Article

Convalescent Plasma and Mesenchymal Stem Cell Therapy

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... With convalescent plasma therapy, viral neutralization and consequently decreased target organ injury is aimed. The rationale behind this treatment is basic knowledge and experience from the recent studies on MERS, SARS and H1N1 infections and several other infections at the beginning of twentieth century [20]. In Argentina it was used for the treatment of the Argentine hemorrhagic fever with very good results to reduce mortality [3] a few years ago by Dr. Julio Maiztegui. ...
... citrate) of the product should be ruled out. [20]. ...
Research Proposal
Full-text available
Based on evidence reported in systematic reviews, meta-analysis and clinical trials including systemic applied MSC, Convalescent Plasma and Dexamethasone, this triple theoretical therapy strategy appears to be safe in different conditions and situations and could prove a useful way for COVID 19 patients given their immunomodulatory and anti-inflammatory properties. This theoretical treatment stimulates our group to design a phase 1 trial for the treatment of severe pneumonia for Covid-19 in Argentina.
... The use of plasma was frequent before the development of vaccines [6]. The clinical benefits of this technology have been observed in previous large-scale viral epidemics such as Ebola, SARS, (MERS), the influenza pandemic, and other major infectious outbreaks [7], leading to a reduction in mortality in the patients [8]. The main reasons for favoring this treatment are our increased knowledge of infectious diseases in the early 20 th century, as well as our experience with MERS, SARS, and the flu. ...
Article
Full-text available
Background: Despite the fast spread of COVID-19 around the world, no definitive treatment has been found for the disease yet. Various drugs have been tried to reduce the mortality rate of the disease. In this regard, convalescent plasma therapy is a beneficial method to control the illness. Objective: This study aims to determine the outcomes of patients receiving this therapy in Bu-Ali Hospital, Qazvin, Iran. Methods: The present study is a case series of 60 samples. The samples were selected by purposive sampling method. The study was conducted after ethical approval and patients’ consent in 2020. The inclusion criteria were having a lung scan confirming the disease by an internist or infectious disease specialist, a positive PCR test, and a history of receiving plasma during treatment. Results: Out of 60 patients with COVID-19 who received convalescent plasma, 33 (55%) survived. The findings indicate that patients who received plasma and died were not significantly different from surviving patients regarding age, sex, underlying disease, and length of hospital stay (P>0.05). However, there was a significant difference between the deceased and surviving patients regarding plasma receiving time (P=0.005). Conclusion: If the convalescent plasma therapy of patients starts closer to the time of admission, the effect of therapy on reducing patient mortality will be greater.
Article
Full-text available
Importance Coronavirus disease 2019 (COVID-19) is a pandemic with no specific therapeutic agents and substantial mortality. It is critical to find new treatments. Objective To determine whether convalescent plasma transfusion may be beneficial in the treatment of critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Design, Setting, and Participants Case series of 5 critically ill patients with laboratory-confirmed COVID-19 and acute respiratory distress syndrome (ARDS) who met the following criteria: severe pneumonia with rapid progression and continuously high viral load despite antiviral treatment; Pao2/Fio2 <300; and mechanical ventilation. All 5 were treated with convalescent plasma transfusion. The study was conducted at the infectious disease department, Shenzhen Third People's Hospital in Shenzhen, China, from January 20, 2020, to March 25, 2020; final date of follow-up was March 25, 2020. Clinical outcomes were compared before and after convalescent plasma transfusion. Exposures Patients received transfusion with convalescent plasma with a SARS-CoV-2–specific antibody (IgG) binding titer greater than 1:1000 (end point dilution titer, by enzyme-linked immunosorbent assay [ELISA]) and a neutralization titer greater than 40 (end point dilution titer) that had been obtained from 5 patients who recovered from COVID-19. Convalescent plasma was administered between 10 and 22 days after admission. Main Outcomes and Measures Changes of body temperature, Sequential Organ Failure Assessment (SOFA) score (range 0-24, with higher scores indicating more severe illness), Pao2/Fio2, viral load, serum antibody titer, routine blood biochemical index, ARDS, and ventilatory and extracorporeal membrane oxygenation (ECMO) supports before and after convalescent plasma transfusion. Results All 5 patients (age range, 36-65 years; 2 women) were receiving mechanical ventilation at the time of treatment and all had received antiviral agents and methylprednisolone. Following plasma transfusion, body temperature normalized within 3 days in 4 of 5 patients, the SOFA score decreased, and Pao2/Fio2 increased within 12 days (range, 172-276 before and 284-366 after). Viral loads also decreased and became negative within 12 days after the transfusion, and SARS-CoV-2–specific ELISA and neutralizing antibody titers increased following the transfusion (range, 40-60 before and 80-320 on day 7). ARDS resolved in 4 patients at 12 days after transfusion, and 3 patients were weaned from mechanical ventilation within 2 weeks of treatment. Of the 5 patients, 3 have been discharged from the hospital (length of stay: 53, 51, and 55 days), and 2 are in stable condition at 37 days after transfusion. Conclusions and Relevance In this preliminary uncontrolled case series of 5 critically ill patients with COVID-19 and ARDS, administration of convalescent plasma containing neutralizing antibody was followed by improvement in their clinical status. The limited sample size and study design preclude a definitive statement about the potential effectiveness of this treatment, and these observations require evaluation in clinical trials.
Article
Full-text available
Human coronavirus, hCoV-19, is highly pathogenic with severe pneumonia associated with rapid virus replication. Arising in Wuhan China December 2019, the current COVID-19 epidemic has rapidly grown with person-to-person infection expanding to become a global health emergency now on pandemic scale. In mitigation of this current COVID-19 pandemic, according to Anderson et al. 2020 [1], governments will not be able to minimise both deaths from COVID-19 and the economic impact of viral spread. Keeping mortality as low as possible will be the highest priority for individuals; hence governments must put in place measures to ameliorate the inevitable economic downturn. The current global picture shows small chains of transmission in many countries and large chains resulting in extensive spread in a few countries, such as Italy, Iran, South Korea, and Japan. Most countries are likely to have spread of COVID-19, at least in the early stages, before any mitigation measures have an impact. The scale of the problem is massive. Here I consider new approaches to improve patient's biological resistance to COVID-19 using stem cells, and how benefit might be scaled and simplified using synthetic stem cells to meet logistical needs within a short time frame.
Article
Full-text available
A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs could cure or significantly improve the functional outcomes of seven patients without observed adverse effects. The pulmonary function and symptoms of these seven patients were significantly improved in 2 days after MSC transplantation. Among them, two common and one severe patient were recovered and discharged in 10 days after treatment. After treatment, the peripheral lymphocytes were increased, the C-reactive protein decreased, and the overactivated cytokine-secreting immune cells CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells disappeared in 3-6 days. In addition, a group of CD14+CD11c+CD11bmid regulatory DC cell population dramatically increased. Meanwhile, the level of TNF-α was significantly decreased, while IL-10 increased in MSC treatment group compared to the placebo control group. Furthermore, the gene expression profile showed MSCs were ACE2- and TMPRSS2- which indicated MSCs are free from COVID-19 infection. Thus, the intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.
Article
Full-text available
Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy.
Article
Background: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with respiratory virus diseases, and are currently being investigated in trials as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19. Search methods: The protocol was pre-published with the Center for Open Science and can be accessed here: osf.io/dwf53 We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trials registries to identify ongoing studies and results of completed studies on 23 April 2020 for case-series, cohort, prospectively planned, and randomised controlled trials (RCTs). Selection criteria: We followed standard Cochrane methodology and performed all steps regarding study selection in duplicate by two independent review authors (in contrast to the recommendations of the Cochrane Rapid Reviews Methods Group). We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulins. Data collection and analysis: We followed recommendations of the Cochrane Rapid Reviews Methods Group regarding data extraction and assessment. To assess bias in included studies, we used the assessment criteria tool for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events, and serious adverse events. MAIN RESULTS: We included eight studies (seven case-series, one prospectively planned, single-arm intervention study) with 32 participants, and identified a further 48 ongoing studies evaluating convalescent plasma (47 studies) or hyperimmune immunoglobulin (one study), of which 22 are randomised. Overall risk of bias of the eight included studies was high, due to: study design; small number of participants; poor reporting within studies; and varied type of participants with different severities of disease, comorbidities, and types of previous or concurrent treatments, including antivirals, antifungals or antibiotics, corticosteroids, hydroxychloroquine and respiratory support. We rated all outcomes as very low certainty, and we were unable to summarise numerical data in any meaningful way. As we identified case-series studies only, we reported results narratively. Effectiveness of convalescent plasma for people with COVID-19 The following reported outcomes could all be related to the underlying natural history of the disease or other concomitant treatment, rather than convalescent plasma. All-cause mortality at hospital discharge All studies reported mortality. All participants were alive at the end of the reporting period, but not all participants had been discharged from hospital by the end of the study (15 participants discharged, 6 still hospitalised, 11 unclear). Follow-up ranged from 3 days to 37 days post-transfusion. We do not know whether convalescent plasma therapy affects mortality (very low-certainty evidence). Improvement of clinical symptoms (assessed by respiratory support) Six studies, including 28 participants, reported the level of respiratory support required; most participants required respiratory support at baseline. All studies reported improvement in clinical symptoms in at least some participants. We do not know whether convalescent plasma improves clinical symptoms (very low-certainty evidence). Time to discharge from hospital Six studies reported time to discharge from hospital for at least some participants, which ranged from four to 35 days after convalescent plasma therapy. Admission on the intensive care unit (ICU) Six studies included patients who were critically ill. At final follow-up the majority of these patients were no longer on the ICU or no longer required mechanical ventilation. Length of stay on the ICU Only one study (1 participant) reported length of stay on the ICU. The individual was discharged from the ICU 11 days after plasma transfusion. Safety of convalescent plasma for people with COVID-19 Grade 3 or 4 adverse events The studies did not report the grade of adverse events after convalescent plasma transfusion. Two studies reported data relating to participants who had experienced adverse events, that were presumably grade 3 or 4. One case study reported a participant who had moderate fever (38.9 °C). Another study (3 participants) reported a case of severe anaphylactic shock. Four studies reported the absence of moderate or severe adverse events (19 participants). We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events One study (3 participants) reported one serious adverse event. As described above, this individual had severe anaphylactic shock after receiving convalescent plasma. Six studies reported that no serious adverse events occurred. We are very uncertain whether or not convalescent plasma therapy affects the risk of serious adverse events (very low-certainty evidence). AUTHORS' CONCLUSIONS: We identified eight studies (seven case-series and one prospectively planned single-arm intervention study) with a total of 32 participants (range 1 to 10). Most studies assessed the risks of the intervention; reporting two adverse events (potentially grade 3 or 4), one of which was a serious adverse event. We are very uncertain whether convalescent plasma is effective for people admitted to hospital with COVID-19 as studies reported results inconsistently, making it difficult to compare results and to draw conclusions. We identified very low-certainty evidence on the effectiveness and safety of convalescent plasma therapy for people with COVID-19; all studies were at high risk of bias and reporting quality was low. No RCTs or controlled non-randomised studies evaluating benefits and harms of convalescent plasma have been completed. There are 47 ongoing studies evaluating convalescent plasma, of which 22 are RCTs, and one trial evaluating hyperimmune immunoglobulin. We will update this review as a living systematic review, based on monthly searches in the above mentioned databases and registries. These updates are likely to show different results to those reported here.
Article
COVID-19 has affected the United States leading to a national emergency with health care and economic impact, propelling the country into a recession with disrupted lifestyles not seen in recent history. COVID-19 is a serious illness leading to multiple deaths in various countries including the United States. Several million Americans satisfy the Center for Disease Control and Prevention (CDC) criteria for being high risk. Unfortunately, the available supply of medical beds and equipment for mechanical ventilation are much less than is projected to be needed. The World Health Organization (WHO) and multiple agencies led by the CDC in the United States have attempted to organize intensive outbreak investigation programs utilizing appropriate preventive measures, evaluation, and treatment. The clinical spectrum of COVID-19 varies from asymptomatic forms to conditions encompassing multiorgan and systemic manifestations in terms of septic shock, and multiple organ dysfunction (MOD) syndromes. The presently approved treatments are supportive but not curative for the disease. There are multiple treatments being studied. These include vaccines, medications Remdesivir and hydroxychloroquine and potentially combination therapy. Finally, expanded umbilical cord mesenchymal stem cells or (UC-MSCs) may have a role and are being studied. The cure of COVID-19 is essentially dependent on the patients' own immune system. When the immune system is over activated in an attempt to kill the virus, this can lead to the production of a large number of inflammatory factors, resulting in severe cytokine storm. The cytokine storm may induce organ damage followed by the edema, dysfunction of air exchange, acute respiratory distress syndrome (ARDS), acute cardiac injury, and secondary infection, which may lead to death. Thus, at this point, the avoidance of the cytokine storm may be the key for the treatment of HCOV-19 infected patients.In China, where there was limited availability of effective modalities to manage COVID-19 several patients were treated with expanded UC-MSCs. Additionally, the Italian College of Anesthesia, Analgesia, Resuscitation and Intensive Care have reported guidelines to treat coronavirus patients with stem cells in the hope of decreasing the number of patients going to the ICU, and, also relatively quickly getting them out of ICU. In this manuscript, we describe the urgent need for various solutions, pathogenesis of coronavirus and the clinical evidence for treatment of COVID-19 with stem cells. The limited but emerging evidence regarding UC MSC in managing COVID-19 suggests that it might be considered for compassionate use in critically ill patients to reduce morbidity and mortality in the United States. The administration and Coronavirus Task Force might wish to approach the potential of expanded UC-MSCs as an evolutionary therapeutic strategy in managing COVID-19 illness with a 3-pronged approach: If proven safe and effective on a specific and limited basis…1. Minimize regulatory burden by all agencies so that critically ill COVID-19 patients will have access regardless of their financial circumstance.2. Institute appropriate safeguards to avoid negative consequences from unscrupulous actors.3. With proper informed consent from patients or proxy when necessary, and subject to accumulation of data in that cohort, allow the procedure to be initiated in critically ill patients who are not responding to conventional therapies.KEY WORDS: Coronavirus, COVID-19, cytokine storm, multiorgan failure, expanded umbilical cord mesenchymal stem cells.
The feasibility ofconvalescent plasma therapy in severe COVID-19 patients: apilot study
  • K Duan
  • B Liu
  • C Li
  • H Zhang
  • T Yu
  • J Qu
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. The feasibility ofconvalescent plasma therapy in severe COVID-19 patients: apilot study. medRxiv 2020.