung) 4 1 2 0 1
16 Bakauheni (Lampung)* 10 0 2 3 5
17 Lampung Bay (Lampung) 18 5 8 3 2
18 Krakatau (Lampung) 8 0 1 5 2
19 Tambelan Island (Kepulauan Riau) 12 8 3 1 0
20 KKPN Anambas (Kepulauan Riau)* 12 0 1 11 0
21 Natuna Islands (Kepulauan Riau)* 19 0 0 9 10
22 Bintan (Kepulauan Riau)* 14 0 3 10 1
23 Senayang-Lingga (Kepulauan Riau)* 11 0 0 10 1
24 Batam (Kepulauan Riau)* 19 0 3 13 3
25 Bangka (Bangka Belitung) 10 1 3 3 3
26 Belitung (Bangka Belitung)* 11 0 2 7 2
27 Belitung Timur (Bangka Belitung) 10 0 7 3 0
28 Merak (Banten) 5 0 0 1 4
29 Ujung Kulon Selat Sunda (Banten) 16 0 1 6 9
33
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
30 Teluk Banten (Banten) 4 0 4 0 0
31 Kepulauan Seribu (Jakarta) 52 0 16 12 24
32 Indramayu (Jawa Barat) 10 6 1 2 1
33 Nusakambangan Islands (Jawa Tengah) 3 0 0 1 2
34 Jepara (Jawa Tengah) 7 0 1 3 3
35 Karimun Jawa (Jawa Tengah) 38 10 15 12 1
36 Pantai Wediombo Gn Kidul (Jogjakarta) 3 0 0 2 1
37 Trenggalek (Perigi Bay) (Jawa Timur) 5 0 0 0 5
38 Madura Island (Jawa Timur) 12 2 8 2 0
39 Kangean Islands (Jawa Timur) 7 0 4 3 0
40 Bawean Islands (Jawa Timur) 8 0 2 6 0
41 TN. Baluran, Situbondo ( Jawa Timur) 5 1 0 2 2
42 Pasir Putih Situbondo (Jawa Timur) 4 0 2 2 0
43 Karimata Islands (Kalimantan Barat) 4 0 1 3 0
CENTRAL
44 Kepulauan Matasiri (Kalimantan Selatan) 5 0 0 1 4
45 Sangkulirang (Kalimantan Timur) 3 0 1 1 1
46 Kutai Timur (Kalimantan Timur) 9 2 3 4 0
47 Kota Bontang (Kalimantan Timur) 11 0 0 5 6
48 Kab. Kutai Kartanegara (Kalimantan Timur) 1 0 0 0 1
49 Kab. Penajam Paser Utara (Kalimantan Timur) 3 0 0 1 2
50 Derawan Islands (Kalimantan Timur)* 11 0 0 5 6
51 Gilimanuk Bay (Bali) 6 0 1 1 4
52 Bali Island (Bali) 19 1 4 2 12
53 KKPN Gili Matra (NTB)* 8 0 1 2 5
54 Lombok Island (NTB) 36 2 7 9 18
55 Sekotong, Lombok (NTB)* 12 0 0 2 10
56 Pulau Keramat, Sumbawa (NTB) 12 5 4 3 0
57 Sumbawa Islands (NTB) 9 0 1 4 4
58 Komodo Islands (NTT)* 12 0 1 8 3
59 Sumba (NTT)* 10 0 0 2 8
60 Kab. Sikka, Maumere (NTT)* 14 0 0 3 11
61 Flores Timur (NTT) 10 0 7 2 1
34
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
62 Lamalera, Lembata (NTT) 8 0 5 2 1
63 Perairan Lamalera (NTT) 8 0 5 2 1
64 Tablolong dan Semau, Kupang KKPN Laut Sawu (NTT)* 6 0 0 2 4
65 Rote Ndao, KKPN Laut Sawu (NTT)* 6 0 2 0 4
66 Kota Makassar (Sulawesi Selatan)* 13 0 1 6 6
67 Pangkep (Sulawesi Selatan)* 15 1 3 6 5
68 Selayar Islands (Sulawesi Selatan)* 15 0 0 9 6
69 KKPN Kapoposang (Sulawesi Selatan)* 13 0 6 7 0
70 Taka Bonerate Islands (Sulawesi Selatan)* 12 0 0 5 7
71 Kendari (Sulawesi Tenggara)* 9 0 3 3 3
72 Buton Islands (Sulawesi Tenggara)* 5 0 1 3 1
73 Buton Tengah (Sulawesi Tenggara)* 5 0 0 2 3
74 Buton Selatan (Sulawesi Tenggara)* 5 0 1 3 1
75 Wakatobi (Sulawesi Tenggara)* 15 0 0 9 6
76 Kabupaten Konawe (Sulawesi Tenggara) 3 0 0 3 0
77 Labengke Island (Sulawesi Tenggara) 10 1 5 4 0
78 Tiga Islands (Sulawesi Tengah) 6 0 0 6 0
79 Togian Island (Sulawesi Tengah) 8 0 4 4 0
80 Banggai (Sulawesi Tengah) 9 1 3 3 2
81 Luwuk (Sulawesi Tengah) 10 2 5 3 0
82 Palu (Sulawesi Tengah) 8 0 6 2 0
83 Kwandang Bay (Gorontalo) 4 0 2 2 0
84 Dulupi Island (Gorontalo) 4 0 0 3 1
85 Pantai Manado (Sulawesi Utara) 3 0 0 3 0
86 Minahasa (Sulawesi Utara) 3 0 2 0 1
87 Bunaken & Siladen (Sulawesi Utara) 10 4 3 2 1
88 Selat Lembeh, Bitung (Sulawesi Utara) 13 2 6 2 3
89 Kumeke Islands (Sulawesi Utara) 9 1 2 2 4
90 Kepulauan Tagulandang (Sulawesi Utara) 3 1 1 1 0
EASTERN
91 Ternate (Maluku Utara)* 5 0 0 1 4
92 Tidore (Maluku Utara)* 6 0 1 4 1
93 Halmahera Barat (Maluku Utara)* 3 0 1 1 1
94 Tobelo Halmahera Utara (Maluku Utara) 14 0 4 2 8
35
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
95 Jiew Island (Maluku Utara) 3 0 0 3 0
96 Ambon Bay (Maluku) 10 1 5 2 2
97 Bagian Barat Seram (Maluku) 4 0 3 1 0
98 Bagian Timur Seram (Maluku) 16 0 3 8 5
99 Kepulauan Kei (Maluku) 17 2 3 7 5
100 Tual (Maluku)* 10 0 2 4 4
101 Kepulauan Leti (Maluku) 7 0 3 3 1
102 KKPN Aru Tenggara (Maluku)* 12 0 2 6 4
103 KKPN Laut Banda (Maluku)* 12 0 4 3 5
104 Lucipara Islands (Maluku) 8 5 3 0 0
105 Pulau Wetar (Maluku) 8 0 1 5 2
106 Morotai (Maluku) 14 0 0 1 13
107 Maluku Tengah (Maluku) 4 0 1 3 0
108 Misool Raja Ampat (Papua Barat) 7 0 1 5 1
109 KKPN Kab. Raja Ampat (Papua Barat)* 9 0 2 4 3
110 Cendrawasih Bay (Papua Barat) 12 1 7 4 0
111 KKPN Waigeo Barat (Papua Barat)* 8 0 0 4 4
112 Selatan Waigeo Kab Raja Ampat (Papua Barat) 7 0 1 4 2
113 Batang Pele, Kab Raja Ampat (Papua Barat) 5 0 2 3 0
114 Salawati & Batanta, Kab Raja Ampat (Papua Barat)* 12 0 0 7 5
115 Bras Fanildo Island (Papua Barat) 3 0 3 0 0
116 Fani Island (Papua Barat) 4 0 4 0 0
117 Ayau Islands (Papua Barat) 6 0 0 5 1
118 Biak (Papua)* 13 0 0 3 10
119 Liki Island (Papua) 6 0 2 3 1
120 Bepondi Island (Papua) 3 0 0 1 2
121 Miosnum Island (Papua) 4 1 1 1 1
122 KKPN Padaido (Papua)* 13 1 3 4 5
Total 1153 74 258 431 390
Percentage (%) 6,42% 22,38% 37,38% 33,82%
*COREMAP-CTI’s monitoring locations
36
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Appendix 2.
The conditions of coral reefs in Indonesia and its threats
(reef category: red = poor; yellow = fair; green = good; blue = excellent)
The conditions of coral reefs in Indonesia
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(
!(!(
!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(!(
!(!(
!(
!(
!(!(!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(!(!(
!(!(!(!(
!(
!(!(!(!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
135°0'0"E
135°0'0"E
120°0'0"E
120°0'0"E
105°0'0"E
105°0'0"E
5°0'0"N
5°0'0"N
0°0'0"
0°0'0"
5°0'0"S
5°0'0"S
10°0'0"S
10°0'0"S
1,200
Kilometers
Research Center of Oc eanography
The Conditions of Coral Reefs
in Indonesia 2019
1 : 20.000.000
General condition
!(
Excellent
!(
Good
!(
Fair
!(
Poor
Sources: Esri, HERE, Garmin,
USGS, Intermap,
INCREMENT P, NRCan, Esri
Japan, METI, Esri China
(Hong Kong), Esri Korea, Esri
Arafura Sea
East Sea
Banda Sea
Sulawesi Se a
Java Sea
Natuna Sea
Grid System
Horizontal Datum
:
:
Grid Geography
WGS 1984
1. RBI Map
2. Sattelite Imagery
3. Field Survey (Coral Reefs )
Map Source
¾
N
W
S
E
Benthic Habitats
Coral Reef
37
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Potentially bleaching areas (based on the bleaching event in 1983, 1997, 2010 and 2015)
High energy waves
38
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Low salinity
Land-based pollution
39
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Developing areas and tourism
Blast shing (based on eld observations and interviews with locals)
40
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Sedimentation
Mining activities
41
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Various threats on Indonesian coral reefs
1. Blastshing,potentiallybleachingarea,highenergywave,developing
area and tourism
2. Blastshing,miningactivity,sedimentation,developingareaand
tourism
3. Blastshing,potentiallybleachingarea,highenergywave
4. Blastshing,potentiallybleachingarea,developingareaandtourism
5. Blastshing,miningactivity,developingareaandtourism
6. Blastshing,miningactivity,sedimentation
7. Blastshing,land-basedpollution,developingareaandtourism
8. Blastshing,sedimentation,developingareaandtourism
9. Blastshing,potentiallybleachingarea
10. Blastshing,miningactivity
11. Blastshing,developingareaandtourism
42
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
12. Potentially bleaching area, high energy wave, land-based pollution,
sedimentation, developing area and tourism
13. Potentially bleaching area, high energy wave, sedimentation, developing
area and tourism
14. Potentially bleaching area, high energy wave, mining activity, developing
area and tourism
15. Potentially bleaching area, low salinity, land-based pollution, developing
area and tourism
16. Potentially bleaching area, low salinity, land-based pollution,
sedimentation
17. Potentially bleaching area, low salinity, sedimentation, developing area
and tourism
18. Potentially bleaching area, low salinity, mining activity, developing area
and tourism
19. Potentially bleaching area, low salinity, mining activity, sedimentation
20. Potentially bleaching area, mining activity, sedimentation, developing
area and tourism
21. Potentially bleaching area, land-based pollution, sedimentation,
developing area and tourism
22. Potentially bleaching area, high energy wave, sedimentation
23. Potentially bleaching area, high energy wave, developing area and
tourism
24. Potentially bleaching area, low salinity, sedimentation
25. Potentially bleaching area, low salinity, developing area and tourism
26. Potentially bleaching area, sedimentation, developing area and tourism
27. Potentially bleaching area, high energy wave
28. Potentially bleaching area, low salinity
29. Potentially bleaching area, sedimentation
30. Potentially bleaching area, developing area and tourism
31. Low salinity, land-based pollution, developing area and tourism
32. Low salinity, sedimentation, developing area and tourism
33. Low salinity, sedimentation
34. Low salinity, developing area and tourism
35. Mining activity, sedimentation, developing area and tourism
36. Mining activity, sedimentation
37. Land-based pollution, developing area and tourism
38. Sedimentation, developing area and tourism
39. Potentially bleaching area
40. Low salinity
41. Mining activity
42. Developing area and tourism
43. Sedimentation
44. Blastshing
43
PADAR ISLAND, KOMODO NATIONAL PARK, NTT Belitung, Bangka Belitung
PUSAT PENELITIAN OSEANOGRAFI (P2O)
Coral Reef Rehabilitation and Management Program
Coral Triangle Initiative (COREMAP CTI)
2020
TRI ARYONO HADI, MUHAMMAD ABRAR, GIYANTO, BAYU PRAYUDHA, OFRI JOHAN, AGUS BUDIYANTO
AHMAD REZA DZUMALEK, LA ODE ALIFATRI, SITI SULHA, SUHARSONO
STATUS TERUMBU KARANG INDONESIA 2019
©PusatPenelitianOseanogra-LembagaIlmuPengetahuanIndonesia
Penulis : Tri Aryono Hadi, Muhammad Abrar, Giyanto, Bayu Prayudha,
Ofri Johan, Agus Budiyanto, Ahmad Reza Dzumalek, La Ode Alifatri,
Siti Sulha, Suharsono
Foto : Agus Budiyanto, Muhammad Abrar, Tri Aryono Hadi, Yunaldi
Desain : Dudy
ISBN : 978-602-6504-29-6
Sekretariat RHM
PusatPenelitianOseanogra
Pasir Putih 1, Ancol Timur
Jakarta Utara 14430
Telp. 021-64713850
Email: rhmsekretariat@gmail.com
http://indocoasting.id
http://oseanogra.lipi.go.id
Status Terumbu Karang Indonesia 2019
Tri Aryono Hadi...et al.,2019
 --Jakarta:PuslitOseanogra-LIPI.
vi + 88 hlm.; 17,6 cm x 25 cm
Bibliogra:hlm.71
46
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Kondisi iklim global yang tidak dapat diprediksi dan populasi manusia
yang terus meningkat, berakibat pada kecenderungan ekosistem untuk
mengalami degradasi baik di darat maupun di laut. Sebagai negara
kepulauan, ekosistem pesisir memainkan peran penting, tidak hanya
melindungi garis pantai dari abrasi tetapi juga mendukung sektor ekonomi
bagi masyarakat lokal. Dalam hal ini, ekosistem pesisir yang rusak dapat
berdampak pada produksi perikanan dan sektor ekowisata dan akhirnya
mengancam perekonomian nasional. Oleh karena itu, sangat penting
untuk menginformasikan status terumbu karang saat ini beserta trennya.
sehingga para pembuat kebijakan dapat mengatasi masalah-masalah yang
mungkin berbeda di antara wilayah-wilayah tersebut.
Pusat Penelitian Oseanogra (P2O), melalui COREMAP-CTI, memiliki
tanggung jawab untuk memantau kondisi terumbu karang di seluruh
perairan Indonesia untuk memberikan informasi mengenai kondisi terumbu
karang dan tren, serta solusi untuk memaksimalkan sistem manajemen.
Selain itu, P2O telah ditunjuk menjadi walidata terumbu karang Indonesia
dan berkontribusi dalam pembuatan kebijakan ‘satu peta’. Terakhir, penting
untuk meningkatkan kesadaran masyarakat sedini mungkin sehingga
kontribusi mereka akan nyata dan besar di masa depan.
Saya ingin mengucapkan terima kasih kepada tim yang telah bekerja keras
untuk membuat buku ini, dan berharap ini bermanfaat bagi para pemangku
kepentingan, masyarakat pesisir, komunitas pemerhati lingkungan serta
ilmu pengetahuan.
Jakarta, Juni 2020
KepalaPusatPenelitianOseanogra
Dr. Augy Syahailatua, M. Sc
Pengantar
47
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Pendahuluan
I
Indonesia adalah sebuah negara kepulauan dengan jumlah pulau yang
telah terverikasi yaitu 16.056. Kondisi Indonesia yang terletak di wilayah
tropis membuat perairan hangat sepanjang tahun dan kondisi ini cocok untuk
biota-biota laut untuk berkembang. Selain itu, Indonesia adalah bagian dari
wilayah segitiga karang dunia, dengan keanekaragaman hayati laut tertinggi
di dunia. Dalam hal ini, ada sekitar 569 spesies dan 83 genus karang batu yang
tercatat, atau mewakili sekitar 69% (species) dan 76% (genus) karang batu di
seluruh dunia. Lebih lanjut, ada 4 spesies endemik yang tercatat di Indonesia,
yaitu Acropora suharsonoi (Lombok), Euphyllia baliensis (Bali), Indophyllia
macassarensis (Makassar), dan Isopora togianensis (Togean) (Gambar 1). Untuk
melestarikan habitat dan keanekaragaman hayati, pada pertengahan 2019
pemerintah telah memiliki 22,68 juta hektar kawasan konservasi laut, atau
sekitar 6% dari wilayah laut Indonesia.
Sebagai negara terpadat keempat di dunia dengan sekitar 270 juta jiwa,
wilayah pesisir Indonesia rentan terhadap degradasi karena aktivitas manusia.
Dampaknya dapat terlihat jelas di beberapa kota-kota besar yang terletak dekat
dengan wilayah pesisir, seperti Jakarta, Surabaya, Makassar, dan Batam. Bencana
alam, seperti gempa bumi dan tsunami, juga terkadang terjadi dan berdampak
negatif pada terumbu karang. Masalah utama lainnya adalah peningkatan suhu
laut yang menyebabkan pemutihan karang di banyak lokasi, terutama di bagian
selatan dan barat Indonesia. Meskipun faktor-faktor ini tidak dapat dihindari,
terlihat terumbu menunjukkan adanya kemampuan untuk pulih, tergantung
pada intensitas dan frekuensi stressor, potensi resiliensi, dan kondisi lingkungan.
Program pengelolaan dan rehabilitasi terumbu karang (COREMAP) adalah
program nasional jangka panjang yang bertujuan untuk mengelola terumbu
karang Indonesia dan ekosistem pesisir terkait lainnya agar tetap berkelanjutan
dan memberikan manfaat bagi kesejahteraan masyarakat pesisir. Salah satu
komponen utama dari program ini adalah monitoring kondisi ekosistem pesisir,
48
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Distribusi terumbu karang
di Indonesia
II
khususnya terumbu karang, lamun dan mangrove (dua ekosistem terakhir
telah dipantau sejak 2015). Komponen lainnya adalah peningkatkan kesadaran
masyarakat melalui pendidikan, diseminasi dan pelatihan dimana masyarakat
diharapkan untuk dapat berpartisipasi aktif dalam konservasi ekosistem.
Singkatnya, program ini tidak hanya berfokus pada pengelolaan ekosistem,
tetapi juga masyarakat sebagai faktor kunci keberhasilan program.
Terumbu karang di Indonesia tersebar dari Pulau Rondo – Aceh (pulau
terluar di barat laut kepulauan Indonesia) hingga ke utara Jayapura (kota
paling timur di Indonesia). Terumbu karang di pantai barat Sumatra (termasuk
pulau-pulau terluar seperti Pulau Rondo, Pulau Weh, Pulau Banyak, Pulau
Simeulue, Pulau Nias, Pulau Batu, Pulau Siberut, Pulau Pagai, Pulau Sipora, dan
Pulau Enggano) umumnya masuk dalam kondisi buruk hingga sedang dengan
keanekaragaman karang batu yang rendah. Hal ini sangat dipengaruhi oleh
kondisi perairan, khusunya Samudra Hindia yang secara alami mempunyai
biodiversitas yang lebih rendah daripada Samudra Pasic. Lebih lanjut, tidak
semua pulau dikelilingi oleh terumbu karang, tetapi hanya patches – patches
terutama di pulau-pulau terluar. Di sisi lain, terumbu di pantai timur Sumatra
tidak dapat berkembang dengan baik karena banyak sungai mengalir ke
timur, sehingga salinitas rendah dan kekeruhan tinggi. Namun, di lepas pantai,
terumbu patchy umumnya muncul, seperti di Kepulauan Balerang, Senayang
Lingga, Bangka Belitung, dan Kepulauan Karimata. Lebih jauh lagi dari daratan,
terumbu karang berkembang dengan baik terutama di tengah Laut Natuna,
termasuk Kepulauan Anambas, Kepulauan Natuna, dan Kepulauan Tambelan.
Pulau Kalimantan yang didominasi oleh lahan gambut dan banyak sungai
besar memiliki terumbu karang yang tidak berkembang dengan baik. Dekat
dengan daratan, terumbu karang berupa patches seperti di Sangkulirang.
Terumbu karang berkembang dengan baik terutama yang berada jauh di lepas
49
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
a
c
b
d
Gambar 1. a) Acropora suharsonoi, b) Euphyllia baliensis (courtesy of mahagirinusalembongan.blogspot.
com), c) Indophyllia macassarensis, d) Isopora togianensis
pantai Pulau Kalimantan, seperti di Kepulauan Derawan, Kepulauan Matasiri,
dan Kepulauan Karimata.
Terumbu di sepanjang pantai Jawa biasanya berupa patches-patches,
seperti di Teluk Banten, Teluk Jakarta, Jepara, Pasir Putih, Baluran, Nusa
Kambangan, Wediombo dan Teluk Prigi. Terumbu karang tumbuh dengan baik
di lepas pantai utara Pulau Jawa dan umumnya berbentuk gugusan pulau-
pulau, seperti Kepulauan Seribu, Karimun, Bawean, dan Kepulauan Kangean.
Selain itu, karang lebih beranekaragam di utara dibandingkan dengan selatan,
karena dibatasi oleh kondisi lingkungan yang ekstrem khususnya Samudra
Hindia. Terumbu karang berkembang dengan baik dan mencapai puncak
keanekaragaman hayati di daerah segitiga karang, diantaranya yaitu Sulawesi,
Maluku, Halmahera, Papua Barat, Kepulauan Raja Ampat, Kepulauan Aru,
50
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
a
c
b
d
Gambar 2. Terumbu Karang di a) Weh, b) Bintan, c) Pantai Prigi, d) Kepulauan Seribu
Kepulauan Kei, Nusa Tenggara Timur, Nusa Tenggara Barat, dan Bali. Terumbu
karang berkembang secara horizontal dan vertikal hingga kedalaman lebih
dari 30 meter. Kondisi-kondisi yang baik ini disebabkan oleh faktor alami
yang sangat mendukung, salah satunya yaitu suhu air yang hangat dan jernih
yang mengalir terus-menerus dari Pasik barat ke Samudera Hindia melalui
daerah-daerah tersebut (dikenal sebagai Indonesian throughow (ITF)) dan hal
ini membuat karang tumbuh lebih baik daripada daerah yang lain. Namun
demikian, terumbu karang tidak dapat berkembang dengan baik di sepanjang
pantai selatan Papua karena sedimentasi tinggi yang dihasilkan dari muara
sungai. Uniknya, terutama di Merauke, karang masih bisa ditemukan di substrat
batu kapur meski airnya sangat keruh.
51
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Gambar 3. Sebaran Terumbu Karang di Indonesia
TOTAL NUMBER OF GENERA: 83
Distribusi karang batu menunjukkan pola umum dimana keanekaragaman
genus karang batu semakin rendah seiring bertambah jauhnya jarak dari pusat
keanekaragaman hayati (Gambar 3). Di daerah segitiga karang, jumlah genus
adalah lebih dari 60 dan kemudian menurun di daerah tepi (pantai barat
Sumatra dan pantai selatan Jawa) hingga kurang dari 50 genus. Uniknya, Lesser
Sunda, daerah paling selatan Indonesia yang membentang dari Bali hingga
NTT, memiliki jumlah genus karang sekitar 60 dan masih termasuk ke dalam
wilayah segitiga karang. Daerah ini adalah pintu keluar ITF dan juga dikenal
sebagai refugia di mana banyak biota terperangkap dan kemudian berkembang,
sehingga biodiversitasnya tetap tinggi. Sebagai contoh, ada 36 species karang
jamur ditemukan di Bali dan 39 spesies karang jamur di Pulau Komodo.
Keberadaan karang-karang jamur tersebut mewakili sekitar 77-83% karang
jamur di dunia.
52
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Taman Nasional Komodo, NTT
53
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Kategori kondisi terumbu karang
III
IV Status terumbu karang Indonesia
Kondisi terumbu karang ditentukan berdasarkan persentase tutupan
karang hidup. Dalam hal ini dibagi menjadi 4 kategori sesuai dengan Keputusan
Menteri Lingkungan Hidup dan Kehutanan No 4 tahun 2001 tentang kriteria
kerusakan terumbu karang (Tabel 1).
Tabel 1. Kriteria baku kerusakan terumbu karang
No Tutupan Karang Hidup (HC) Kategori
1HC≤25% buruk
225%<HC≤50% Cukup
350%<HC≤75% Baik
4 HC > 75% Sangat Baik
Kondisi Umum
Berdasarkan data 2019 dari 1153 terumbu, terdapat sekitar 390 terumbu
karang (33,82%) masuk kategori buruk, 431 terumbu karang (37,38%) masuk
kategori cukup, 258 terumbu karang (22,38%) masuk kategori baik dan 74
terumbu karang (6,42%) masuk kategori sangat baik (Lampiran 1). Selama
periode 1993 hingga 2019, secara umum, ada sekitar 30,85 ± 0,29% terumbu
yang memiliki persentase tutupan karang lebih dari 50% (terumbu yang baik
dan sangat baik) dan trennya relatif stabil meskipun ada kecenderungan naik
(terumbu kondisi sangat baik) dan turun (terumbu kondisi baik) dalam lima
tahun terakhir (Gambar 4). Di sisi lain, sekitar 69,15 ± 0,29% terumbu memiliki
tutupan karang kurang dari 50% (terumbu kondisi buruk dan cukup) dan trennya
cenderung beruktuasi. Dalam hal ini, terumbu-terumbu tersebut cenderung
tidak stabil, yaitu masih memungkinkan untuk naik tutupan karang hidupnya
54
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Gambar 4. Tren kondisi terumbu karang Indonesia
karena memiliki lebih banyak ruang bagi larva karang untuk melekat dan
tumbuh tetapi sangat rentan terhadap kondisi-kondisi stres (mudah mengalami
penurunan). Namun, terumbu karang yang buruk mungkin berada pada kondisi
“no return point” yaitu ketika berada di bawah stres kronis yang menyebabkan
terumbu karang tersebut hancur. Sebaliknya, dalam beberapa kasus, terumbu
karang yang buruk berada pada kondisi stabil karena kondisi lingkungannya
yang ekstrem.
Tekanan global, terutama kenaikan suhu permukaan laut, memiliki
dampak besar pada terumbu karang Indonesia. Tren kondisi terumbu karang
terlihat menurun antara 2015 dan 2016 dan hal ini disebabkan utamanya
karena pemutihan karang (bleaching). Namun, peristiwa bleaching tersebut
tidak terjadi di semua lokasi karena terumbu karang Indonesia dipengaruhi
oleh kondisi hidrodinamika yang berbeda-beda dari dua samudera (Pasik
dan Hindia). Selain itu, kondisi geomorfologis Kepulauan Indonesia sangat
bervariasi, membuat dampak peningkatan suhu permukaan laut berbeda di
antara terumbu-terumbu.
55
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
2015
31,48
26,18 26,13
29,42
0
5
10
15
20
25
30
35
2016 2017 2018 2019
Tutupan karang hidup (%)
n = 325
n = 270
n = 201
n = 286
n = 202
27,96
Gambar 5. Tren tutupan karang hidup di lokasi monitoring
COREMAP-CTI (n: jumlah terumbu dimonitor)
Gambar 6. Perubahan pada komunitas bentik menggunakan transek foto bawah air
(kiri : 2016, kanan: 2017)
56
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Gambar 7. Tren kondisi terumbu karang di Indonesia bagian barat
Data hasil monitoring lokasi COREMAP-CTI juga menunjukkan adanya
penurunantutupankarangyang signikan antara 2015 dan 2016 danterjadi
peningkatan secara bertahap hingga 2019 (Gambar 5). Data dikumpulkan
dengan menggunakan transek foto bawah air (Gambar 6) dari banyak lokasi-
lokasi terumbu di Indonesia (Lampiran 1). Singkatnya, proses pemulihan setelah
bleaching masih berlangsung dan fakta ini memberi harapan kepada pengelola-
pengelola kawasan di tengah tren penurunan tutupan karang secara global.
Indonesia bagian barat
Di Indonesia bagian barat, kondisi terumbu karang mulai membaik,
terlihat dari peningkatan persentase terumbu sangat baik dan cukup (Gambar
7). Kondisi ini, salah satunya, disebabkan perubahan wilayah eksploitasi sumber
daya alam; mulanya kegiatan eksploitasi di wilayah barat sangat intens yaitu
untuk memenuhi permintaan produk perikanan yang tinggi, tetapi kemudian
pindah ke bagian timur yang jauh lebih menjanjikan. Selanjutnya, kesadaran
masyarakat telah meningkat; COREMAP fase II mendorong penegakan
hukum untuk memerangi penangkapan ikan yang merusak, dan mendorong
pengelolaan berbasis masyarakat yang melibatkan masyarakat setempat untuk
57
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Gambar 8. a) Peristiwa bleaching tahun 2016, b) terumbu karang tidak dapat
kembali ke kondisi semula (terumbu yang didominasi algae)
a b
berpartisipasi aktif dalam mengelola ekosistem pesisir dan hal ini dilakukan di
delapan lokasi COREMAP di wilayah barat.
Selain karena faktor manusia, bagian barat rentan terhadap pemutihan
karena kenaikan suhu air laut. Misalnya, di Kawasan Konservasi Laut Pieh,
tutupan karang hidup turun dari 41,4% pada 2015 menjadi 28,38% pada
2016 (Gambar 8a). Demikian juga, Kawasan Konservasi Laut Nias menurun
dari 26,76% pada 2015 menjadi 13,82% pada 2016. Sebaliknya, di Provinsi
Kepulauan Riau, tutupan karang meningkat antara 2015 dan 2016; di Bintan,
tutupan karang meningkat dari 35,61% menjadi 37,97% dan di Batam tutupan
karang meningkat dari 36,28% menjadi 39,44%. Hal ini terkait dengan kondisi
hidrodinamikaKepulauanRiauyangsangatdipengaruhioleharusdariPasik
utara, sedangkan bleaching 2015-2016 umumnya terjadi sangat parah di pantai
barat Sumatra dan pantai selatan Jawa yang berbatasan dengan langsung
Samudra Hindia.
Beberapa penyebab-penyebab lain yang sangat berpengaruh pada kondisi
terumbu karang di wilayah barat adalah pencemaran laut, sedimentasi, dan
salinitas rendah. Sebagai contoh di Teluk Jakarta dimana terumbu karang
mengalami tekanan kronis dengan intensitas tinggi akibat aliran dari 13
sungai yang melewati Jakarta, dan hal ini menyebabkan terumbu karang
berada pada kondisi “no return point” (Gambar 8b). Kondisi kronis juga terjadi
di Pulau Bangka di mana aktivitas penambangan timah lepas pantai secara
58
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Gambar 9. Trend kondisi terumbu karang di Indonesia bagian tengah
besar-besaran menyebabkan terumbu mati karena sedimentasi yang tinggi. Jika
tekanan ini tetap terus terjadi, area yang terkena dampak akan lebih luas dan
jumlah terumbu yang berpotensi terdegradasi akan meningkat.
Indonesia bagian tengah
Secara umum, kondisi terumbu karang membaik hingga tahun 2015
(Gambar9).Setelahitu,terjadipenurunanyangsignikanuntuktrenterumbu
karang kategori cukup dan baik sebagai dampak dari peristiwa bleaching
yang terjadi di banyak lokasi. Daerah yang paling parah adalah Lesser Sunda,
terutama Bali dan Nusa Tenggara Barat, karena daerah ini berbatasan dengan
Samudra Hindia. Misalnya, Di Bali, tutupan karang menurun dari 60,3% (2015)
menjadi 29,6% (2016). Di Lombok Barat, tutupan karang menurun dari 36,09%
(2015) menjadi 18,23% (2016) dan di kawasan konservasi laut Gili Matra
juga menurun dari 23,43% (2015) menjadi 18,48% (2016). Umumnya selama
peristiwa El Nino, yaitu fase hangat dari El Nino Southern Oscillation (ENSO),
Samudra Hindia semakin naik temperaturnya dan ini mempengaruhi terumbu
karang di bagian barat dan selatan Indonesia. Selain itu, aktivitas manusia,
59
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
seperti pemanfaatan lahan pesisir, pencemaran, penangkapan ikan dengan
bahan peledak, penambangan dan pariwisata juga menyebabkan penurunan
tutupan karang dalam 5 tahun terakhir.
Indonesia bagian timur
Berbeda dengan bagian barat dan tengah, kondisi terumbu karang di
bagian timur terlihat menurun, khususnya di periode 2000 - 2010 (Gambar 10).
Hal ini terlihat dari meningkatnya tren terumbu kategori buruk pada sekitar
awal tahun 2000, namun kemudian menurun trennya di sekitar akhir 2010. Hal
ini erat terkait dengan berpindahnya kegiatan eksploitasi dari wilayah barat ke
wilayah timur. Beberapa masalah utama di wilayah timur adalah kurangnya
kesadaran masyarakat tentang terumbu karang dan rendahnya penegakan
hukum. Selain itu, kurangnya lapangan kerja juga menyebabkan masyarakat
lokal sangat bergantung pada alam. Lebih lanjut, di wilayah timur terdapat
banyak daerah-daerah terpencil yang kurang pengawasan, menyebabkan
terumbu karang rentan terhadap penangkapan ikan yang merusak dan
eksploitasi yang berlebihan. Meskipun demikian, pemulihan tutupan karang
terjadi dalam lima tahun terakhir. Di Ternate dan sekitarnya, tutupan karang
meningkat dari 29,26% pada 2015 menjadi 32,83% pada 2016. Demikian
pula, di wiayah konservasi laut Padaido, terumbu karang menunjukkan tren
peningkatan tutupan karang antara 2015 dan 2019 (dari 29,92% menjadi
35,25%). Hasil serupa juga terjadi pada wilayah konservasi laut Raja Ampat
(Waigeo) yang meningkat dari 32,24% pada 2015 menjadi 37,84% pada 2019.
Indonesia bagian timur tidak terlalu terpengaruh oleh peristiwa pemutihan
2015-2016 karena dilewati oleh ITF (Indonesian troughow) yang mengalirkan
airyangjernihdan kayanutrisisecaraterusmenerus dariSamudraPasikke
Samudra Hindia. Aliran yang terus menerus ini dapat mengurangi peningkatan
panas dengan meningkatkan dilution, sehingga dampaknya dapat diminimalisir.
60
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Gambar 10. Trend kondisi terumbu karang di Indonesia bagian timur
Berbagai ancaman terhadap
terumbu karang di Indonesia
V
Perubahan iklim dan faktor antropogenik telah menjadi penyebab utama
degradasi terumbu karang. Peningkatan suhu air laut telah menyebabkan
peristiwa bleaching dan terumbu karang memerlukan waktu bertahun-tahun
untuk pulih secara alami. Dampak negatifnya akan berlipat ganda ketika
faktor antropogenik juga ikut terjadi, seperti penangkapan ikan dengan bom,
pencemaran, kegiatan penambangan, dan penggunaan lahan pesisir. Meskipun
terumbu karang mampu beradaptasi dengan lingkungan yang berubah, masalah
yang kompleks dengan intensitas tinggi dapat menyebabkan terumbu karang
berada di ambang kehancuran. Sebagai contoh, ketika terumbu karang terpapar
pada sebuah tekanan kronis yang mendorongnya mendekati ambang batas,
kemudian muncul tekanan kronis atau akut lainnya yang menyerang pada saat
yang sama akan menyebabkan terumbu karang gagal untuk bertahan dan pulih.
61
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Secara umum, faktor antropogenik merupakan masalah utama di
Indonesia bagian tengah dan timur, sedangkan faktor alam menjadi masalah
utama di bagian barat dan selatan Indonesia (Lampiran 2). Lokasi-lokasi dengan
kategori buruk umumnya tersebar di daerah tepi (pantai barat Sumatra, pantai
selatan Jawa dan Lesser Sunda). Lokasi yang dikategorikan buruk ini tidak selalu
didenisikanbahwaterumbukarangmengalamidegradasiyangparah.Dalam
kondisi normal, terumbu-terumbu di daerah tersebut memiliki tutupan karang
kurang dari 25% sebagai akibat dari kondisi lingkungan yang ekstrem, seperti
variabilitas habitat yang rendah dan energi gelombang yang besar. Namun,
terumbu karang dapat pulih ketika mengalami tekanan akut. Sebaliknya,
lokasi-lokasi dengan kategori buruk di Sulawesi Selatan dan Tenggara, Maluku
Utara, dan Papua umumnya diakibatkan oleh faktor antropogenik, terutama
penangkapan ikan dengan bahan peledak. Tidak semua lokasi-lokasi ini
masuk dalam kawasan konservasi laut, oleh karena itu penangkapan ikan
yang merusak masih berlangsung. Selain itu, penangkapan ikan yang merusak
umumnya terjadi jauh dari pemukiman dan banyak terjadi di daerah terpencil.
Lokasi-lokasi dengan kategori cukup, terlihat dominan mulai dari wilayah
barat sampai timur, dan umumnya dekat dengan daratan. Lokasi-lokasi ini
rentan terhadap degradasi karena faktor antropogenik, seperti pembanguan
di wilayah pantai, pencemaran, dan pertambangan. Sedimentasi dan salinitas
rendah juga memperburuk keadaan, terutama di wilayah barat karena
banyaknya aliran sungai. Lebih jauh dari daratan, terumbu-terumbu umumnya
masih dalam kondisi baik dan sangat baik yaitu di daerah lepas pantai, seperti
di Tambelan (Laut Natuna) dan Lucipara (Laut Banda).
62
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Taman Nasional Karimun Jawa, Jawa Tengah
63
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Restorasi terumbu karang
VI
Kondisi terumbu karang yang sangat dipengaruhi oleh faktor antropogenik
dan faktor alam perlu dimonitor perkembangannya, apakah kondisinya membaik
atau menurun. Meminimalisir tekanan antropogenik agar terumbu pulih secara
alami adalah cara pasif untuk memperbaiki kondisi terumbu karang. Namun,
untuk mendorong pemulihan ekosistem, intervensi ekologis tentu diperlukan.
Halinidapatberupatransplantasikarang,modikasisubstrat,terumbubuatan,
memfasilitasi karang rekrutmen serta mengurangi populasi predator karang
dan populasi makroalga. Namun, upaya aktif dan pasif ini harus terintegrasi
dengan perspektif masyarakat yang bergantung atau menggunakan jasa
ekosistem tersebut.
Upaya restorasi terumbu karang paling umum adalah transplantasi
karang yang bertujuan untuk memperbaiki kondisi terumbu karang dalam
haltutupankarang hidup,keanekaragaman jenis dan kompleksitas topogra
(Gambar 11). Transplantasi menawarkan cakupan area yang luas dan cepat
dengan menggunakan sumber-sumber lokal (karang) yang telah beradaptasi
dengan lingkungan setempat. Dalam hal ini, karang transplan diambil dari
terumbu karang yang sehat di sekitarnya tanpa menimbulkan dampak negatif
yang signikan. Karang yang tumbuh cepat, yaitu Famili Acroporidae dan
Pocilloporidae, adalah karang yang paling umum untuk transplantasi tetapi
perlu diperkaya dengan karang yang tumbuh lambat, seperti Faviidae, Poritidae
dan Mussidae. Kombinasi campuran tersebut membuat terumbu karang
lebih beranekaragam dan memungkinkan untuk mampu bertahan terhadap
gangguan tanpa kehilangan semua populasi; pada kondisi normal, karang yang
tumbuh cepat akan mendominasi ruang tetapi akan menjadi minoritas ketika
terjadi gangguan. Ukuran fragmen dan metode transplantasi juga menentukan
tingkat pertumbuhan transplan yang pada akhirnya berpengaruh pada tutupan
karang hidup.
64
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Gambar 11. a) Partisipasi masyarakat dalam kompetisi terumbu buatan, b) terumbu
buatan berbentuk kubah; c) tranplantasi Acropora dengan rak besi; d) transplantasi
dengan struktur jaring laba-laba (credit Alicia McArdle); e) biorock; f) restorasi terumbu
dari hasil tranplantasi
a b
c d
e f
65
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Transplantasi karang efektif dilakukan jika rekrutment rendah. Hal ini
menunjukkan bahwa karang rekruit tidak cukup untuk proses pemulihan alami.
Beberapa penyebabnya adalah kurangnya individu dewasa untuk menghasilkan
karang rekruit mandiri, rekrutmen eksternal yang kurang dari terumbu-terumbu
sekitar, dan substrat yang kurang stabil. Di sisi lain, jika rekrutmen terhambat
karena kondisi lingkungan yang tidak mendukung (salinitas rendah, kekeruhan
tinggi, pengayaan nutrient, dominasi alga), maka transplantasi karang tidak
tepat dilakukan. Selain itu, di daerah dengan energi gelombang yang besar,
transplantasi juga tidak cocok karena banyak karang transplan akan rusak dan
hilang. Apabila kondisi lingkungan mendukung dan rekruitment tinggi, maka
terumbu buatan atau modikasi substrat lebih cocok daripada transplantasi
karang.
Transplantasi karang telah dilakukan di banyak lokasi dengan tujuan yang
berbeda-beda, misalnya restorasi, pariwisata dan perdagangan. Dalam hal ini,
transplantasi karang tidak hanya mengembalikan kondisi terumbu karang,
tetapi juga memiliki manfaat langsung bagi masyarakat setempat yaitu salah
satunya dengan melibatkan mereka sehingga diharapkan transplantasi akan
terus berkelanjutan. Bali dan Sulawesi adalah daerah yang paling aktif karena
mereka memiliki sumber daya alam dan manusia serta perawatan berkala
untuk memastikan bahwa transplantasi karang berjalan dengan baik.
Monitoring sangat penting bagi pengelola untuk memahami apakah
restorasi karang berjalan dan berfungsi dengan baik atau tidak. Terlepas dari
kondisi lingkungan, restorasi terumbu karang tergantung pada keterlibatan
masyarakat setempat, regulasi, keadaan ekonomi dan politik. Hal-hal tersebut
harus terintegrasi dengan baik dan keberlanjutan restorasi terumbu karang
(yang sering terabaikan) harus dipertahankan untuk mencapai tujuan jangka
panjang.
66
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Ternate, Maluku Utara
67
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Kesimpulan
VII
Secara umum, monitoring jangka panjang menunjukkan bahwa kondisi
terumbu karang di Indonesia relatif stabil, terutama untuk terumbu kondisi
baik dan sangat baik. Sebaliknya, terumbu karang kondisi buruk dan cukup
terlihatberuktuasi; proses pemulihan dapat terjadi ketikakarangmenderita
stres akut tetapi gagal ketika tekanan kronis yang intens muncul. Mengelola
terumbu karang melalui penetapan kawasan konservasi laut adalah pilihan
terbaik yang bisa dilakukan, yaitu tidak hanya mengelola ekosistem tetapi
juga aktivitas masyarakat (meminimalisir dampak faktor antropogenik
disamping mempertahankan produktivitas ekosistem). Meningkatkan
kesadaran masyarakat dan menjadikan mereka sebagai aset berharga harus
menjadi prioritas utama sistem manajemen, mengingat bahwa mereka dapat
berpartisipasi aktif dan berkontribusi dalam menjaga dan mempertahankan
ekosistem. Namun, gangguan faktor alam tidak dapat dihindari dan dampaknya
sangat besar dan luas. Dengan demikian, keterlibatan masyarakat diperlukan
untuk membantu pengelola kawasan untuk meminimalisir dampak dan
mendorong pemulihan ekosistem. Dukungan nasional secara penuh tentu
diperlukan untuk mengorganisasi elemen-elemen pemerintah pusat dan daerah
serta elemen-elemen masyarakat di seluruh Indonesia untuk bekerja bersama
mengikuti sistem manajemen terpadu yang tidak hanya mempertimbangkan
keberlanjutan ekosistem tetapi juga manfaat bagi masyarakat.
68
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Lombok, NTB
69
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
VIII Ucapan terima kasih
Pertama dan terutama kami ingin mengucapkan terima kasih kepada Allah
SWT atas rahmatNya serta ilmu pengetahuan, kemampuan dan kesempatan
kepada kami sehingga dapat menulis buku ini. Kami berterima kasih kepada
COREMAP - CTI dan Bank Dunia yang telah sepenuhnya mendukung proyek ini.
Kami juga berterima kasih kepada tim monitoring (sekretariat, peneliti, teknisi,
staf administrasi), Kementerian Kelautan dan Perikanan (KKP), Kementerian
Lingkungan Hidup dan Kehutanan (KLHK), Badan Perencanaan Pembangunan
Nasional (Bappenas), Badan Informasi Geospasial (BIG), Lembaga Pemerintah
Provinsi, Universitas Maritim Raja Ali Haji (UMRAH), Universitas Bung Hatta
(UBH), Universitas Diponegoro (UNDIP), Universitas Hasanuddin (UNHAS),
Universitas Mataram (UNRAM), Universitas Sam Ratulangi (UNSRAT), Universitas
Halu Oleo (UHO), Universitas Syiah Kuala (UNSYIAH), Asosiasi Karang, Kerang
dan Ikan Hias Indonesia (AKKII), Terangi, Minang Bahari, Penyelam Rock n Roll
(Buton), Scuba Weh (Sabang), LINI, Karang Nusantara dan Mars Inc.
70
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Buleleng, Bali
71
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Abrar, M. , Siringoringo, R. M., Hadi, T. A., Putra, R. D., Cappenbergh, H. A. W., Sutiyadi,
R., Faricha, A., & Suharsono. (2019). Monitoring kondisi terumbu karang
dan ekosistem terkait di TWP Pulau Pieh dan laut di sekitarnya, Provinsi
Sumatera Barat. COREMAP-CTI, Jakarta: 66 pp.
Adam, T. C., Burkepile, D. E., Ruttenberg, B. I., & Paddack, M. J. (2015). Herbivory
and the resilience of Caribbean coral reefs: knowledge gaps and
implications for management. Marine Ecology Progress Series520: 1-20.
Bachtiar, I. & Jufri, A. W. (2019). Monitoring kesehatan terumbu karang dan ekosistem
terkait lainnya di Teluk Sekotong Kabupaten Lombok Barat tahun 2019.
UNRAM, Mataram: 71 pp.
Cai, W., Sullivan, S., & Cowan, T., (2010). Interaction of ENSO, The IOD, and SAM
in CMIP3. Journal of Climate, 24, 1688-1704.
Ceccarelli,D.M.,Lofer,Z.,Bourne,D.G.,AlMoajilCole, G. S., BoströmEinarsson,
L., EvansIllidge, E., Fabricius, K., Glasl, B., Marshall, P., McLeod, I, Read,
M., Schaffelke, B., Smith, A. K., Jorda, G. T., Williamson, D. H. , & Bay, L.
(2018). Rehabilitation of coral reefs through removal of macroalgae:
state of knowledge and considerations for management and
implementation.Restoration ecology,26(5), 827-838.
Chou, L. M. (2000). Southeast Asian Reefs-Status update: Cambodia, Indonesia,
Malaysia, Philippines, Singapore, Thailand and Viet Nam in Wilkinson,
C. (Ed.) Status of coral reefs of the world. AIMS, Townsville, 17-129.
Dharmawan, I. W. E., Utama, R. S., Giyanto, Purwandana, L. A., Makatipu, P. C.,
& Irawan, A. (2019). Monitoring kondisi kesehatan terumbu karang &
ekosistem pesisir terkait di TWP. Padaido, Biak-Numfor 2019. COREMAP-
CTI, Jakarta: 152 pp.
Direktorat Jenderal Pengelolaan Ruang Laut, Kementerian Kelautan Perikanan
(DJPRL-KKP). (2019). Laporan Kinerja Triwulan II Tahun 2019. DJPRL-KKP,
Jakarta: 132 pp.
Edwards, A. J., & Clark, S. (1999). Coral transplantation: a useful management
toolormisguidedmeddling?.Marine Pollution Bulletin, 37(8-12), 474-
487.
Edwards, A.J., & Gomez, E.D. (2007). Reef Restoration Concepts and Guidelines:
making sensible management choices in the face of uncertainty. Coral
Reef Targeted Research & Capacity Building for Management Program,
Australia: 38 pp.
Bibliography
72
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Feng,M.,Zhang,N.,Liu,Q.,&Wijffels,S.(2018).TheIndonesianThroughFlow,
itsvariabilityandcentennialchange.Geoscience Letters,5(1), 301-304.
Fox, H. E., Pet, J. S., Dahuri, R., & Caldwell, R. L. (2003). Recovery in Rubble Fields:
Long-Term Impacts of Penangkapan dengan bahan peledak. Marine
Pollution Bulletin. doi:10.1016/S0025-326X(03)00246-7.
Frias-Torres, S., Montoya-Maya, P. , & Shah, N. (2018). Coral Reef Restoration Toolkit:
A Field-Oriented Guide Developed in the Seychelles Islands. Nature
Seychelles, Mahe: 76 pp.
Giyanto, Ulumuddin, Y. I. , Hadi, T. A. , Cappenbergh, H. A. W., Lisdayanti, E. , Arafat,
Y., Rahmadi, P., Putra, M. Y. , Santoso, P. D., Sutiyadi, R., Budiyanto, A. ,
Unyang, S., Nurhasyim, Amat, Otuola, L., & Basir. (2019). Monitoring
kesehatan terumbu karang dan ekosistem terkait di Kepulauan Derawan.
COREMAP-CTI, Jakarta: 132 pp.
Hadi, T. A., Suharsono, Giyanto, Abrar, M., Budiyanto, A., Cappenbergh, H. A. W.,
Putra, M. Y. , Edrus, N. I. , Ulumuddin, Y. I. , Sidiq, A. , Lisdayanti, E., Handayani,
N.,Hazt,M.,Nurhasyim,Purwandana,L.A.,Setiastuti,A.,Dzumalek,A.
R.,Ke,A.,Syahidah,A. ,&Paulus, P. C.(2019). Monitoring kesehatan
terumbu karang dan ekosistem terkait lainnya di Taman Nasional Komodo
dan sekitarnya, Nusa Tenggara Timur. COREMAP-CTI, Jakarta: 131 pp.
Hoeksema, B. W., & Putra, K. S. (2000). The reef coral fauna of Bali in the centre
of marine diversity. Proceedings 9th International Coral Reef Symposium
Vol 1: 173-178.
Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J., & Steneck, R. S. (2010).
Rising to the challenge of sustaining coral reef resilience. Trends in
ecology & evolution,25(11), 633-642.
Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E. , Cumming, G. S., Jackson,
J. B., Kleypas, J. , van de Leemput, I. A. , Lough, J. M., Morrison, T. H.,
Palumbi, S. R., van Nes, E.H., & Scheffer, M. (2017). Coral reefs in the
Anthropocene.Nature,546(7656), 82-90.
Jaap,W.C.(2000).Coralreefrestoration.Ecological engineering,15(3-4), 345-364.
Jompa, J. (2019). Monitoring kondisi terumbu karang dan ekosistem terkait di
Kabupaten Kepulauan Selayar COREMAP-CTI tahun 2019. UNHAS,
Makassar: 196 pp.
Kug, J.S., & Kang, I.S. (2006). Interactive feedback between ENSO and the Indian
Ocean. J. Climate, 19, 1784–1801.
73
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Luasunaung, A., Manoppo, V., & Schaduw, J. N. (2015). Monitoring dan evaluasi
lokasi penyelaman Pulau Bunaken Taman Nasional Bunaken Kota
Manado Provinsi Sulawesi Utara.Spatial: Journal of Geographical
Studies,14(2), 1-7.
Marasabessy, I.,Fahrudin,A.,Imran,Z. ,&Agus,S.B.(2019).Identikasikondisi
ekosistem terumbu karang Pulau Nusa Manu dan Nusa Leun di
Kabupaten Maluku Tengah. Jurnal Riset Perikanan dan Kelautan, 1(1),
1-13.
Mumby, P. J., & Hastings, A. (2008). The impact of ecosystem connectivity on
coralreefresilience.Journal of Applied Ecology,45(3), 854-862.
Mumby, P. J., & Steneck, R. S. (2008). Coral reef management and conservation
inlightof rapidlyevolvingecologicalparadigms.Trends in ecology &
evolution,23(10), 555-563.
Munasik, Pribadi, R., Riniatsih, I., Romadhoni, A. A., Dewi, R. A. , Brasmata, A. F. Y.,
Arbanto,B.,Bahari,A.S.,Afkar,M.Z. ,Teguh,R.,Aufar,S.N.,Saragih,J.E.,
& Widyo, M. A. (2019). Kondisi ekosistem terumbu karang dan ekosistem
terkait di Perairan Bakauheni, Kabupaten Lampung Selatan. UNDIP,
Semarang: 114 pp.
Prayudha, B., Tuti, Y., Utama, R. S., Arbi, U. Y. , Vimono, I. B., Edrus, I. N., Faricha, A.,
Suyadi,R., Renyan, J. , Rahmawati, S., Kusnadi, A. , Alifatri, L. , Salatalohi,
A., Triandiza, T., & Dzumalex, A. R. (2019). Baseline terumbu karang
dan ekosistem terkait di Pulau Kei Kecil dan Sekitarnya, Kota Tual dan
Kabupaten Maluku Tenggara, Provinsi Maluku. COREMAP-CTI, Jakarta:
121 pp.
Rahmawati, S., & Hernawan, U. E. (2019). Pemantauan Kesehatan Terumbu Karang
dan Ekosistem Terkait di Kabupaten Bintan Tahun 2019. COREMAP-CTI,
Jakarta: 110 pp.
Razai, T. S., Putra, R. D., Kurniawan, D., Lestari, F., Febrianto, T., & Putra, I. P. (2019).
Monitoring ekosistem terumbu karang dan ekosistem terkait di Perairan
Natuna dan sekitarnya 2019. UMRAH, Tanjung Pinang: 126 pp.
Rizki, M. P. , Souhoka, J., Makatipu, P. C., Purwandana, L. A., Kusnadi, A., Nurdiansyah,
D., Patty, S. I., & Dzumalek, A. R. (2019). Monitoring kesehatan terumbu
karang dan ekosistem terkait Suaka Alam Perairan (SAP) Raja Ampat,
Provinsi Papua Barat, tahun 2019. COREMAP-CTI, Jakarta: 81 pp.
Rogers,C.S.(2013).Coralreefresiliencethroughbiodiversity.ISRN Oceanography.
http://dx.doi.org/10.5402/2013/739034
74
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Rondonuwu, A., Lumingas, L. J.L., Bataragoa, N. E., Manengkey, H. K., Kondoy, K. I. F. ,
Rangan, J. K., Makatipu, P. , Nurdiansyah, D., Tampaguma, B., & Kambey,
A. G. (2019). Monitoring kesehatan terumbu karang dan ekosistem terkait
lainnya di Pulau Salawati dan Pulau Batanta Kabupaten Raja Ampat -
Provinsi Papua Barat 2019. UNSRAT, Manado: 149 pp.
Samsuardi, Bukhari, Eriza, Yennafri, Indra, G., Arafat, Y., Amrullah, M. Y., Guswanto,
H., & Miswandi, M. (2019). Monitoring kesehatan terumbu karang dan
ekosistem terkait di Taman Wisata Perairan (TWP) Selat Bunga Laut
Kabupaten Kepulauan Mentawai, COREMAP-CTI Tahun 2019. UBH,
Padang: 132 pp.
Saputra, M. T., & Sadarun, B. (2019). Hubungan antara kondisi tutupan karang
hidup dengan kelimpahan ikan Chaetodontidae di Perairan Lalanu,
KecamatanSoropia,KabupatenKonawe.Jurnal Sapa Laut (Jurnal Ilmu
Kelautan),4(2), 53-60.
Sari, N. P., Abrar, M., Siringoringo, R. M., Nurhasyim, Putra, R. D., Sinaga, M.,
Jumsurizal, Irawan, Lestari, F., Pangenstyansyah, Rasidin, A., Sutiyadi, R.,
Sianturi, O. R., & Perisha, B. (2019). Monitoring kesehatan terumbu karang
dan ekosistem terkait di Kawasan Konservasi Perairan Nasional, Taman
Wisata Perairan, Kepulauan Anambas dan laut sekitarnya. COREMAP-CTI,
Jakarta: 89 pp.
Setiawan, F., Muttaqin, A., Tarigan, S. A., Muhidin, M., Hotmariyah, M., Sabi, A., &
Pingkan, J. (2017). Pemutihan Karang Akibat Pemanasan Global Tahun
2016 Terhadap Ekosistem Terumbu Karang: Studi Kasus Di TWP Gili
Matra(GiliAir, GiliMenodanGiliTrawangan)ProvinsiNTB.Journal of
Fisheries and Marine Research,1(2), 39-54.
Siringoringo, R. M., & Hadi, T. A. (2013). Kondisi dan distribusi karang batu
(scleractinia corals) di perairan Bangka.Jurnal Ilmu dan Teknologi
Kelautan Tropis, 5(2), 273-285.
Suharsono. (2008). Jenis-jenis karang di Indonesia. COREMAP II, Jakarta: 372pp.
Suryono, S., Munasik, M. , Ario, R., & Handoyo, G. (2017). Inventarisasi bio-
ekologi terumbu karang di Pulau Panjang, Kabupaten Jepara, Jawa
Tengah.Jurnal Kelautan Tropis, 20(1), 60-64.
Suyarso, Suharsono, Supriyadi, H. I., Cappenbergh, H. A. W., Edrus, I. N., Utama, R.
S.,Suharti,S.R.,Faricha,A. ,Hazt,M.,Permadi,S.,Budiyanto,A.,Picasou,
J., Salatalohi, A., Rasyidin, A., & Nurjamin. (2019). Monitoring kesehatan
terumbu karang dan ekosistem terkait Kawasan Konservasi Sumber Daya
Alam Taman Laut Nasional Kepulauan Taka Bonerate Kabupaten Selayar
Sulawesi Selatan. COREMAP-CTI, Jakarta: 92 pp.
75
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Tomascik, T. , Mah, A. J., Nontji, A., & Moosa, M. K. (1997).The ecology of the
Indonesian seas part two. Oxford University Press, Oxford: 744pp.
Utama, R. S., Cappenbergh, H. A. W., Anggraeni, D., Edrus, I. N., Makatipu, P., Irawan,
A., Dharmawan, I. W. E., Budiyanto, A. , Dzumalex, A. R., & Salatalohi,
A. (2019). Kondisi kesehatan terumbu karang dan ekosistem terkait di
Kabupaten Wakatobi, Sulawesi Tenggara. COREMAP-CTI, Jakarta: 102 pp.
Veron J.E.N., Devantier, L. M., Turak, E., Green, A. L., Kininmonth, S., Stafford-Smith,
M., & Peterson, N. (2009). Delineating the coral triangle. Galaxea, Journal
of Coral Reef Studies, 11: 91-100.
Veron, J.E.N. (2000). Corals of the world vol1. AIMS, Twonsville: 463pp.
Welly, M., Lazuardi, M. E., Sanjaya, W., & Prasetya, D. (2016). Kondisi sik dan social
ekonomi pesisir Pulau Sumba, Nusa Tenggara Timur (2015). The Nature
Conservancy, Bali: 124 pp.
Welly, M., Lazuardi, M.E., Sanjaya, W., Prasetya, D., & Hendrawan, G. (2016). Kondisi
biosik dan sosial ekonomi Pesisir Bali (2015). The Nature Conservancy,
Bali: 168 pp.
76
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
No. Lokasi Jumlah
Stasiun Sangat
baik Baik Cukup Buruk
WILAYAH BARAT
1 Weh, Sabang (Aceh)* 12 0 0 8 4
2 Simeulue Island (Aceh) 5 0 0 3 2
3 Sibolga dan Tapanuli Tengah (Sumatra Utara) 13 0 0 7 6
4 Nias Utara (Sumatra Utara)* 10 0 0 0 10
5 Kepulauan Hinako, Nias Barat (Sumatra Utara) 4 0 0 2 2
6 Teluk Dalam Nias Selatan (Sumatra Utara) 3 0 0 0 3
7 P.P. Batu, Nias Selatan (Sumatra Utara) 9 0 0 0 9
8 Mentawai Islands (Sumatra Barat)* 9 0 0 3 6
9 KKPN Pieh (Sumatra Barat)* 13 1 3 4 5
10 Pieh (Sumatra Barat)* 4 0 0 0 4
11 Enggano (Bengkulu) 12 0 1 3 8
12 Pulau Tikus (Bengkulu) 3 0 0 3 0
13 Kaur (Bengkulu) 7 0 1 3 3
14 Pulau Pisang (Lampung Barat) 14 5 5 4 0
15 Teluk Ratai (Lampung) 4 1 2 0 1
16 Bakauheni (Lampung)* 10 0 2 3 5
17 Lampung Bay (Lampung) 18 5 8 3 2
18 Krakatau (Lampung) 8 0 1 5 2
19 Tambelan Island (Kepulauan Riau) 12 8 3 1 0
20 KKPN Anambas (Kepulauan Riau)* 12 0 1 11 0
21 Natuna Islands (Kepulauan Riau)* 19 0 0 9 10
22 Bintan (Kepulauan Riau)* 14 0 3 10 1
23 Senayang-Lingga (Kepulauan Riau)* 11 0 0 10 1
24 Batam (Kepulauan Riau)* 19 0 3 13 3
25 Bangka (Bangka Belitung) 10 1 3 3 3
26 Belitung (Bangka Belitung)* 11 0 2 7 2
27 Belitung Timur (Bangka Belitung) 10 0 7 3 0
28 Merak (Banten) 5 0 0 1 4
29 Ujung Kulon Selat Sunda (Banten) 16 0 1 6 9
30 Teluk Banten (Banten) 4 0 4 0 0
Lampiran 1.
Kondisi terumbu karang Indonesia tahun 2019
77
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
31 Kepulauan Seribu (Jakarta) 52 0 16 12 24
32 Indramayu (Jawa Barat) 10 6 1 2 1
33 Nusakambangan Islands (Jawa Tengah) 3 0 0 1 2
34 Jepara (Jawa Tengah) 7 0 1 3 3
35 Karimun Jawa (Jawa Tengah) 38 10 15 12 1
36 Pantai Wediombo Gn Kidul (Jogjakarta) 3 0 0 2 1
37 Trenggalek (Perigi Bay) (Jawa Timur) 5 0 0 0 5
38 Madura Island (Jawa Timur) 12 2 8 2 0
39 Kangean Islands (Jawa Timur) 7 0 4 3 0
40 Bawean Islands (Jawa Timur) 8 0 2 6 0
41 TN. Baluran, Situbondo ( Jawa Timur) 5 1 0 2 2
42 Pasir Putih Situbondo (Jawa Timur) 4 0 2 2 0
43 Karimata Islands (Kalimantan Barat) 4 0 1 3 0
WILAYAH TENGAH
44 Kepulauan Matasiri (Kalimantan Selatan) 5 0 0 1 4
45 Sangkulirang (Kalimantan Timur) 3 0 1 1 1
46 Kutai Timur (Kalimantan Timur) 9 2 3 4 0
47 Kota Bontang (Kalimantan Timur) 11 0 0 5 6
48 Kab. Kutai Kartanegara (Kalimantan Timur) 1 0 0 0 1
49 Kab. Penajam Paser Utara (Kalimantan Timur) 3 0 0 1 2
50 Derawan Islands (Kalimantan Timur)* 11 0 0 5 6
51 Gilimanuk Bay (Bali) 6 0 1 1 4
52 Bali Island (Bali) 19 1 4 2 12
53 KKPN Gili Matra (NTB)* 8 0 1 2 5
54 Lombok Island (NTB) 36 2 7 9 18
55 Sekotong, Lombok (NTB)* 12 0 0 2 10
56 Pulau Keramat, Sumbawa (NTB) 12 5 4 3 0
57 Sumbawa Islands (NTB) 9 0 1 4 4
58 Komodo Islands (NTT)* 12 0 1 8 3
59 Sumba (NTT)* 10 0 0 2 8
60 Kab. Sikka, Maumere (NTT)* 14 0 0 3 11
61 Flores Timur (NTT) 10 0 7 2 1
62 Lamalera, Lembata (NTT) 8 0 5 2 1
63 Perairan Lamalera (NTT) 8 0 5 2 1
78
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
64 Tablolong dan Semau, Kupang KKPN Laut Sawu (NTT)* 6 0 0 2 4
65 Rote Ndao, KKPN Laut Sawu (NTT)* 6 0 2 0 4
66 Kota Makassar (Sulawesi Selatan)* 13 0 1 6 6
67 Pangkep (Sulawesi Selatan)* 15 1 3 6 5
68 Selayar Islands (Sulawesi Selatan)* 15 0 0 9 6
69 KKPN Kapoposang (Sulawesi Selatan)* 13 0 6 7 0
70 Taka Bonerate Islands (Sulawesi Selatan)* 12 0 0 5 7
71 Kendari (Sulawesi Tenggara)* 9 0 3 3 3
72 Buton Islands (Sulawesi Tenggara)* 5 0 1 3 1
73 Buton Tengah (Sulawesi Tenggara)* 5 0 0 2 3
74 Buton Selatan (Sulawesi Tenggara)* 5 0 1 3 1
75 Wakatobi (Sulawesi Tenggara)* 15 0 0 9 6
76 Kabupaten Konawe (Sulawesi Tenggara) 3 0 0 3 0
77 Labengke Island (Sulawesi Tenggara) 10 1 5 4 0
78 Tiga Islands (Sulawesi Tengah) 6 0 0 6 0
79 Togian Island (Sulawesi Tengah) 8 0 4 4 0
80 Banggai (Sulawesi Tengah) 9 1 3 3 2
81 Luwuk (Sulawesi Tengah) 10 2 5 3 0
82 Palu (Sulawesi Tengah) 8 0 6 2 0
83 Kwandang Bay (Gorontalo) 4 0 2 2 0
84 Dulupi Island (Gorontalo) 4 0 0 3 1
85 Pantai Manado (Sulawesi Utara) 3 0 0 3 0
86 Minahasa (Sulawesi Utara) 3 0 2 0 1
87 Bunaken & Siladen (Sulawesi Utara) 10 4 3 2 1
88 Selat Lembeh, Bitung (Sulawesi Utara) 13 2 6 2 3
89 Kumeke Islands (Sulawesi Utara) 9 1 2 2 4
90 Kepulauan Tagulandang (Sulawesi Utara) 3 1 1 1 0
WILAYAH TIMUR
91 Ternate (Maluku Utara)* 5 0 0 1 4
92 Tidore (Maluku Utara)* 6 0 1 4 1
93 Halmahera Barat (Maluku Utara)* 3 0 1 1 1
94 Tobelo Halmahera Utara (Maluku Utara) 14 0 4 2 8
95 Jiew Island (Maluku Utara) 3 0 0 3 0
96 Ambon Bay (Maluku) 10 1 5 2 2
79
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
97 Bagian Barat Seram (Maluku) 4 0 3 1 0
98 Bagian Timur Seram (Maluku) 16 0 3 8 5
99 Kepulauan Kei (Maluku) 17 2 3 7 5
100 Tual (Maluku)* 10 0 2 4 4
101 Kepulauan Leti (Maluku) 7 0 3 3 1
102 KKPN Aru Tenggara (Maluku)* 12 0 2 6 4
103 KKPN Laut Banda (Maluku)* 12 0 4 3 5
104 Lucipara Islands (Maluku) 8 5 3 0 0
105 Pulau Wetar (Maluku) 8 0 1 5 2
106 Morotai (Maluku) 14 0 0 1 13
107 Maluku Tengah (Maluku) 4 0 1 3 0
108 Misool Raja Ampat (Papua Barat) 7 0 1 5 1
109 KKPN Kab. Raja Ampat (Papua Barat)* 9 0 2 4 3
110 Cendrawasih Bay (Papua Barat) 12 1 7 4 0
111 KKPN Waigeo Barat (Papua Barat)* 8 0 0 4 4
112 Selatan Waigeo Kab Raja Ampat (Papua Barat) 7 0 1 4 2
113 Batang Pele, Kab Raja Ampat (Papua Barat) 5 0 2 3 0
114 Salawati & Batanta, Kab Raja Ampat (Papua Barat)* 12 0 0 7 5
115 Bras Fanildo Island (Papua Barat) 3 0 3 0 0
116 Fani Island (Papua Barat) 4 0 4 0 0
117 Ayau Islands (Papua Barat) 6 0 0 5 1
118 Biak (Papua)* 13 0 0 3 10
119 Liki Island (Papua) 6 0 2 3 1
120 Bepondi Island (Papua) 3 0 0 1 2
121 Miosnum Island (Papua) 4 1 1 1 1
122 KKPN Padaido (Papua)* 13 1 3 4 5
Total 1153 74 258 431 390
Persentase (%) 6,42% 22,38% 37,38% 33,82%
*Lokasi monitoring COREMAP-CTI
80
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Lampiran 2.
Kondisi terumbu karang di Indonesia dan ancaman-ancamannya
(kategori terumbu: merah = Buruk; kuning = cukup; hijau = baik; biru = sangat baik)
Kondisi terumbu karang di Indonesia
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(
!(!(
!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(!(
!(!(
!(
!(
!(!(!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(!(!(
!(!(!(!(
!(
!(!(!(!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
!(!(
!(
!(
!(
!(
!(
!(
!(
!(
!(
1,200
Kilometer
Pusat Pene litian Osean ografi
Kondisi Terumbu Karang
di Indonesia 2019
1 : 20.000.000
Kondisi Umum
!(
Sangat baik
!(
Baik
!(
Cukup
!(
Buruk
Sources: Esri, HERE, Garmin,
USGS, Intermap,
INCREMENT P, NRCan, Esri
Japan, METI, Esri China
(Hong Kong), Esri Korea, Esri
Arafura Sea
East Sea
Banda Sea
Sulawesi Se a
Java Sea
Natuna Sea
Habitat bentik
Terumbu Karang
150°0’0’’BT
150°0’0’’BT 120°0’0’’BT 135°0’0’’BT
120°0’0’’BT 135°0’0’’BT
10°0’0’’LS 5°0’0’’LS 0°0’0’’ 5°0’0’’LU
10°0’0’’LS 5°0’0’’LS 0°0’0’' 5°0’0’’LU
¾
U
B
S
T
Sistem Grid
Datum Horizontal
:
:
Grid Geografi
WGS 1984
1. Peta RBI
2. Citra Satelit
3. Survei Lapang (Terumbu Karang)
Sumber Peta
81
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Wilayah berpotensi bleaching (berdasarkan peristiwa bleaching tahun 1983, 1997, 2010 and 2015)
Gelombang berenergi tinggi
82
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Salinitas rendah
Sedimentasi
83
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Daerah berkembang dan wisata
Penangkapan ikan dengan bahan peledak (berdasarkan hasil observasi dan
wawancaran penduduk setempat)
84
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Pencemaran
Kegiatan penambangan
85
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Ancaman-ancaman terhadap terumbu karang di Indonesia
1. Penangkapan dengan bahan peledak, area berpotensi bleaching, gelombang
berenergi tinggi, area berkembang dan wisata
2. Penangkapan dengan bahan peledak, kegiatan penambangan, sedimentasi,
area berkembang dan wisata
3. Penangkapan dengan bahan peledak, area berpotensi bleaching, gelombang
berenergi tinggi
4. Penangkapan dengan bahan peledak, area berpotensi bleaching, area
berkembang dan wisata
5. Penangkapan dengan bahan peledak, kegiatan penambangan, area
berkembang dan wisata
6. Penangkapan dengan bahan peledak, kegiatan penambangan, sedimentasi
7. Penangkapan dengan bahan peledak, pencemaran, area berkembang dan
wisata
8. Penangkapan dengan bahan peledak, sedimentasi, area berkembang dan
wisata
86
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
9. Penangkapan dengan bahan peledak, area berpotensi bleaching
10. Penangkapan dengan bahan peledak, kegiatan penambangan
11. Penangkapan dengan bahan peledak, area berkembang dan wisata
12. Area berpotensi bleaching, gelombang berenergi tinggi, pencemaran,
sedimentasi, area berkembang dan wisata
13. Area berpotensi bleaching, gelombang berenergi tinggi, sedimentasi, area
berkembang dan wisata
14. Area berpotensi bleaching, gelombang berenergi tinggi, kegiatan
penambangan, area berkembang dan wisata
15. Area berpotensi bleaching, salinitas rendah, pencemaran, area berkembang
dan wisata
16. Area berpotensi bleaching, salinitas rendah, pencemaran, sedimentasi
17. Area berpotensi bleaching, salinitas rendah, sedimentasi, area berkembang
dan wisata
18. Area berpotensi bleaching, salinitas rendah, kegiatan penambangan, area
berkembang dan wisata
19. Area berpotensi bleaching, salinitas rendah, kegiatan penambangan,
sedimentasi
20. Area berpotensi bleaching, kegiatan penambangan, sedimentasi, area
berkembang dan wisata
21. Area berpotensi bleaching, pencemaran, sedimentasi, area berkembang dan
wisata
22. Area berpotensi bleaching, gelombang berenergi tinggi, sedimentasi
23. Area berpotensi bleaching, gelombang berenergi tinggi, area berkembang
dan wisata
24. Area berpotensi bleaching, salinitas rendah, sedimentasi
25. Area berpotensi bleaching, salinitas rendah, area berkembang dan wisata
26. Area berpotensi bleaching, sedimentasi, area berkembang dan wisata
27. Area berpotensi bleaching, gelombang berenergi tinggi
28. Area berpotensi bleaching, salinitas rendah
29. Area berpotensi bleaching, sedimentasi
30. Area berpotensi bleaching, area berkembang dan wisata
31. Salinitas rendah, pencemaran, area berkembang dan wisata
32. Salinitas rendah, sedimentasi, area berkembang dan wisata
33. Salinitas rendah, sedimentasi
34. Salinitas rendah, area berkembang dan wisata
35. Kegiatan penambangan, sedimentasi, area berkembang dan wisata
36. Kegiatan penambangan, sedimentasi
37. Pencemaran, area berkembang dan wisata
38. Sedimentasi, area berkembang dan wisata
39. Area berpotensi bleaching
40. Salinitas rendah
41. Kegiatan penambangan
42. Area berkembang dan wisata
43. Sedimentasi
44. Penangkapan dengan bahan peledak
87
PADAR ISLAND, KOMODO NATIONAL PARK, NTT Tubastrea micrantha, Pulau Weh - Sabang
88
PADAR ISLAND, KOMODO NATIONAL PARK, NTT
Belitung, Bangka Belitung
... Indonesia, located in the Coral Triangle region, is home for 16% of the global total reef area where the reefs are recognized as being amongst the most diverse ecosystems in the world (Burke et al., 2012). Coral reefs flourish and attain peak biodiversity in the Coral Triangle region, encompassing areas such as Sulawesi, Maluku, Halmahera, West Papua, Raja Ampat Islands, Aru Islands, Kei Islands, East Nusa Tenggara, and West Nusa Tenggara and Bali (Hadi et al. 2020). With almost 25% of its inhabitants reside along the coast within a 30 km radius of coral reef, Indonesia has the largest reef-associated human population globally (Razak et al., 2022). ...
... With almost 25% of its inhabitants reside along the coast within a 30 km radius of coral reef, Indonesia has the largest reef-associated human population globally (Razak et al., 2022). Unfortunately, coral reefs globally, including those in Indonesia, have suffered severe damage due to anthropogenic stressors such as pollution, eutrophication, overfishing, destructive fishing practices, ocean warming and acidification, along with mass bleaching linked to climate change (Hadi et al., 2020;Hughes et al., 2017). In Indonesia, the Lesser Sunda area especially Bali and West Nusa Tenggara were most suffering during the bleaching event in 2016 (Hadi et al., 2020). ...
... Unfortunately, coral reefs globally, including those in Indonesia, have suffered severe damage due to anthropogenic stressors such as pollution, eutrophication, overfishing, destructive fishing practices, ocean warming and acidification, along with mass bleaching linked to climate change (Hadi et al., 2020;Hughes et al., 2017). In Indonesia, the Lesser Sunda area especially Bali and West Nusa Tenggara were most suffering during the bleaching event in 2016 (Hadi et al., 2020). ...
Article
Full-text available
Coral reefs are under pressure from climate change and various factors, putting them at risk of a decline in resilience. This heightened vulnerability increases the likelihood of reaching a tipping point with the next shock or stressor. Identifying early warning indicators for tipping points is crucial for proactive coral reef management. Therefore, this study aims to comprehend the coral reef health parameters considered important and feasible for collection by local stakeholders, as well as identify factors facilitating the implementation of a community-based monitoring and early warning system in a fishers-dominated community. The approach used was Participatory Action Research. The results reveal twelve priority parameters deemed necessary by the local community and feasible for collection by local stakeholders, including the local community, university, and non-governmental organization. The identified parameters are: coral bleaching, visibility, temperature, pH, dissolved oxygen, salinity, current, coral percent cover, fish community, macroalgal canopy cover and composition, benthic composition, and plankton. Interpretive structural model and MICMAC analysis show nine enabling factors supporting the development of a community-led coral reef health monitoring and early warning system. These factors include team motivation, training and team capacity, connection with government, connection with university, facilitation by NGOs, supporting regulations, operational funds, access to equipment, and operation and maintenance of equipment. Team motivation stands out as the most influential factor, with strong driving power and dependence, making it crucial to manage as actions on it will have ripple effects on other factors.
... Di Indonesia, (van der Meij et al., 2010) kerentanan terumbu karang juga telah dilaporkan, dimana status pulau-pulau besar di Indonesia mendokumentasikan degradasi lingkungan akibat polusi dan kegiatan di darat (Farhan & Lim, 2010). (Hadi et al., 2020) melaporkan bahwa kondisi terumbu karang diketahui hanya 6,82% yang berada dalam kondisi sangat baik dan sisanya dalam kondisi baik hingga buruk yang utamanya diakibatkan oleh perubahan kondisi lingkungan dan aktivitas manusia. ...
Article
Full-text available
Sedimentation adversely affects corals by impeding recruitment, hindering growth, and inducing stress, ultimately leading to degradation. This study aims to ascertain the correlation between sedimentation and coral cover. Five stations were sampled in Arfai waters in May 2023, with sedimentation rates measured using traps over 14 days. Coral reef conditions were assessed via the Point Intercept Transect (PIT) method, revealing a 'good' coral cover of 51%, dominated by Acropora submassive (ACS), Acropora branching (ACB), and Coral branching (CB). Sedimentation rates ranged from 6.26 to 33.92 mg/cm²/day, with impacts categorized from mild to moderate and moderate to heavy. Analysis confirms sedimentation's influence on coral reef life. Despite its significance for management strategies, long-term studies tracking coral reef structure and function in response to sediment influx are lacking. Further research on coral reef recovery post-sediment exposure is imperative.
... Secara umum, penurunan persentase tutupan karang hidup terjadi secara global yang disebabkan oleh kenaikan suhu permukaan air dan ditandai dengan terjadinya pemutihan karang (bleaching). Pada tahun 2018, kondisi terumbu karang di Indonesia berada pada kategori sangat baik sebesar 6,65%, kategori baik sebesar 22,96%, kategori cukup sebesar 34,3%, sedangkan untuk kategori jelek sebesar 36,18% (Hadi et al., 2018). Peningkatan tekanan lingkungan dan tingginya penurunan ekosistem terumbu karang dapat mengancam keberadaan ekosistem ini dan biota yang hidup di dalamnya (Yuliani et al., 2016). ...
Article
Full-text available
Terumbu karang merupakan salah satu ekosistem pada daerah tropis dan subtropis. Ekosistem ini terbentuk dari kegiatan biologis hewan karang yang hidup di dasar perairan laut dangkal. Komponen utama yang menyusun ekosistem ini adalah karang keras, sehingga tutupan karang keras dapat dijadikan sebagai indikator untuk menilai kesehatan terumbu karang. Selain itu, kondisi tutupan substrat dasar atau komponen bentik juga menjadi salah satu aspek penilaian kondisi kesehatan terumbu karang. Penelitian ini bertujuan untuk menentukan kondisi kesehatan ekosistem terumbu karang di Taman Wisata Perairan Kepulauan Anambas. Penelitian dilakukan pada tahun 2021 pada 21 stasiun pengamatan di lokasi penelitian yang terdiri dari zona inti, pemanfaatan, perikanan berkelanjutan dan luar kawasan. Persentase tutupan karang dihitung menggunakan metode Underwater Photo Transect (UPT) dan analisis dilakukan dengan aplikasi CPCe. Hasil pengamatan menunjukkan adanya penempelan larva karang (Coral Recruitment) pada lokasi penelitian. Kategori tutupan bentik didominasi oleh Dead Coral with Algae (DCA) dengan persentase rata-rata yaitu 42,83%. Kondisi kesehatan terumbu karang menunjukkan terdapat empat stasiun dengan kategori baik (ANBC007, ANBC045, ANBC072 dan ANBC110), empat stasiun masuk dalam kategori buruk (ANBC003, ANBC010, ANBC069 dan ANBC122), sedangkan 13 stasiun lainnya masuk dalam kategori sedang. Kondisi kesehatan terumbu karang di Taman Wisata Perairan Kepulauan Anambas termasuk dalam kategori cukup/sedang, dengan persentase rata-rata tutupan karang keras hidup sebesar 37,83%.
... Furthermore, Indonesia's tropical coastal waters and ecosystems have been under pressure from anthropogenic activities in the last few decades because 75% of cities in Indonesia are in coastal areas, and the coastal population includes 65% of Indonesia's population, which is around 160 million people (Adyasari et al., 2021). In addition, Indonesia is part of the world's coral triangle, with an area of 2.5 million hectares with 76% genera and 69% species of coral (Hadi et al., 2018). The occurrence of OA and reduction of aragonite saturation will endanger the function of coral reef ecosystems. ...
Article
The effects of Ocean acidification (OA) on the coastal waters of small islands in Indonesia have yet to be extensively studied. This research aims to investigate the process of OA in the coastal waters of small Indonesian islands and examine how land-sea interactions impact carbonate mineral saturation. We collected seawater samples from seven locations on small islands in Indonesia between 2015 and 2021 to analyze the aragonite saturation state. The result shows that most of Indonesia's coastal waters are accompanied by supersaturation of aragonite saturation state (Ωarag>1). Selayar Island's waters had the highest aragonite saturation, averaging 4.96 ± 0.48, while Pari Island's coastal waters had the lowest, averaging 2.49 ± 0.50. Salinity had the greatest effect on Ωarag in all of the sampling sites, ranging from 24.13% to 52.92%, except Aceh Island, where temperature had a greater impact (34.35%) than salinity (26.99%). By the end of this century, Ωarag is predicted to decline based on projections related to climate change. Small island coastal waters are expected to experience a more substantial decline compared to those near the mainland, ranging from 4.71% to 79.58%. The coastal waters of Weh and Selayar Island are probably going to decline the greatest, while the coastal waters of Sorong (mainland) are probably going to decline the least. All seven sampling locations are expected to observe the decrease. This decline will be observed at all seven sampling locations, with Ωarag values ranging from 1.91 and 3.35.
... Indonesia's coral reef cover has an area of about 2.5 million ha. However, the impact of global environmental degradation resulted in healthy coral reefs or in excellent condition only 6.39% [4]. Coral animals as inhabitants of the limestone rock cluster are very vulnerable to environmental changes [5]- [7]. ...
Conference Paper
Full-text available
Coral reefs are marine ecosystems located in the tropics in shallow waters. Coral from the Mussidae family becomes one of the corals that are widely exploited as ornamental corals. Kelagian Island waters have a high coral cover, so the identification of the Mussidae group is needed as an assessment of this type of coral. This study aimed to analyze Mussidae coral cover in the waters of Kelagian Island. The data collection took place in December 2018 at two locations. Physical-chemical parameters of waters taken using porTABLE tools include salinity, temperature, pH, Dissolved oxygen, brightness and water current, while nitrates and phosphates were analyzed in the laboratory. Coral cover data was taken using UPT (Underwater Photo Transect) on a fifty-meter square transect. Photos were taken every one meter and then analyzed with CPCe software. Mussidae corals identified were species L. corymbose and A. faviaformis. Total coral cover in the waters of Kelagian Island were in moderate condition except at S1-7m was poor conditions. The results of measurements of aquatic parameters revealed that the environmental conditions of this area were still in good condition. All parameters were measured under normal circumstances to support the life of the coral reef ecosystem biota. However, this may indicate that the hard corals in this region are generally threatened.
... Terlebih, beberapa area pesisir dengan ekosistem terumbu karang dimanfaatkan dalam berbagai aktifitas, misalnya kegiatan wisata, daerah penangkapan ikan, bangunan pesisir dan sebagainya. Menurut Hadi et al. (2020) melaporkan bahwa kerusakan tutupan terumbu karang Indonesia pada tahun 2019 mencapai 50%. ...
Article
Full-text available
Ekosistem terumbu karang merupakan ekosistem yang rentan terdegredasi. Pemanfaatan wilayah sekitaran Pantai Tawang untuk kegiatan wisata, pelelangan ikan dan pembangunan tambak intensif berpotensi menurunkan tutupan karang hidup dan mengganggu fungsi ekologis terumbu karang. Hal ini tentu meningkatkan kerentanan ekosistem karang, selain akibat kenaikan suhu perairan dan faktor hidrooseanografi lainnya. Tutupan karang di pantai Tawang yang terus mengalami penurunan menjadinan alasan perlu upaya pengkajian yang presisi terhadap indeks ekologisnya. Penelitian ini bertujuan untuk mengkaji kondisi ekosistem terumbu karang di Pantai Tawang berdasarkan indeks keanekaragaman, keseragaman dan dominansi. Pengambilan data lifeform, tutupan dan jenis karang dilakukan dengan metode LIT (Intercept Transect). Tutupan rata-rata substrat karang hidup pada tiga lokasi sampling sebesar 33,7% yang berarti bahwa sustrat pada kondisi penilaian yang sedang. Padahal, nilai tutupan karang tahun 2020 sebesar 41,2%. Nilai indeks keanekaragaman karang (H’) pada titik I, II dan III berada pada kelas kisaran 1-<3,0 yang berarti ekosistem memiliki keragaman jenis yang rendah. Indeks keseragaman (E) ketiga titik mendekati 1, yang berarti bahwa jenis karang di ekosistem tersebut cenderung seragam. Sedangkan indeks dominansi (D) di semua titik berada pada kisaran <0,5 dan cenderung mnedekati 1. Hal ini menunjukkan bahwa tidak terdapat spesies yang mendominasi pada komunitas karang di Pantai Tawang.Pelestarian sumberdaya karang penting dilakukan untuk menjaga plasma nutfah yang ada di dalam ekosistem tersebut. Coral reef ecosystems are ecosystems that are potentially degraded. Coastal land use around of Tawang Beach for tourism activities, fish auctions and the intensive aquaculture has the potential to reduce live coral cover and disrupt the ecological functions of coral reefs. Certainly, it was increasing the vulnerability of coral ecosystems, apart from the effects of warming water temperatures and other hydro-oceanographic factors. The coral cover on the Tawang coast continues to decline every year, and it is the reason why precise assessment ecological index needed. This study aims to evaluate coral reef ecosystem in Tawang Beach based on diversity index, uniformity index and dominance index. Collecting data of coral lifeform, cover and species was using the LIT (Intercept Transect) method. The average live coral substrate cover at the three sampling locations was 33.7%, which means that the substrate was in moderate assessment conditions. In fact, the value of coral cover in 2020 was 41.2%. Diversity index (H') values at stations I, II and III are in the 1-<3.0 range, which means that the ecosystem has low species diversity. Evenness index (E) of all stations is close to 1, which means that the types of coral in these ecosystems tend to be uniform. Dominance index (D) at all stations is in <0.5 range and tends to be close to 1. This shows that there are no species that dominate the coral community in Tawang Beach. Conservation of coral resources is important to preserve biodiversity in the ecosystem.
... The Indonesian archipelago is located in the epicentre of the coral triangle and is over 25,000 km 2 and is home to more than 75% of the world's coral reef species and extensive mangrove habitats due to the extended coastline ( Fig. 1) [7]. Unfortunately, multi sector conflicts of interest have contributed to the deterioration of the coral reef resulting in biodiversity depletion, with coral reef status monitoring indicating a worse reef shape condition in eastern Indonesia despite a less dense population [8]. Several activities including unsustainable fishing (i.e. ...
Article
Full-text available
The archipelagic country of Indonesia is populated by the densest marine biodiversity in the world which has created strong global interest and is valued by both Indigenous and European settlements for different purposes. Nearly 1000 chemicals have been extracted and identified. In this review, a systematic data curation was employed to collate bioprospecting related manuscripts providing a comprehensive directory based on publications from 1988 to 2022. Findings with significant pharmacological activities are further discussed through a scoping data collection. This review discusses macroorganisms (Sponges, Ascidian, Gorgonians, Algae, Mangrove) and microorganism (Bacteria and Fungi) and highlights significant discoveries, including a potent microtubule stabilizer laulimalide from Hyattella sp., a prospective doxorubicin complement papuamine alkaloid from Neopetrosia cf exigua, potent antiplasmodial manzamine A from Acanthostrongylophora ingens, the highly potent anti trypanosomal manadoperoxide B from Plakortis cfr. Simplex, mRNA translation disrupter hippuristanol from Briareum sp, and the anti-HIV-1 (+)-8-hydroxymanzamine A isolated from Acanthostrongylophora sp. Further, some potent antibacterial extracts were also found from a limited biomass of bacteria cultures. Although there are currently no examples of commercial drugs from the Indonesian marine environment, this review shows the molecular diversity present and with the known understudied biodiversity, reveals great promise for future studies and outcomes. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13659-023-00403-1.
Article
Full-text available
Tropical coastal benthic communities will change in species composition and relative dominance due to global (e.g., increasing water temperature) and local (e.g., increasing terrestrial influence due to land-based activity) stressors. This study aimed to gain insight into possible trajectories of coastal benthic assemblages in Raja Ampat, Indonesia, by studying coral reefs at varying distances from human activities and marine lakes with high turbidity in three temperature categories (<31 • C, 31-32 • C, and >32 • C). The benthic community diversity and relative coverage of major benthic groups were quantified via replicate photo transects. The composition of benthic assemblages varied significantly among the reef and marine lake habitats. The marine lakes <31 • C contained hard coral, crustose coralline algae (CCA), and turf algae with coverages similar to those found in the coral reefs (17.4-18.8% hard coral, 3.5-26.3% CCA, and 15-15.5% turf algae, respectively), while the higher temperature marine lakes (31-32 • C and >32 • C) did not harbor hard coral or CCA. Benthic composition in the reefs was significantly influenced by geographic distance among sites but not by human activity or depth. Benthic composition in the marine lakes appeared to be structured by temperature, salinity, and degree of connection to the adjacent sea. Our results suggest that beyond a certain temperature (>31 • C), benthic communities shift away from coral dominance, but new outcomes of assemblages can be highly distinct, with a possible varied dominance of macroalgae, benthic cyanobacterial mats, or filter feeders such as bivalves and tubeworms. This study illustrates the possible use of marine lake model systems to gain insight into shifts in the benthic community structure of tropical coastal ecosystems if hard corals are no longer dominant.
Article
This study looks at how the benthic habitat on Ayau Island; one of Indonesia's most significant coral reef habitats has changed from 2015 to 2019 and the linkage with local sea temperature trends. This study used Landsat 8 Operational Land Imager and National Oceanic and Atmospheric Administration satellite remote sensing data and field data. The Landsat 8 satellite image processing includes atmospheric correction, sunglint correction, water column correction, image classification, and accuracy assessment. These steps were employed to understand change detection. The result revealed that the coral reef and seagrass decreased by 9.9 and 74.9% during the study period. However, the transition change was dynamic, with an annual rate of − 82.5 ha/year for coral reefs and − 108.95 ha/year for seagrass. The highest decrease in both benthic habitats occurred during the El-Nino Event, where the Sea Surface Temperature anomaly reached 1.5 °C. The massive habitat loss is alarming; thus, climate change mitigation and adaptation in the local context must be addressed.
Article
Full-text available
Coral reef ecosystems are under increasing pressure by multiple stressors that degrade reef condition and function. Although improved management systems have yielded benefits in many regions, broad‐scale declines continue and additional practical and effective solutions for reef conservation and management are urgently needed. Ecological interventions to assist or enhance ecosystem recovery are standard practice in many terrestrial management regimes, and they are now increasingly being implemented in the marine environment. Intervention activities in coral reef systems include the control of coral predators (e.g. crown‐of‐thorns starfish), substrate modification, the creation of artificial habitats and the cultivation, transplantation and assisted recruitment of corals. On many coastal reefs, corals face competition and overgrowth by fleshy macroalgae whose abundance may be elevated due to acute disturbance events, chronic nutrient enrichment and reduced herbivory. Active macroalgae removal has been proposed and trialled as a management tool to reduce competition between algae and corals and provide space for coral recruitment, in the hope of restoring the spatial dominance of habitat‐forming corals. However, macroalgae removal has received little formal attention as a method of reef restoration. This review synthesises available knowledge of the ecological role of macroalgae on coral reefs and the potential benefits and risks associated with their active removal. This article is protected by copyright. All rights reserved.
Article
Full-text available
The inventarization of coral bioecology is highly needed to identify the real condition of the observed coral, as a database in ecosystem management, as well as an attempt to rehabilitate critical coastal area. Coral condition valuation is conducted by counting the percentage of live coral coverage, by using the Line Intercept Transect method. This research shows that coral condition in Panjang Island falls into moderate category (with 29-49% of live coral coverage), which represent up to 57% from total observed area. Coral that falls under "bad" category (live coral coverage below 20%) is 29%, and only 7% of the observed area can be categorised as good (more than 50% coverage) and "very bad" (less than 5% of coverage). This condition is primarily caused by the decline of water ecology quality caused by sedimentation, west season wave activity, along with human activities like tourism, swimming, fishing, or shellfish gathering. These contributes many instances of coral-breaking caused by gleening. Inventarisasi bio-ekogi terumbu karang sangatlah diperlukan guna mengetahui kondisi nyata terumbu karang yang dilakukan pemantauan, sebagai basis data dalam pengelolaan ekosistem serta upaya rehabilitasi kawasan kritis pesisi. Penilaian kondisi terumbu karang dilakukan dengan perhitungan persentase penutupan karang hidup menggunakan metode LIT (Line Intercept Transect). Hasil penelitian menunjukan bahwa Kondisi terumbu karang di Pulau Panjang termasuk dalam kategori sedang (dengan persen tutupan karang hidup 29 – 49 %) mencapai 57 % dari keseluruhan area pengamatan. Selanjutnya kondisi terumbu karang dengan kategori buruk (persen tutupan karang hidup 20 %) mencapai 29 % dan hanya 7 % dalam kategori baik (50%) dan buruk sekali (persen tutupan karang hidup 5 %). Kondisi tutupan terumbu karang yang relative buruk diduga diakibatkan oleh menurunnya kualitas ekologi perairan yang diakibatkan oleh sedimentasi, aktivitas gelombang musim barat,serta aktivitas manusia seperti wisata, berenang, memancing ataupun pencari kerang turut serta memicu banyaknya pecahan karang akibat terinjak – injak (gleening).
Article
Full-text available
The Indonesian Throughflow (ITF) is an important component of the upper cell of the global overturning circulation that provides a low-latitude pathway for warm, fresh waters from the Pacific to enter the Indian Ocean. Variability and changes of the ITF have significant impacts on Indo-Pacific oceanography and global climate. In this paper, the observed features of the ITF and its interannual to decadal variability are reviewed, and processes that influence the centennial change of the ITF under the influence of the global warming are discussed. The ITF flows across a region that comprises the intersection of two ocean waveguides—those of the equatorial Pacific and equatorial Indian Ocean. The ITF geostrophic transport is stronger during La Niñas and weaker during El Niños due to the influences through the Pacific waveguide. The Indian Ocean wind variability associated with the Indian Ocean Dipole (IOD) in many years offsets the Pacific ENSO influences on the ITF geostrophic transport during the developing and mature phases of El Niño and La Niña through the Indian Ocean waveguide, due to the co-varying IOD variability with ENSO. Decadal and multi-decadal changes of the geostrophic ITF transport have been revealed: there was a weakening change from the mid-1970s climate regime shift followed by a strengthening trend of about 1Sv every 10 year during 1984–2013. These decadal changes are mostly due to the ITF responses to decadal variations of the trade winds in the Pacific. Thus, Godfrey’s Island Rule, as well as other ITF proxies, appears to be able to quantify decadal variations of the ITF. Climate models project a weakening trend of the ITF under the global warming. Both climate models and downscaled ocean model show that this ITF weakening is not directly associated with the changes of the trade winds in the Pacific into the future, and the reduction of deep upwelling in the Pacific basin is mainly responsible for the ITF weakening. There is a need to amend the Island Rule to take into account the contributions from the overturning circulation which the current ITF proxies fail to capture. The implication of a weakened ITF on the Indo-Pacific Ocean circulation still needs to be assessed.
Article
Full-text available
Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.
Research
Full-text available
The biophysic and socio economic survey in the coastal area of Bali in 2015 funded by The Nature Conservancy Indonesia and BMU-Germany, in collaboration with Bali Provincial Government - Dinas Kelautan dan Perikanan, Udayana University, Warmadewa University, UNDIKSA University, BPSPL Denpasar, and support by volunteers
Article
Full-text available
Herbivory is a key process on coral reefs that can facilitate reef-building corals by excluding algae that otherwise negatively impact coral settlement, growth, and survivorship. Over the last several decades, coral cover on Caribbean reefs has declined precipitously. On many reefs, large structurally complex corals have been replaced by algae and other non-reef-building organisms, resulting in the collapse of physical structure and the loss of critical ecosystem services. The drivers of coral decline on Caribbean reefs are complex and vary among locations. On many reefs, populations of key herbivores have been greatly reduced by disease and over-fishing, and this has resulted in the proliferation of algae that hinder coral recovery following major disturbances. Yet, evidence that increases in herbivory can promote coral recovery on Caribbean reefs has been mixed. Here, we discuss key contingencies that will modify the relationships between herbivores, algae, and corals and identify critical knowledge gaps that limit our ability to predict when and where herbivores are most likely to facilitate coral persistence and recovery. Impacts of herbivores on coral reef ecosystems will vary greatly in space and time and will depend on herbivore diversity and species identity. While there are still a large number of knowledge gaps, we make several management recommendations based on our current understanding of the processes that structure reef ecosystems. Reversing the fate of Caribbean coral reefs will require the development of integrated management strategies that simultaneously address multiple stressors in addition to the impacts of fisheries on herbivore assemblages.
Article
Full-text available
Simulations of individual global climate drivers using models from the Coupled Model Intercomparison Project phase 3(CMIP3) have been examined; however, the relationship among them has not been assessed. This is carried out to address several important issues, including the likelihood of the southern annular mode (SAM) forcing Indian Ocean dipole (IOD) events and the possible impact of the IOD on El Niño-Southern Oscillation (ENSO) events. Several conclusions emerge from statistics based on multimodel outputs. First, ENSO signals project strongly onto the SAM, although ENSO-forced signals tend to peak before ENSO. This feature is similar to the situation associated with the IOD. The IOD-induced signal over southern Australia, through stationary equivalent Rossby barotropic wave trains, peak before the IOD itself. Second, there is no control by the SAM on the IOD, in contrast to what has been suggested previously. Indeed, no model produces a SAM-IOD relationship that supports a positive (negative) SAM driving a positive (negative) IOD event. This is the case even in models that do not simulate a statistically significant relationship between ENSO and the IOD. Third, the IOD does have an impact on ENSO. The relationship between ENSO and the IOD in the majority of models is far weaker than the observed. However, the ENSO's influence on the IOD is boosted by a spurious oceanic teleconnection, whereby ENSO discharge-recharge signals transmit to the Sumatra-Java coast, generating thermocline anomalies and changing IOD properties. Without the spurious oceanic teleconnection, the influence of the IOD on ENSO is comparable to the impact of ENSO on the IOD. Other model deficiencies are discussed.
Article
Full-text available
A feedback process of the Indian Ocean SST on ENSO is investigated by using observed data and atmospheric GCM. It is suggested that warming in the Indian Ocean produces an easterly wind stress anomaly over Indonesia and the western edge of the Pacific during the mature phase of El Niño. The anomalous easterly wind in the western Pacific during El Niño helps a rapid termination of El Niño and a fast transition to La Niña by generating upwelling Kelvin waves. Thus, warming in the Indian Ocean, which is a part of the El Niño signal, operates as a negative feedback mechanism to ENSO. This Indian Ocean feedback appears to operate mostly for relatively strong El Niños and results in a La Niña one year after the mature phase of the El Niño. This 1-yr period of phase transition implies a possible role of Indian Ocean-ENSO coupling in the biennial tendency of the ENSO. Atmospheric GCM experiments show that Indian Ocean SST forcing is mostly responsible for the easterly wind anomalies in the western Pacific.
Book
Located between the Pacific and Indian Oceans, and between the Asian and Australian continents, the seas of the Indonesian Archipelago have a significant role in global weather patterns and oceanic circulation. The dynamic interplay between geological, physical, chemical, and biological processes, past and present, has given rise to one of the most diverse marine regions on the planet. The exceptional marine and coastal ecosystem diversity of the Indonesian archipelago provides hundreds of habitats that support thousands of species. This treasure-trove of marine biodiversity has sustained the people of the archipelago for thousands of years. Population growth and socio-economic development place many of these resources at increasing risk of overexploitation. Using maps and numerous illustrations, The Ecology of the Indonesian Seas describes the complex and ecologically vulnerable coastal and marine ecosystems of the region in rich detail. Discussion of development, resource use and ecologically sustainable management plans is also incorporated. The first step towards sustainable use of marine and coastal resources, this book will be a valuable tool for ecologists, marine biologists, resource managers, government planners, and all those with an interest in the ecology of the region. Bound in two parts, of which this is the second, The Ecology of the Indonesian Seas is part of The Ecology of Indonesia Series.