ArticlePDF Available

Abstract

The objective of the study is to determine whether the scientific literature in the field of heavy truck maintenance parallels current development trends in maintenance. For this purpose, models related to fleet maintenance were analysed in terms of cost optimization, decision-making support and improving employees’ maintenance competencies. The analysis underlines the lack of research in the studied field and highlights the scientific gap in the development of methodological approaches to improving the competencies of truck drivers as important entities in the process of detection and elimination of technical issues. The analysis of heavy truck maintenance issues therefore serves as empirical support for the improvement of maintenance processes in the addressed industry as well as in logistics in general. The resulting research also synthesizes the scientific literature in the field of fleet maintenance, which represents an important support for future empirical studies.
24








2

2




Key words:







            

        
        
    
 


1 Introduction
       

       
        
        
 
       
     
󰆀󰆀
      
   

       


       
  
         





     
       
 

       
   
         


      
 
      
       
  

      





S. Škerlič et al. 
       
        
        
    
     
 



         
     

    
        
       
   

 




         
       
       
  
       
        
 
        


2 Literature review: Development of the modern
maintenance function
      

       




      
      
       

    


    


      
       




  



          

      


    
        
      

       
        

 


        
     
      


        
       

        
     

      
       

       


        
      





      









  

S. Škerlič et al. 







      
      
         
Figure 1
Source: 
Figure 2
Source:

S. Škerlič et al. 
 
     

 
       


       
        


        

       

        


         
 


        
 
 

        


      
          
      
       
        
   
     

     


      


       
    


      
      
   
  
       
      

Figure 3
Source:

S. Škerlič et al. 
       
      

  
       
     
  

3 Methodology
      
       

       
        



    
        
          
 
       


        
    

4 Results
      
        

   




     
   
     
   
       
  


Table 1
Author Model description Orientation
Costs Human resources Organisation – DS

  NO NO YES



 YES NO YES



 YES NO NO



 YES NO YES





YES NO YES




YES NO NO





NO NO YES




YES YES YES



 YES NO YES

  YES NO YES
 
 NO NO YES
Source: 

S. Škerlič et al. 
       
    


       


 

5 Discussion and conclusions


      
     
     




        
       
    

        


   

          


  
        

       
 


       
     

  

         
     
         
        


         


          
        
      
       

         

        
     
       

      

   
  
Figure 4
Source:

S. Škerlič et al. 

        
    

    

      
 

      

         
         
 
      
          
   
    


       

    
        
      

       

      


References
      
      


  


 
       

   
     
    


  
       

   

        

  

 
      
     

  
        

       

 
 
       

    
     
      


 


   

        

   

        
        
   
     

   
      

   

       
      

   
 
       
     

  
 

    

       
    
      

      

      
    

       
      


S. Škerlič et al. 
   

     

         


 


    
        

      
        
     
       

  
        

         


           

 

    

 

  
      


   
 

 


... Until now research on autonomous trucks has been limited, but there is a rapidly growing interest [27]. More specifically, scientific research that deals with the maintenance of autonomous trucks is very sparse, or even lacking [33]. However, for the practicability of autonomous trucks in the real world, it is critical to facilitate them with effective maintenance planning schemes. ...
... A recent literature review in the area of maintenance management performance demonstrates the need for detailed quantitative analyses to properly choose the maintenance strategy [29]. Moreover, analyses in [33] show that scientific research that deals with truck maintenance, especially modern truck maintenance guidelines are lacking. With the development of AV technologies, new demands and research topics for fault handling and maintenance planning are emerging. ...
... Therefore, we conduct a sensitivity analysis of the variance of RUL. The variance and the expectation of the estimated RUL with a distribution ( ) are Var = 2 (33) and ...
Preprint
New autonomous driving technologies are emerging every day and some of them have been commercially applied in the real world. While benefiting from these technologies, autonomous trucks are facing new challenges in short-term maintenance planning, which directly influences the truck operator's profit. In this paper, we implement a vehicle health management system by addressing the maintenance planning issues of autonomous trucks on a transport mission. We also present a maintenance planning model using a risk-based decision-making method, which identifies the maintenance decision with minimal economic risk of the truck company. Both availability losses and maintenance costs are considered when evaluating the economic risk. We demonstrate the proposed model by numerical experiments illustrating real-world scenarios. In the experiments, compared to three baseline methods, the expected economic risk of the proposed method is reduced by up to $47\%$. We also conduct sensitivity analyses of different model parameters. The analyses show that the economic risk significantly decreases when the estimation accuracy of remaining useful life, the maximal allowed time of delivery delay before order cancellation, or the number of workshops increases. The experiment results contribute to identifying future research and development attentions of autonomous trucks from an economic perspective.
... A recent literature review of maintenance approaches revealed the need for detailed quantitative analyses to properly choose the maintenance strategy [21]. Analyses in [22] showed that scientific research that deals with heavy vehicle maintenance, especially modern truck maintenance guidelines are lacking. In [23], the necessity to study the use of emerging technologies in vehicle maintenance was identified, especially data processing and communications technologies. ...
Preprint
Full-text available
With the development of vehicular technologies on automation, electrification, and digitalization, vehicles are becoming more intelligent while being exposed to more complex, uncertain, and frequently occurring faults. In this paper, we look into the maintenance planning of an operating vehicle under fault condition and formulate it as a multi-criteria decision-making problem. The maintenance decisions are generated by route searching in road networks and evaluated based on risk assessment considering the uncertainty of vehicle breakdowns. Particularly, we consider two criteria, namely the risk of public time loss and the risk of mission delay, representing the concerns of the public sector and the private sector, respectively. A public time loss model is developed to evaluate the traffic congestion caused by a vehicle breakdown and the corresponding towing process. The Pareto optimal set of non-dominated decisions is derived by evaluating the risk of the decisions. We demonstrate the relevance of the problem and the effectiveness of the proposed method by numerical experiments derived from real-world scenarios. The experiments show that neglecting the risk of vehicle breakdown on public roads can cause a high risk of public time loss in dense traffic flow. With the proposed method, alternate decisions can be derived to reduce the risks of public time loss significantly with a low increase in the risk of mission delay. This study aims at catalyzing public-private partnership through collaborative decision-making between the private sector and the public sector, thus archiving a more sustainable transportation system in the future.
Article
New autonomous driving technologies are emerging every day and some of them have been commercially applied in the real world. While benefiting from these technologies, autonomous trucks are facing new challenges in short-term maintenance planning, which directly influences the truck operator’s profit. In this paper, we implement a vehicle health management system by addressing the maintenance planning issues of autonomous trucks on a transport mission. We also present a maintenance planning model using a risk-based decision-making method, which identifies the maintenance decision with minimal economic risk of the truck company. Both availability losses and maintenance costs are considered when evaluating the economic risk. We demonstrate the proposed model by numerical experiments illustrating real-world scenarios. In the experiments, compared to three baseline methods, the expected economic risk of the proposed method is reduced by up to 47%. We also conduct sensitivity analyses of different model parameters. The analyses show that the economic risk significantly decreases when the estimation accuracy of remaining useful life, the maximal allowed time of delivery delay before order cancellation, or the number of workshops increases. The experiment results contribute to identifying future research and development attentions of autonomous trucks from an economic perspective.
Article
Full-text available
The efficiency of maintenance processes in an enterprise largely depends on ensuring adequate resources for its implementation. The main factor that affects the quality of these processes is competent employees. Their knowledge, skills and ability to respond to unexpected situations largely determine the efficiency of the functioning of the technical infrastructure in an enterprise. In the light of the prospects for the development of the Industry 4.0 concept, and, thus, for the development of highly automated systems, the demand for qualified maintenance employees will increase. Therefore, in order to ensure the right level of competency of maintenance workers, through the proper assessment and identification of their competency gap, is an important task of managers. In many enterprises this is not implemented. The aim of the presented work was to developed a comprehensive model of the competency assessment of maintenance workers. The implementation of the developed model enables the identification of the current level of employees' competencies and identification of the competency gap, as well as it allows to assess the effects of a failure to meet the required level of competency. Additionally, the results of the identification of the real activities taken by the surveyed enterprises concerning the competency assessment of maintenance services employees are presented in this article. The study was carried out in manufacturing enterprises in different industries on a specific area. The results were analysed and presented in a graphic form.
Article
Full-text available
Managing maintenance within an economical short-termism framework, without considering the consequential long-term cost effect, is very common in industry. This research presents a novel conceptual system dynamics model for the study of the dynamic behaviors of maintenance performance and costs, which aims to illuminate insights for the support of the long-term, strategic development of manufacturing maintenance. By novel, we claim the model promotes a system’s view of maintenance costs that include its dynamic consequential costs as the combined result of several interacting maintenance levels throughout the constituent feedback structures. These range from the applied combination of maintenance methodologies to the resulting proactiveness in production, which is based on the rate of continuous improvements arising from the root cause analyses of breakdowns. The purpose of using system dynamics is to support the investigations of the causal relationships between strategic initiatives and performance results, and to enable analyses that take into consideration the time delays between different actions, in order to support the sound formulation of policies to develop maintenance and production performances. The model construction and validation process has been supported by two large maintenance organizations operating in the Swedish automotive industry. Experimental results show that intended changes can have both short and long-term consequences, and that obvious and hidden dynamic behavioral effects, which have not been reported in the literature previously, may be in the system. We believe the model can help to illuminate the holistic value of maintenance on the one hand and support its strategic development as well as the organizational transformation into proactiveness on the other.
Article
Full-text available
Today, executives from the system of maintenance of technical systems for special purposes (military combat vehicles), are trying to improve their organizational processes and create competitive advantage through increasing the quality of maintenance services (increase effectiveness), reducing the total cost (increase efficiency) and reduce the maintenance cycle-time. One of the possible ways for improvements in the maintenance system is the application of lean concept of maintenance, by usage of different tools as 5S, Layout, Visual systems, Kanban and new developed “Technical system maintenance” tool. In order to gain a better understanding of this concept, the paper presents a new developed maintenance model for the application of the lean concept in the real maintenance system. The results of empirical and experimental testing of the proposed model are analysed based on Analysed of methods and effects of improvements (IMEA), Benchmarking methods and multi-criteria, 22 analysis by using the statistical software application MINITAB. The special character of experimental testing are obtained regression equations that describe the changes of the duration of the maintenance cycle, depending on the applied lean tools. The obtained results show that the duration of maintenance cycle is reduced for about 23%, the improvement of maintenance effectiveness is around 14% and the efficiency is showing an upward trend. © 2017, Polish Academy of Sciences Branch Lublin. All rights reserved.
Article
Full-text available
The introductory part of this paper offers an overview of approaches on general marine maintenance and clarifies the significance of modern maintenance techniques, as well as their application in shipping practice. Unplanned down times and accidents, which result from inappropriate maintenance, create additional expenses. In today’s shipping practice the widely shared concept of planned maintenance is not the most effective of the approaches. The appropriate maintenance system needs to prevent or reduce down times. Modern condition-based and reliability-centered maintenance systems recognize the market demand for a better ratio of the invested funds and complex tasks that the maintenance systems need to fulfill. The paper further analyses the possibilities of adjusting the maintenance intervals, which are shown on the example of a modern system for cargo liquefaction on a liquefied petroleum gas tanker.
Article
Full-text available
In this paper, we model preventive maintenance strategies for equipment composed of multi-non-identical components which have different time-to-failure probability distribution, by using a Markov decision process (MDP). The originality of this paper resides in the fact that a Monte Carlo reinforcement learning (MCRL) approach is used to find the optimal policy for each different strategy. The approach is applied to an already existing published application which deals with a fleet of military trucks. The fleet consists of a group of similar trucks that are composed of non-identical components. The problem is formulated as a MDP and solved by a MCRL technique. The advantage of this modeling technique when compared to the published one is that there is no need to estimate the main parameters of the model, for example the estimation of the transition probabilities. These parameters are treated as variables and they are found by the modeling technique, while searching for the optimal solution. Moreover, the technique is not bounded by any explicit mathematical formula, and it converges to the optimal solution whereas the previous model optimizes the replacement policy of each component separately, which leads to a local optimization. The results show that by using the reinforcement learning approach, we are able of getting a 36.44 % better solution that is less downtime.
Article
Attending the important role of maintenance function in any production or service provider company, the measurement and assessment of maintenance performance is crucial for competitiveness and future survival. That situation is even more critical in urban transport fleets where some specific boundary conditions and special characteristics will affect maintenance policy and implementation. This paper presents a deep review of different studies worldwide to define the most proper and effective maintenance performance indicators, selecting and refining the most important ones to obtain a reduced maintenance management balanced scorecard. That balanced scorecard is proposed as a main tool for urban transport fleet maintenance managers to assess efficiency and effectiveness of maintenance processes and will be used as a basis for a future benchmarking process for this type of companies. © 2019, Polish Academy of Sciences Branch Lublin. All rights reserved.
Purpose The purpose of this paper is to determine the relationship between total productive maintenance (TPM), kaizen event (KE) and innovation performance (IP) for Malaysian automotive industry using structural equation modeling (SEM). Design/methodology/approach The samples were selected from the list of Proton and Perodua automotive industry. The number of collected respondents was 238 respondents. An SEM technique was used in the study. In order to test the reliability and validity of the instrument, reliability analysis, exploratory and confirmatory factor analysis were conducted. Findings Based on the results, KE does not affect the relationship between TPM and IP. However, the impact of TPM on IP increases with mediating of KE for Malaysian automotive industry. Thus, this study has shown that empirical test results prove that the implementation of TPM and KE has improved the IP for Malaysian automotive industry. Research limitations/implications This study only focused on the Malaysian automotive industry. The other limitation in this research is the number of factors and limited measurement in this study. Only a few TPM, KE and IP measurements were considered. By using the SEM technique, four TPM constructs, three for KE constructs and three for IP measures were developed and verified. Therefore, this study can assist the researchers and practitioners to the practice of TPM, KE and IP for Malaysian automotive industry. Originality/value This research provides fundamental knowledge and direction for researchers in further research as well as practitioners to constantly improve IP through the implementation of TPM and KE for Malaysian automotive industry.
Article
Purpose The most costly part in an open-pit mine is the transportation of material out of the mine. The efficiency of the truck-and-shovel fleet plays a major role in cost control. The paper aims to discuss these issues. Design/methodology/approach The truck dispatching simulation model with consideration of age-based maintenance is proposed. Findings This paper underlines an impact of truck dispatching decisions and reveals remarkable differences in the total production under different approaches of operational availability. Additionally, the simulated results introduce an effective scheduled maintenance for different truck age levels. Originality/value The approach is based on a case study taking into account the stochastic equipment behavior and environment in a real open-pit mine. This approach can be used more generally in situations in which truck fleets are used to transport material.
Article
Maintenance planning is important in the automotive industry as it allows fleet owners or regular customers to avoid unexpected failures of the components. One cause of unplanned stops of heavy-duty trucks is failure in the lead–acid starter battery. High availability of the vehicles can be achieved by changing the battery frequently, but such an approach is expensive both due to the frequent visits to a workshop and also due to the component cost. Here, a data-driven method based on random survival forest (RSF) is proposed for predicting the reliability of the batteries. The dataset available for the study, covering more than 50 000 trucks, has two important properties. First, it does not contain measurements related directly to the battery health; second, there are no time series of measurements for every vehicle. In this paper, the RSF method is used to predict the reliability function for a particular vehicle using data from the fleet of vehicles given that only one set of measurements per vehicle is available. A theory for confidence bands for the RSF method is developed, which is an extension of an existing technique for variance estimation in the random forest method. Adding confidence bands to the RSF method gives an opportunity for an engineer to evaluate the confidence of the model prediction. Some aspects of the confidence bands are considered: their asymptotic behavior and usefulness in model selection. A problem of including time-related variables is addressed in this paper with the argument that why it is a good choice not to add them into the model. Metrics for performance evaluation are suggested, which show that the model can be used to schedule and optimize the cost of the battery replacement. The approach is illustrated extensively using the real-life truck data case study.