Available via license: CC BY 3.0
Content may be subject to copyright.
© 2020 Relly Victoria Virgil Petrescu. This open access article is distributed under a Creative Commons Attribution (CC -
BY) 3.0 license.
Journal of Mechatronics and Robotics
Original Research Paper
Presentation of Four-stroke Engine Design Elements
Relly Victoria Virgil Petrescu
ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania
Article history
Received: 26-03-2020
Revised: 02-04-2020
Accepted: 24-04-2020
Email: rvvpetrescu@gmail.com
Abstract: Having escaped the shadow of the global energy crisis by
implementing nuclear fission, wind, solar, bioenergy, but also by producing and
extracting (deep) gases capable of providing us with planetary reserves for two
more. Or at least three thousand years, we have started to relax more
energetically, but due to the huge pollution produced by cars, the rules of their
increasingly drastic operation are constantly imposed, the cars always being
equipped with new devices capable of reducing the level of the harm produced
by them. The work presents a few original elements about the dynamic and
kinematics of piston mechanism, used like motor mechanism from OTTO
engines. One presents an original method to determine the efficiency of the
piston mechanism used like a motor mechanism. With the relations of motor
efficiency and piston acceleration on optimizing the Otto mechanism, which is
the principal mechanism from internal-combustion engines. This is the way to
diminish the acceleration of the piston and to maximize the efficiency of the
motor mechanism. One optimizes the constructive parameters: e, r, l, having in
view the rotation speed of drive shaft, n.
Keywords: Machines, Engines, Robots, Automation, Mechatronic
Systems, Structure, Kinematics, Dynamics, Engine Design
Introduction
The problem of replacing thermal motors with
electric motors and vehicles equipped with internal
combustion engines on gasoline, diesel or gas, with
vehicles equipped with electric motors is becoming more
and more pronounced.
Having escaped the shadow of the global energy
crisis by implementing nuclear fission, wind, solar,
bioenergy, but also by producing and extracting (deep)
gases capable of providing us with planetary reserves for
two more or at least three thousand years, we have
started to relax more energetically, but due to the huge
pollution produced by cars, the rules of their increasingly
drastic operation are constantly imposed, the cars always
being equipped with new devices capable of reducing the
level of the harm produced by them.
Today, there are possibilities to create petroleum
fuels from water or air using only photovoltaic solar
energy, which would guarantee the production of classic
fuels in any quantity to infinity, not to mention the fact
that the gas extracted from the deep can be processed (in
large plants) in liquid gases, diesel, gasoline or kerosene,
they are now extracted in huge quantities for large
periods of time, with the possibility of their permanent
restoration. In addition, the humanity that has already
tasted from the world energy crisis several times in a row
has learned the mind and has taken drastic measures that
now allow us even an energy relaxation.
One has additional fuels, bio, from vegetable oils,
from algae, from plantations, or we can use hydrogen as
a fuel and it can be extracted in any quantity by various
methods, including from the water.
Today, fuel cell-type cars are already circulating that
burn hydrogen in cells, in order not to explode and the
heat obtained is chemically transformed into electrical
energy stored in large lithium-ion batteries.
Already operating for about 20 years all kinds of
hybrid vehicles, with combined solutions, gasoline-
electric, diesel-electric, gas, gas-electric and all kinds of
other possible variants, along with cars equipped with
increasingly efficient electric motors, with increasing
autonomy and shorter loading times.
We are constantly trying and improving the solutions
with magnetic motors even though the life of the
magnetized materials is still very short. There are also
attempts to put the Watt or Stirling type external
combustion thermal engines back into operation, some of
them being successful.
In countries like Brazil, the USA, Germany, large
quantities of biofuels, such as vegetable oils or vegetable
alcohols, are used.
New and emerging solutions are always being tested,
including cars with water, which could change the face
of the world once started.
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
16
However, considering that the fleet of cars equipped
with internal combustion thermal engines has far
exceeded one billion worldwide and approximately 100
million cars equipped with the classic Otto engines are
produced and introduced into circulation annually, the
most immediate measure of reducing fuel and energy
consumption, as well as of the harm produced by all
these cars, their continuous improvement remains
(Aabadi, 2019; Antonescu and Petrescu, 1985; 1989;
Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 1994;
1997; 2000a; 2000b; 2001; Aversa et al., 2017a; 2017b;
2017c; 2017d; 2017e; 2016a; 2016b; 2016c; 2016d;
2016e; 2016f; 2016g; 2016h; 2016i; 2016j; 2016k; 2016l;
2016m; 2016n; 2016o; Cao et al., 2013; Dong et al., 2013;
Comanescu, 2010; Franklin, 1930; He et al., 2013; Lee,
2013; Lin et al., 2013; Liu et al., 2013; Padula and
Perdereau, 2013; Perumaal and Jawahar, 2013; Petrescu,
2011; 2015a; 2015b; Petrescu and Petrescu, 1995a;
1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a;
2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e;
2011a; 2011b; 2012a; 2012b; 2013a; 2013b; 2013c;
2013d; 2013e; 2016a; 2016b; 2016c; Petrescu et al.,
2009; 2016; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f;
2017g; 2017h; 2017i; 2017j; 2017k; 2017l; 2017m;
2017n; 2017o; 2017p; 2017q; 2017r; 2017s; 2017t;
2017u; 2017v; 2017w; 2017x; 2017y; 2017z; 2017aa;
2017ab; 2017ac; 2017ad; 2017ae; 2018a; 2018b; 2018c;
2018d; 2018e; 2018f; 2018g; 2018h; 2018i; 2018j;
2018k; 2018l; 2018m; 2018n; Rulkov et al., 2016;
Agarwala, 2016; Babayemi, 2016; Ben-Faress et al.,
2019; Gusti and Semin, 2016; Mohamed et al., 2016;
Wessels and Raad, 2016; Maraveas et al., 2015; Khalil,
2015; Rhode-Barbarigos et al., 2015; Takeuchi et al.,
2015; Li et al., 2015; Vernardos and Gantes, 2015;
Bourahla and Blakeborough, 2015; Stavridou et al.,
2015a; Ong et al., 2015; Dixit and Pal, 2015; Rajput et al.,
2016; Rea and Ottaviano, 2016; Zurfi and Zhang, 2016
a-b; Zheng and Li, 2016; Buonomano et al., 2016a;
2016b; Faizal et al., 2016; Ascione et al., 2016;
Elmeddahi et al., 2016; Calise et al., 2016; Morse et al.,
2016; Abouobaida, 2016; Rohit and Dixit, 2016;
Kazakov et al., 2016; Alwetaishi, 2016; Riccio et al.,
2016a; 2016b; Iqbal, 2016; Hasan and El-Naas, 2016;
Al-Hasan and Al-Ghamdi, 2016; Jiang et al., 2016;
Sepúlveda, 2016; Martins et al., 2016; Pisello et al.,
2016; Jarahi, 2016; Mondal et al., 2016; Mansour, 2016; Al
Qadi et al., 2016b; Campo et al., 2016; Samantaray et al.,
2016; Malomar et al., 2016; Rich and Badar, 2016; Hirun,
2016; Bucinell, 2016; Nabilou, 2016b; Barone et al., 2016;
Bedon and Louter, 2016; Santos and Bedon, 2016;
Fontánez et al., 2019; De León et al., 2019; Hypolite et al.,
2019; Minghini et al., 2016; Bedon, 2016; Jafari et al.,
2016; Orlando and Benvenuti, 2016; Wang and Yagi, 2016;
Obaiys et al., 2016; Ahmed et al., 2016; Jauhari et al.,
2016; Syahrullah and Sinaga, 2016; Shanmugam, 2016;
Jaber and Bicker, 2016; Wang et al., 2016; Moubarek
and Gharsallah, 2016; Amani, 2016; Shruti, 2016; Pérez-
de León et al., 2016; Mohseni and Tsavdaridis, 2016;
Abu-Lebdeh et al., 2016; Serebrennikov et al., 2016;
Budak et al., 2016; Augustine et al., 2016; Jarahi and
Seifilaleh, 2016; Nabilou, 2016a; You et al., 2016; AL
Qadi et al., 2016a; Rama et al., 2016; Sallami et al.,
2016; Huang et al., 2016; Ali et al., 2016; Kamble and
Kumar, 2016; Saikia and Karak, 2016; Zeferino et al.,
2016; Pravettoni et al., 2016; Bedon and Amadio, 2016;
Mavukkandy et al., 2016; Yeargin et al., 2016; Madani and
Dababneh, 2016; Alhasanat et al., 2016; Elliott et al., 2016;
Suarez et al., 2016; Kuli et al., 2016; Waters et al., 2016;
Montgomery et al., 2016; Lamarre et al., 2016; Daud et al.,
2008; Taher et al., 2008; Zulkifli et al., 2008;
Pourmahmoud, 2008; Pannirselvam et al., 2008; Ng et al.,
2008; El-Tous, 2008; Akhesmeh et al., 2008;
Nachiengtai et al., 2008; Moezi et al., 2008; Boucetta,
2008; Darabi et al., 2008; Semin and Bakar, 2008; Al-
Abbas, 2009; Abdullah et al., 2009; Abu-Ein, 2009;
Opafunso et al., 2009; Semin et al., 2009a; 2009b;
2009c; Zulkifli et al., 2009; Marzuki et al., 2015; Bier
and Mostafavi, 2015; Momta et al., 2015; Farokhi and
Gordini, 2015; Khalifa et al., 2015; Yang and Lin,
2015; Demetriou et al., 2015; Rajupillai et al., 2015;
Sylvester et al., 2015a; Ab-Rahman et al., 2009;
Abdullah and Halim, 2009; Zotos and Costopoulos,
2009; Feraga et al., 2009; Bakar et al., 2009; Cardu et al.,
2009; Bolonkin, 2009a; 2009b; Nandhakumar et al.,
2009; Odeh et al., 2009; Lubis et al., 2009; Fathallah and
Bakar, 2009; Marghany and Hashim, 2009; Kwon et al.,
2010; Aly and Abuelnasr, 2010; Farahani et al., 2010;
Ahmed et al., 2010; Kunanoppadon, 2010; Helmy and
El-Taweel, 2010; Qutbodin, 2010; Pattanasethanon,
2010; Fen et al., 2011; Thongwan et al., 2011;
Theansuwan and Triratanasirichai, 2011; Al Smadi, 2011;
Tourab et al., 2011; Raptis et al., 2011; Momani et al.,
2011; Ismail et al., 2011; Anizan et al., 2011; Tsolakis and
Raptis, 2011; Abdullah et al., 2011; Kechiche et al.,
2011; Ho et al., 2011; Rajbhandari et al., 2011;
Aleksic and Lovric, 2011; Kaewnai and Wongwises,
2011; Idarwazeh, 2011; Ebrahim et al., 2012;
Abdelkrim et al., 2012; Mohan et al., 2012; Abam et al.,
2012; Hassan et al., 2012; Jalil and Sampe, 2013;
Jaoude and El-Tawil, 2013; Ali and Shumaker, 2013;
Zhao, 2013; El-Labban et al., 2013; Djalel et al.,
2013; Nahas and Kozaitis, 2014; Petrescu and
Petrescu, 2014a; 2014b; 2014c; 2014d; 2014e; 2014f;
2014g; 2014h; 2014i; 2015a; 2015b; 2015c; 2015d;
2015e; 2016a; 2016b; 2016c; 2016d; Fu et al., 2015;
Al-Nasra et al., 2015; Amer et al., 2015; Sylvester et al.,
2015b; Kumar et al., 2015; Gupta et al., 2015;
Stavridou et al., 2015b; Casadei, 2015; Ge and Xu,
2015; Moretti, 2015; Wang et al., 2015; Petrescu et al.,
2017af-aj; 2018o-v; Petrescu, 2015c; 2018a-b;
Petrescu and Petrescu, 2018a-b; Petrescu and
Petrescu, 2014f; 2014g; 2014h; 2014i).
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
17
Materials and Methods
The paper presents an original method of studying
PISTON mechanisms used in internal combustion engines.
There are several diagrams, which take into account the
acceleration of the piston according to the rotation angle of
the crank. The efficiency of the entire mechanism is
specified in each diagram, so that the designer (the
motorist) can select the optimum dimensions of the
elements of the mechanism (optimum design of the
mechanism), according to the required input parameters, so
that the motor mechanism works with maximum efficiency
and keep the maximum acceleration values within normal
allowable limits, regardless of the speed at which the engine
will operate. The basic input elements (input parameters)
are the crank length, r, connecting rod length, l, piston
working axis offset relative to crank axis (motor shaft), e
and engine working speed (shaft speed). motor). The main
output parameters that need to be optimized are the piston
acceleration, a and the total mechanical efficiency of the
crank-piston-crank system, η.
The study is kinematic, but given that the total
efficiency of the motor mechanism is constantly being
pursued, it is possible to speak of a dual, kinematic-
dynamic method.
In Fig. 1 you can see the diagram of the acceleration
of the piston according to the rotation angle of the cam:
The efficiency of the motor mechanism is about 60%.
A lower r/l ratio increases the efficiency of the mechanism
and e will decrease efficiency when it takes values other
than zero. Engine speed (motor shaft) does not directly
influence the efficiency of the mechanism, but its increase
produces a rapid increase in piston acceleration. As the
peaks of the acceleration can be reduced by reducing the
ratio r/l, we will observe how this reduction of the ratio r/l,
is beneficial for both low values of acceleration as well as
high values of efficiency.
In Fig. 2 the ratio r/l decreases to 0.66 and the yield
increases to about 84%.
In Fig. 3 we continue to reduce the ratio r/l to 0.33
and we observe an increase in efficiency to 96%.
In Fig. 4 r/l becomes 0.23 and the efficiency of the
motor mechanism acquires a comfortable value of
about 98%, which would be sufficient for normal
functioning of the mechanism and any further decrease
of the r/l ratio appears as unnatural from this point of
view. (further reduction of the r/l ratio is no longer
necessary after reaching a practical efficiency of 98-
99%. However, this reduction may be required for
objective reasons when we want to greatly increase
engine speed and the maximum acceleration must be
maintained. within permissible limits, for example not to
exceed the critical threshold of 100,000 [m/s2]).
Fig. 1: Offset e = 0 and the ratio r/l = 0.96, for a working speed n = 3000 [rot/min]
Fig. 2: The ratio r/l decreases to 0.66 and the yield increases to about 84%
150000
100000
50000
0
-50000
-100000
0
100
200
300
400
30000
20000
10000
0
-10000
-20000
-30000
-40000
0
100
200
300
400
= 0.594332016; e = 0[m]; r = 0.29[m]; l = 0.3[m]; r/l = 0.96;
n = 3000[rot/min]aB [m/s2]
= 0.840472223; e = 0.1[m]; r = 0.2[m]; l = 0.3[m]; r/l = 0.66; n
= 3000[rot/min]aB [m/s2]
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
18
In Fig. 5 r/l becomes 0.16 and η = 0.99.
In Fig. 6 r/l becomes 0.1 and η = 0.99666, a yield
value that can be considered 100%.
In Fig. 7 r/l becomes 0.033 and η = 0.9996.
In Fig. 8 the deviation e takes different values
from zero e = -0.2 [m], r/l = 0.3 and the efficiency of
the motor mechanism decreases considerably η =
0.45.
Fig. 3: One continue to reduce the ratio r/l to 0.33 and we observe an increase in efficiency to 96%
Fig. 4: = r/l becomes 0.23 and the efficiency of the motor mechanism acquires a comfortable value of about 98%
Fig. 5: r/l becomes 0.16 and η = 0.99
10000
5000
0
-5000
-10000
-10000
0
100
200
300
400
= 0.990705986; e = 0[m]; r = 0.05[m]; l = 0.3[m]; r/l = 0.16; n
= 3000[rot/min]aB [m/s2]
10000
5000
0
-5000
-10000
0
100
200
300
400
= 0.96238309; e = 0[m]; r = 0.1[m]; l = 0.3[m]; r/l = 0.33; n =
3000[rot/min]aB [m/s2]
6000
4000
2000
0
-2000
-4000
-6000
-8000
-8000
0
100
200
300
400
= 0.981716576; e = 0[m]; r = 0.07[m]; l = 0.3[m]; r/l = 0.23; n
= 3000[rot/min]aB [m/s2]
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
19
Fig. 6: r/l becomes 0.1 and η = 0.99666, a yield value that can be considered 100%
Fig. 7: r/l becomes 0.033 and η = 0.9996
Fig. 8: The deviation e takes different values from zero e = -0.2 [m], r/l = 0.3 and the efficiency of the motor mechanism decreases
considerably η = 0.45
In Fig. 10e = 0.1 [m], r/l = 0.63 and η = 0.665.
In Fig. 10e = 0.27 [m], r/l = 0.066 and η = 0.174. It
can be observed that if it increases in absolute value then
the efficiency of the motor mechanism decreases
considerably. In Fig. 11e = -0.27 [m], r/l = 0.066 and the
yield is only 17.4%; For e = 0.289 [m], r/l = 0.033, η =
0.058 ie only 6% (Fig. 12).
In Fig. 13 it return to the zero-disassembly
mechanism (e = 0); r/l = 0.033 and we are now
increasing the engine speed to n = 5500 [rot/min]. The
3000
2000
1000
0
-1000
-2000
-3000
-4000
0
100
200
300
400
= 996662201; e = 0[m]; r = 0.03[m]; l = 0.3[m]; r/l = 0.10; n =
3000[rot/min]aB [m/s2]
1500
1000
500
0
-500
-1000
-1500
0
100
200
300
400
= 0.999629575; e = 0[m]; r = 0.01[m]; l = 0.3[m]; r/l = 0.033;
n = 3000[rot/min]aB [m/s2]
0
100
200
300
400
40000
30000
20000
10000
0
-10000
-20000
= 0.45001041; e = 0.2[m]; r = 0.09[m]; l = 0.3[m]; r/l = 0.3; n
= 3000[rot/min]aB [m/s2]
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
20
efficiency is the same as at the speed of 3000 [rot/min], η
= 0.9996 (Fig. 7), but the maximum piston acceleration
increases from about 1000 [m/s2] to about 3000 [m/s2].
One further increase the engine speed Fig. 14) to n =
10000 [rot/min] and obtain a maximum piston
acceleration value of approximately 10,000 [m/s2].
Fig. 9: e = 0.1 [m], r/l = 0.63 and η = 0.665
Fig. 10: e = 0.27 [m], r/l = 0.066 and η = 0.174
Fig. 11: e = -0.27 [m], r/l = 0.066 and the yield is only 17.4%
= 0.665067455; e = 0.1[m]; r = 0.19[m]; l = 0.3[m]; r/l = 0.63;
n = 3000[rot/min]aB [m/s2]
0
100
200
300
400
80000
60000
40000
20000
0
-20000
-40000
10000
8000
6000
4000
2000
0
-2000
-4000
-6000
= 0.173864401; e = 0.27[m]; r = 0.02[m]; l = 0.3[m]; r/l =
0.066; n = 3000[rot/min]aB [m/s2]
0
100
200
300
400
0
100
200
300
400
10000
8000
6000
4000
2000
0
-2000
-4000
-6000
= 0.173864401; e = 0.27[m]; r = 0.02[m]; l = 0.3[m]; r/l =
0.066; n = 3000[rot/min]aB [m/s2]
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
21
Fig. 12: e = 0.289 [m], r/l = 0.033, η = 0.058 i.e., only 6%
Fig. 13: e = 0; r/l = 0.033; increasing the engine speed to n = 5500 [rot/min]
Fig. 14: n = 10000 [rot/min] and obtain a maximum piston acceleration value of approximately 10,000 [m/s2]
15000
10000
5000
0
-5000
0
100
200
300
400
= 0.999629575; e = 0[m]; r = 0.01[m]; l = 0.3[m]; r/l = 0.033;
n = 10000[rot/min]aB [m/s2]
4000
2000
0
-2000
-4000
0
100
200
300
400
= 0.058006673; e = 0.289[m]; r = 0.01[m]; l = 0.3[m]; r/l =
0.033; n = 3000[rot/min]aB [m/s2]
15000
10000
5000
0
-5000
-10000
-15000
0
100
200
300
400
= 0.999629575; e = 0[m]; r = 0.01[m]; l = 0.3[m]; r/l = 0.033;
n = 5500[rot/min]aB [m/s2]
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
22
In Fig. 15 we raise the engine speed to the value of
20000 [rot/min] and the maximum acceleration of the
piston takes values of about 40000 [m/s2].
In Fig. 16 we raise the engine speed to 30000
[rot/min] and the maximum piston acceleration takes
about 100,000 [m/s2]. Now a threshold (critical-limit
value) has been reached for accelerations, so if we
want to continue increasing the engine speed, the only
possible way is to further decrease the ratio λ = r/l.
In Fig. 17 the r/l was reduced to only 0.01 and the
efficiency increased to about 99,997%; we remained at the
engine speed of n = 30000 [rot/min], but the maximum
acceleration decreased to only about 30000 [m/s2].
Now we can further increase the engine speed to
40,000 [rot/min] and the maximum piston acceleration
becomes about 55000 [m/s2] (Fig. 18).
In Fig. 19 shows the piston acceleration diagram for a
motor speed of 50,000 [rot/min]. The acceleration
becomes 80000 [m/s2].
Fig. 15: n = 20000 [rot/min] and the maximum acceleration of the piston takes values of about 40000 [m/s2]
Fig. 16: n = 30000 [rot/min], amax = 100,000 [m/s2]
= 0.999629575; e = 0[m]; r = 0.01[m]; l = 0.3[m];
r/l = 0.033; n = 20000[rot/min]aB [m/s2]
60000
40000
20000
0
-20000
-40000
-60000
0 100 200 300 400
= 0.999629575; e = 0[m]; r = 0.01[m]; l = 0.3[m];
r/l = 0.033; n = 30000[rot/min]aB [m/s2]
150000
100000
50000
0
-50000
-100000
-150000
0 100 200 300 400
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
23
Fig. 17: r/l = 0.01; = 99,997%; n = 30000 [rot/min], amax = 30000 [m/s2]
Fig. 18: n = 40,000 [rot/min] and the maximum piston acceleration becomes about 55000 [m/s2]
Fig. 19: n = 50,000 [rot/min]. The acceleration becomes 80000 [m/s2]
= 0.999966666; e = 0[m]; r = 0.003[m]; l = 0.3[m]; r/l
= 0.01; n = 30000[rot/min]aB [m/s2]
40000
30000
20000
10000
0
-10000
-20000
-30000
-40000
0 100 200 300 400
= 0.999966666; e = 0[m]; r = 0.003[m]; l = 0.3[m]; r/l
= 0.01; n = 40000[rot/min]aB [m/s2]
60000
40000
20000
0
-20000
-40000
-60000
0 100 200 300 400
= 0.999966666; e = 0[m]; r = 0.003[m]; l = 0.3[m]; r/l
= 0.01; n = 50000[rot/min]aB [m/s2]
100000
50000
0
-50000
-100000
0 100 200 300 400
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
24
In Fig. 20 for an engine speed of 60,000 [rot/min],
the maximum acceleration value now exceeds the critical
threshold of 100,000 [m/s2].
Now (Fig. 21) we must again reduce the dimensionless
value λ = r/l to only 0.0033; the yield becomes 0.999996
and for an engine speed of 60,000 [rot/min], the maximum
piston acceleration is 40,000 [m/s2].
At n = 70000 [rot/min], amax = 55000 [m/s2] (Fig. 22):
At n = 80000 [rot/min], amax = 70000 [m/s2], (Fig.
23):
At n = 90000 [rot/min], amax = 90000 [m/s2], (Fig.
24):
Finally at n = 100,000 [rot/min], the maximum piston
acceleration is about 110000 [m/s2], (Fig. 25).
Fig. 20: n = 60,000 [rot/min], the maximum acceleration value now exceeds the critical threshold of 100,000 [m/s2]
Fig. 21: λ = r/l to only 0.0033; the yield becomes 0.999996 and for an engine speed of 60,000 [rot/min], the maximum piston acceleration is
40,000 [m/s2]
Fig. 22: n = 70000 [rot/min], amax = 55000 [m/s2]
= 0.9999966666; e = 0[m]; r = 0.003[m]; l = 0.3[m];
r/l = 0.01; n = 60000[rot/min]aB [m/s2]
150000
100000
50000
0
-50000
-100000
-150000
0 100 200 300 400
= 0.999996296; e = 0[m]; r = 0.001[m]; l = 0.3[m]; r/l
= 0.0033; n = 60000[rot/min]aB [m/s2]
60000
40000
20000
0
-20000
-40000
-60000
0 100 200 300 400
= 0.999996296; e = 0[m]; r = 0.001[m]; l = 0.3[m]; r/l
= 0.0033; n = 70000[rot/min]aB [m/s2]
60000
40000
20000
0
-20000
-40000
-60000
0 100 200 300 400
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
25
Fig. 23: n = 80000 [rot/min], amax = 70000 [m/s2]
Fig. 24: n = 90000 [rot/min], amax = 90000 [m/s2]
Fig. 25: n = 100,000 [rot/min], amax = 110000 [m/s2]
Result and Discussion
The calculation relationships used written in the excel
program are given in Table 1.
The most interesting situations were considered so
that a builder of internal combustion thermal engines can
choose the desired case depending on the constructive
parameters desired in the design.
= 0.999996296; e = 0[m]; r = 0.001[m]; l = 0.3[m]; r/l
= 0.0033; n = 80000[rot/min]aB [m/s2]
100000
50000
0
-50000
-100000
0 100 200 300 400
= 0.999996296; e = 0[m]; r = 0.001[m]; l = 0.3[m];
r/l = 0.0033; n = 90000[rot/min]aB [m/s2]
100000
50000
0
-50000
-100000
0 100 200 300 400
= 0.999996296; e = 0[m]; r = 0.001[m]; l = 0.3[m]; r/l
= 0.0033; n = 100000[rot/min]aB [m/s2]
150000
100000
50000
0
-50000
-100000
-150000
0 100 200 300 400
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
26
Table 1: The calculation relationships
A B
1 e[m] = 0
2 r[m] = 0.001
3 l[m] = 0.3
4 ∆φ [0] = 5
5 φ [0] = = 0
6 φ [rad] = = B5*PI()/180
7 sin(φ) = = SIN(B6)
8 cos(φ) = = COS(B6)
9 cos(ψ) = = -(B1+B2*B8)/B3
10 ψ [rad] = = ACOS(B9)
11 ψ [0] = = B10*180/PI()
12 sin(ψ) = = SIN(B10)
13 yB = = B2*B7+B3*B12
14 n[rot/min] = 100000
15 ω = = PI()*B14/30
16 ψp = = -B2/B3*B7/B12*B15
17 yBp = = B2*B15*B8+B3*B16*B9
18 ψpp = = -(B2*B15^2*B8+B3*B16
^2*B9)/(B3*B12)
19 yBpp = = B3*B18*B9-B2*B15^2*B7
-B3*B16^2*B12
20 λ = = B2/B3
21 λ = r/l = B2/B3
22 uM = = ACOS(-(B1+B2)/B3)
23 um = = ACOS((B2-B1)/B3)
24 Δu = = B22-B23
25 Δsin = = SIN(2*B22)-SIN(2*B23)
26 Δsin/4/Δu = = B25/B24/4
27 η = = 1/2-B26
The computational relationships used to determine
the total mechanical efficiency of the motor mechanism
are original and they are synthesized by the authors
through a personal method.
If one try to use the reverse piston mechanism, as a
compressor mechanism and not a motor, we were
surprised to find that the calculation relationships for
determining the efficiency of the compressor
mechanism change and the values that can be obtained
for the effective efficiency of the compressor are
generally much lower. than those of the piston, the
maximums being somewhere between 50 and 60%. It
can be seen here that the use of the engine mechanism
in compressor mode is not efficient.
At the proposed engine mechanisms, at which the
ratio λ = r/l decreases greatly, the piston-h stroke
decreases and it is proportional to the crank length-r, so
if we want to keep the cylinder intact (unchanged) we
will have to increase the bore- R. For a decrease of r
times n, R will increase √ (n) times. The problem arises
only for overfilled motors, where the required cylinder
size may be smaller, so that the bore increase may be
slightly lower. Even under these conditions, very high-
speed engines will have an almost imperceptible stroke
and a very high bore.
Some diagrams of the piston acceleration, no longer
look like the conventional ones (Fig. 1, 2, 8, 9, 10, 11
and 12). Their modified appearance has been specially
introduced to highlight the different possible functional
regimes of the piston (engine) mechanism. Even if some
of them achieve very low yields, they may be usable for
some specialized mechanisms!
The OTTO piston mechanism, however, will operate at
maximum efficiency, only when used as a motor
mechanism, as if it were predestined for this mode of work.
Conclusion
Today, there are possibilities to create petroleum fuels
from water or air using only photovoltaic solar energy,
which would guarantee the production of classic fuels in
any quantity to infinity, not to mention the fact that the gas
extracted from the deep can be processed (in large plants)
in liquid gases, diesel, gasoline or kerosene, they are now
extracted in huge quantities for large periods of time, with
the possibility of their permanent restoration. In addition,
the humanity that has already tasted from the world
energy crisis several times in a row has learned the mind
and has taken drastic measures that now allow us even an
energy relaxation. We have additional fuels, bio, from
vegetable oils, from algae, from plantations, or we can use
hydrogen as a fuel and it can be extracted in any quantity
by various methods, including from the water.
Today, fuel cell-type cars are already circulating that
burn hydrogen in cells, in order not to explode and the
heat obtained is chemically transformed into electrical
energy stored in large lithium-ion batteries.
Already operating for about 20 years all kinds of
hybrid vehicles, with combined solutions, gasoline-
electric, diesel-electric, gas, gas-electric and all kinds of
other possible variants, along with cars equipped with
increasingly efficient electric motors, with increasing
autonomy and shorter loading times.
We are constantly trying and improving the solutions
with magnetic motors even though the life of the
magnetized materials is still very short.
There are also attempts to put the Watt or Stirling
type external combustion thermal engines back into
operation, some of them being successful.
In countries like Brazil, the USA, Germany, large
quantities of biofuels, such as vegetable oils or vegetable
alcohols, are used. New and emerging solutions are
always being tested, including cars with water, which
could change the face of the world once started.
However, considering that the fleet of cars equipped
with internal combustion thermal engines has far
exceeded one billion worldwide and approximately 100
million cars equipped with the classic Otto engines are
produced and introduced into circulation annually, the
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
27
most immediate measure of reducing fuel and energy
consumption, as well as of the harm produced by all
these cars, their continuous improvement remains.
The computational relationships used to determine
the total mechanical efficiency of the motor mechanism
are original and they are synthesized by the authors
through a personal method.
If one try to use the reverse piston mechanism, as a
compressor mechanism and not a motor, we were
surprised to find that the calculation relationships for
determining the efficiency of the compressor
mechanism change and the values that can be obtained
for the effective efficiency of the compressor are
generally much lower. than those of the piston, the
maximums being somewhere between 50 and 60%. It
can be seen here that the use of the engine mechanism
in compressor mode is not efficient.
At the proposed engine mechanisms, at which the ratio
λ = r/l decreases greatly, the piston-h stroke decreases and
it is proportional to the crank length-r, so if we want to
keep the cylinder intact (unchanged) we will have to
increase the bore- R. For a decrease of r times n, R will
increase √ (n) times. The problem arises only for
overfilled motors, where the required cylinder size may be
smaller, so that the bore increase may be slightly lower.
Even under these conditions, very high-speed engines will
have an almost imperceptible stroke and a very high bore.
Some diagrams of the piston acceleration, no longer
look like the conventional ones (Fig. 1, 2, 8, 9, 10, 11
and 12). Their modified appearance has been specially
introduced to highlight the different possible functional
regimes of the piston (engine) mechanism. Even if some
of them achieve very low yields, they may be usable for
some specialized mechanisms!
The OTTO piston mechanism, however, will
operate at maximum efficiency, only when used as a
motor mechanism, as if it were predestined for this
mode of work.
Acknowledgement
This text was acknowledged and appreciated by Dr.
Veturia CHIROIU Honorific member of Technical
Sciences Academy of Romania (ASTR) PhD supervisor
in Mechanical Engineering.
Funding Information
Research contract:
1. 1-Research contract: Contract number 36-5-4D/1986
from 24IV1985, beneficiary CNST RO (Romanian
National Center for Science and Technology)
Improving dynamic mechanisms
2. Contract research integration. 19-91-3 from
29.03.1991; Beneficiary: MIS; TOPIC: Research on
designing mechanisms with bars, cams and gears,
with application in industrial robots
3. Contract research. GR 69/10.05.2007: NURC in
2762; theme 8: Dynamic analysis of mechanisms
and manipulators with bars and gears
4. Labor contract, no. 35/22.01.2013, the UPB, "Stand
for reading performance parameters of kinematics
and dynamic mechanisms, using inductive and
incremental encoders, to a Mitsubishi Mechatronic
System" "PN-II-IN-CI-2012-1-0389"
All these matters are copyrighted! Copyrights: 394-
qodGnhhtej, from 17-02-2010 13:42:18; 463-
vpstuCGsiy, from 20-03-2010 12:45:30; 631-
sqfsgqvutm, from 24-05-2010 16:15:22; 933-
CrDztEfqow, from 07-01-2011 13:37:52.
Ethics
This article is original and contains unpublished
material. Author declares that are not ethical issues and
no conflict of interest that may arise after the publication
of this manuscript.
References
Aabadi, M.M.L., 2019. Dynamic reliability analysis of
steel moment frames using Monte Carlo technique.
Am. J. Eng. Applied Sci., 12: 204-213.
DOI: 10.3844/ajeassp.2019.204.213
Abam, F.I., I.U. Ugot and D.I. Igbong, 2012. Performance
analysis and components irreversibilities of a (25
MW) gas turbine power plant modeled with a spray
cooler. Am. J. Eng. Applied Sci., 5: 35-41.
DOI: 10.3844/ajeassp.2012.35.41
Abdelkrim, H., S.B. Othman, A.K.B. Salem and S.B.
Saoud, 2012. Dynamic partial reconfiguration
contribution on system on programmable chip
architecture for motor drive implementation. Am. J.
Eng. Applied Sci., 5: 15-24.
DOI: 10.3844/ajeassp.2012.15.24
Abdullah, H. and S.A. Halim, 2009. Electrical and
magnetoresistive studies Nd doped on La-Ba-Mn-O3
manganites for low-field sensor application. Am. J.
Eng. Applied Sci., 2: 297-303.
DOI: 10.3844/ajeassp.2009.297.303
Abdullah, M., A.F.M. Zain, Y.H. Ho and S. Abdullah,
2009. TEC and scintillation study of equatorial
ionosphere: A month campaign over sipitang and
parit raja stations, Malaysia. Am. J. Eng. Applied
Sci., 2: 44-49. DOI: 10.3844/ajeassp.2009.44.49
Abdullah, M.Z., A. Saat and Z. Hamzah, 2011.
Optimization of energy dispersive x-ray
fluorescence spectrometer to analyze heavy metals
in moss samples. Am. J. Eng. Applied Sci., 4: 3
55-362. DOI: 10.3844/ajeassp.2011.355.362
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
28
Abouobaida, H., 2016. Robust and efficient controller to
design a standalone source supplied DC and AC
load powered by photovoltaic generator. Am. J.
Eng. Applied Sci., 9: 894-901.
DOI: 10.3844/ajeassp.2016.894.901
Ab-Rahman, M.S., H. Guna, M.H. Harun, S.D. Zan and
K. Jumari, 2009. Cost-effective fabrication of self-
made 1×12 polymer optical fiber-based optical
splitters for automotive application. Am. J. Eng.
Applied Sci., 2: 252-259.
DOI: 10.3844/ajeassp.2009.252.259
Abu-Ein, S., 2009. Numerical and analytical study of
exhaust gases flow in porous media with applications
to diesel particulate filters. Am. J. Eng. Applied Sci., 2:
70-75. DOI: 10.3844/ajeassp.2009.70.75
Abu-Lebdeh, M., G. Pérez-de León, S.A. Hamoush,
R.D. Seals and V.E. Lamberti, 2016. Gas
atomization of molten metal: Part II. Applications.
Am. J. Eng. Applied Sci., 9: 334-349.
DOI: 10.3844/ajeassp.2016.334.349
Agarwala, S., 2016. A perspective on 3D bioprinting
technology: Present and future. Am. J. Eng. Applied
Sci., 9: 985-990. DOI: 10.3844/ajeassp.2016.985.990
Ahmed, M., R. Khan, M. Billah and S. Farhana, 2010. A
novel navigation algorithm for hexagonal hexapod
robot. Am. J. Eng. Applied Sci., 3: 320-327.
DOI: 10.3844/ajeassp.2010.320.327
Ahmed, M.K., H. Haque and H. Rahman, 2016. An
approach to develop a dynamic job shop scheduling
by fuzzy rule-based system and comparative study
with the traditional priority rules. Am. J. Eng.
Applied Sci., 9: 202-212.
DOI: 10.3844/ajeassp.2016.202.212
Akhesmeh, S., N. Pourmahmoud and H. Sedgi, 2008.
Numerical study of the temperature separation in the
ranque-hilsch vortex tube. Am. J. Eng. Applied Sci.,
1: 181-187. DOI: 10.3844/ajeassp.2008.181.187
Al Qadi, A.N.S., M.B.A. Alhasanat and M. Haddad,
2016b. Effect of crumb rubber as coarse and fine
aggregates on the properties of asphalt concrete.
Am. J. Eng. Applied Sci., 9: 558-564.
DOI: 10.3844/ajeassp.2016.558.564
Al Qadi, A.N.S., M.B.A. ALhasanat, A. AL Dahamsheh
and S. AL Zaiydneen, 2016a. Using of box-benken
method to predict the compressive strength of self-
compacting concrete containing Wadi Musa
bentonite, Jordan. Am. J. Eng. Applied Sci., 9:
406-411. DOI: 10.3844/ajeassp.2016.406.411
Al Smadi, T.A., 2011. Low cost smart sensor design.
Am. J. Eng. Applied Sci., 4: 162-168.
DOI: 10.3844/ajeassp.2011.162.168
Al-Abbas, I.K., 2009. Reduced order models of a current
source inverter induction motor drive. Am. J. Eng.
Applied Sci., 2: 39-43.
DOI: 10.3844/ajeassp.2009.39.43
Aleksic, S. and A. Lovric, 2011. Energy consumption
and environmental implications of wired access
networks. Am. J. Eng. Applied Sci., 4: 531-539.
DOI: 10.3844/ajeassp.2011.531.539
Al-Hasan and A.S. Al-Ghamdi, 2016. Energy balance for a
diesel engine operates on a pure biodiesel, diesel fuel
and biodiesel-diesel blends. Am. J. Eng. Applied Sci.,
9: 458-465. DOI: 10.3844/ajeassp.2016.458.465
Alhasanat, M.B., A.N. Al Qadi, O.A. Al Khashman and
A. Dahamsheh, 2016. Scanning electron microscopic
evaluation of self-compacting concrete spalling at
elevated temperatures. Am. J. Eng. Applied Sci., 9:
119-127. DOI: 10.3844/ajeassp.2016.119.127
Ali, G.A.M., O. Fouad and S.A. Makhlouf, 2016. Electrical
properties of cobalt oxide/silica nanocomposites
obtained by sol-gel technique. Am. J. Eng. Applied
Sci., 9: 12-16. DOI: 10.3844/ajeassp.2016.12.16
Ali, K.S. and J.L. Shumaker, 2013. Hardware in the loop
simulator for multi-agent unmanned aerial vehicles
environment. Am. J. Eng. Applied Sci., 6: 172-177.
DOI: 10.3844/ajeassp.2013.172.177
Al-Nasra, M.D. and T.M. Abu-Lebdeh, 2015. The use of
the super absorbent polymer as water blocker in
concrete structures. Am. J. Eng. Applied Sci., 8:
659-665. DOI: 10.3844/ajeassp.2015.659.665
Alwetaishi, M.S., 2016. Impact of building function on
thermal comfort: A review paper. Am. J. Eng.
Applied Sci., 9: 928-945.
DOI: 10.3844/ajeassp.2016.928.945
Aly, W.M. and M.S. Abuelnasr, 2010. Electronic design
automation using object oriented electronics. Am. J.
Eng. Applied Sci., 3: 121-127.
DOI: 10.3844/ajeassp.2010.121.127
Amani, N., 2016. Design and implementation of
optimum management system using cost evaluation
and financial analysis for prevention of building
failure. Am. J. Eng. Applied Sci., 9: 281-296.
DOI: 10.3844/ajeassp.2016.281.296
Amer, S., S. Hamoush and T.M. Abu-Lebdeh, 2015.
Experimental evaluation of the raking energy in
damping system of steel stud partition walls. Am. J.
Eng. Applied Sci., 8: 666-677.
DOI: 10.3844/ajeassp.2015.666.677
Anizan, S., K. Yusri, C.S. Leong, N. Amin and S. Zaidi
et al., 2011. Effects of the contact resistivity
variations of the screen-printed silicon solar cell.
Am. J. Eng. Applied Sci., 4: 328-331.
DOI: 10.3844/ajeassp.2011.328.331
Antonescu, P. and F. Petrescu, 1985. An analytical
method of synthesis of cam mechanism and flat
stick. Proceedings of the 4th International
Symposium on Theory and Practice of Mechanisms,
(TPM’ 89), Bucharest.
Antonescu, P. and F. Petrescu, 1989. Contributions to
kinetoplast dynamic analysis of distribution
mechanisms. Bucharest.
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
29
Antonescu, P., F. Petrescu and D. Antonescu, 1997.
Geometrical synthesis of the rotary cam and balance
tappet mechanism. Bucharest, 3: 23-23.
Antonescu, P., F. Petrescu and O. Antonescu, 1994.
Contributions to the synthesis of the rotating cam
mechanism and the tip of the balancing tip. Brasov.
Antonescu, P., F. Petrescu and O. Antonescu, 2000a.
Contributions to the synthesis of the rotary disc-cam
profile. Proceedings of the 8th International
Conference on the Theory of Machines and
Mechanisms, (TMM’ 00), Liberec, Czech Republic,
pp: 51-56.
Antonescu, P., F. Petrescu and O. Antonescu, 2000b.
Synthesis of the rotary cam profile with balance
follower. Proceedings of the 8th Symposium on
Mechanisms and Mechanical Transmissions,
(MMT’ 00), Timişoara, pp: 39-44.
Antonescu, P., F. Petrescu and O. Antonescu, 2001.
Contributions to the synthesis of mechanisms with
rotary disc-cam. Proceedings of the 8th IFToMM
International Symposium on Theory of Machines
and Mechanisms, (TMM’ 01), Bucharest,
ROMANIA, pp: 31-36.
Antonescu, P., M. Oprean and F. Petrescu, 1985a.
Contributions to the synthesis of oscillating cam
mechanism and oscillating flat stick. Proceedings of
the 4th International Symposium on Theory and
Practice of Mechanisms, (TPM’ 85), Bucharest.
Antonescu, P., M. Oprean and F. Petrescu, 1985b. At the
projection of the oscillate cams, there are
mechanisms and distribution variables. Proceedings
of the 5th Conference of Engines, Automobiles,
Tractors and Agricultural Machines, (TAM’ 58), I-
Motors and Cars, Brasov.
Antonescu, P., M. Oprean and F. Petrescu, 1986.
Projection of the profile of the rotating camshaft
acting on the oscillating plate with disengagement.
Proceedings of the 3rd National Computer-aided
Design Symposium in the field of Mechanisms and
Machine Parts, (MMP’ 86), Brasov.
Antonescu, P., M. Oprean and F. Petrescu, 1987.
Dynamic analysis of the cam distribution
mechanisms. Proceedings of the 7th National
Symposium on Industrial Robots and Space
Mechanisms, (RSM’ 87), Bucharest.
Antonescu, P., M. Oprean and F. Petrescu, 1988.
Analytical synthesis of Kurz profile, rotating the flat
cam. Mach, Build. Rev.
Ascione, F., N. Bianco, R.F. De Masi, F. de Rossi and C.
De Stasio et al., 2016. Energy audit of health care
facilities: Dynamic simulation of energy
performances and energy-oriented refurbishment of
system and equipment for microclimatic control.
Am. J. Eng. Applied Sci., 9: 814-834.
DOI: 10.3844/ajeassp.2016.814.834
Augustine, A., R.D. Prakash, R. Xavier and M.C.
Parassery, 2016. Review of signal processing
techniques for detection of power quality events.
Am. J. Eng. Applied Sci., 9: 364-370.
DOI: 10.3844/ajeassp.2016.364.370
Aversa, R., F.I.T. Petrescu, R.V. Petrescu and A.
Apicella, 2016a. Biomimetic FEA bone modeling
for customized hybrid biological prostheses
development. Am. J. Applied Sci., 13: 1060-1067.
DOI: 10.3844/ajassp.2016.1060.1067
Aversa, R., D. Parcesepe, R.V. Petrescu, G. Chen and
F.I.T. Petrescu et al., 2016b. Glassy amorphous
metal injection molded induced morphological
defects. Am. J. Applied Sci., 13: 1476-1482.
DOI: 10.3844/ajassp.2016.1476.1482.
Aversa, R., R.V. Petrescu, F.I.T. Petrescu and A. Apicella,
2016c. Smart-factory: Optimization and process
control of composite centrifuged pipes. Am. J. Applied
Sci., 13: 1330-1341.
DOI: 10.3844/ajassp.2016.1330.1341
Aversa, R., F. Tamburrino, R.V. Petrescu, F.I.T.
Petrescu and M. Artur et al., 2016d.
Biomechanically inspired shape memory effect
machines driven by muscle like acting NiTi
alloys. Am. J. Applied Sci., 13: 1264-1271.
DOI: 10.3844/ajassp.2016.1264.1271
Aversa, R., E.M. Buzea, R.V. Petrescu, A. Apicella and
M. Neacsa et al., 2016e. Present a mechatronic
system having able to determine the concentration
of carotenoids. Am. J. Eng. Applied Sci., 9:
1106-1111. DOI: 10.3844/ajeassp.2016.1106.1111
Aversa, R., R.V. Petrescu, R. Sorrentino, F.I.T. Petrescu
and A. Apicella, 2016f. Hybrid ceramo-polymeric
nanocomposite for biomimetic scaffolds design and
preparation. Am. J. Eng. Applied Sci., 9: 1096-1105.
DOI: 10.3844/ajeassp.2016.1096.1105
Aversa, R., V. Perrotta, R.V. Petrescu, C. Misiano and
F.I.T. Petrescu et al., 2016g. From structural colors to
super-hydrophobicity and achromatic transparent
protective coatings: Ion plating plasma assisted TiO2
and SiO2 nano-film deposition. Am. J. Eng. Applied
Sci., 9: 1037-1045.
DOI: 10.3844/ajeassp.2016.1037.1045
A Aversa, R., R.V. Petrescu, F.I.T. Petrescu and A.
Apicella, 2016h. Biomimetic and evolutionary
design driven innovation in sustainable products
development. Am. J. Eng. Applied Sci., 9: 1027-1036.
DOI: 10.3844/ajeassp.2016.1027.1036
Aversa, R., R.V. Petrescu, A. Apicella and F.I.T.
Petrescu, 2016i. Mitochondria are naturally micro
robots - a review. Am. J. Eng. Applied Sci., 9:
991-1002. DOI: 10.3844/ajeassp.2016.991.1002
versa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu,
2016j. We are addicted to vitamins C and E-A
review. Am. J. Eng. Applied Sci., 9: 1003-1018.
DOI: 10.3844/ajeassp.2016.1003.1018
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
30
Aversa, R., R.V. Petrescu, A. Apicella and F.I.T.
Petrescu, 2016k. Physiologic human fluids and
swelling behavior of hydrophilic biocompatible
hybrid ceramo-polymeric materials. Am. J. Eng.
Applied Sci., 9: 962-972.
DOI: 10.3844/ajeassp.2016.962.972
Aversa, R., R.V. Petrescu, A. Apicella and F.I.T.
Petrescu, 2016l. One can slow down the aging
through antioxidants. Am. J. Eng. Applied Sci., 9:
1112-1126. DOI: 10.3844/ajeassp.2016.1112.1126
Aversa, R., R.V. Petrescu, A. Apicella and F.I.T.
Petrescu, 2016m. About homeopathy or ≪Similia
Similibus Curentur≫. Am. J. Eng. Applied Sci., 9:
1164-1172. DOI: 10.3844/ajeassp.2016.1164.1172
Aversa, R., R.V. Petrescu, A. Apicella and F.I.T.
Petrescu, 2016n. The basic elements of life's. Am. J.
Eng. Applied Sci., 9: 1189-1197.
DOI: 10.3844/ajeassp.2016.1189.1197
Aversa, R., F.I.T. Petrescu, R.V. Petrescu and A.
Apicella, 2016o. Flexible stem trabecular
prostheses. Am. J. Eng. Applied Sci., 9: 1213-1221.
DOI: 10.3844/ajeassp.2016.1213.122
Aversa, R., R.V.V. Petrescu, A. Apicella and F.I.T.
Petrescu, 2017a. Nano-diamond hybrid materials for
structural biomedical application. Am. J. Biochem.
Biotechnol., 13: 34-41.
DOI: 10.3844/ajbbsp.2017.34.41
Aversa, R., R.V. Petrescu, B. Akash, R.B. Bucinell and
J.M. Corchado et al., 2017b. Kinematics and forces
to a new model forging manipulator. Am. J. Applied
Sci., 14: 60-80. DOI: 10.3844/ajassp.2017.60.80
Aversa, R., R.V. Petrescu, A. Apicella, F.I.T. Petrescu
and J.K. Calautit et al., 2017c. Something about the
V engines design. Am. J. Applied Sci., 14: 34-52.
DOI: 10.3844/ajassp.2017.34.52
Aversa, R., D. Parcesepe, R.V.V. Petrescu, F. Berto and
G. Chen et al., 2017d. Process ability of bulk
metallic glasses. Am. J. Applied Sci., 14: 294-301.
DOI: 10.3844/ajassp.2017.294.301
Aversa, R., R.V.V. Petrescu, B. Akash, R.B. Bucinell
and J.M. Corchado et al., 2017e. Something about
the balancing of thermal motors. Am. J. Eng.
Applied Sci., 10: 200.217.
DOI: 10.3844/ajeassp.2017.200.217
Babayemi, A.K., 2016. Thermodynamics, non-linear
isotherms, statistical modeling and optimization of
phosphorus adsorption from wastewater. Am. J.
Eng. Applied Sci., 9: 1019-1026.
DOI: 10.3844/ajeassp.2016.1019.1026
Bakar, R.A., M.K. Mohammed and M.M. Rahman,
2009. Numerical study on the performance
characteristics of hydrogen fueled port injection
internal combustion engine. Am. J. Eng. Applied
Sci., 2: 407-415.
DOI: 10.3844/ajeassp.2009.407.415
Barone, G., A. Buonomano, C. Forzano and A. Palombo,
2016. WLHP systems in commercial buildings: A
case study analysis based on a dynamic simulation
approach. Am. J. Eng. Applied Sci., 9: 659-668.
DOI: 10.3844/ajeassp.2016.659.668
Bedon, C. and C. Amadio, 2016. A unified approach for
the shear buckling design of structural glass walls
with non-ideal restraints. Am. J. Eng. Applied Sci.,
9: 64-78. DOI: 10.3844/ajeassp.2016.64.78
Bedon, C. and C. Louter, 2016. Finite-element
numerical simulation of the bending performance
of post-tensioned structural glass beams with
adhesively bonded CFRP tendons. Am. J. Eng.
Applied Sci., 9: 680-691.
DOI: 10.3844/ajeassp.2016.680.691
Bedon, C., 2016. Review on the use of FRP composites
for facades and building skins. Am. J. Eng. Applied
Sci., 9: 713-723.
DOI: 10.3844/ajeassp.2016.713.723
Ben-Faress, M., A., Elouadi and D., Gretete, 2019.
Global Supply Chain Risk Management. Am. J.
Eng. Applied Sci., 12: 147-155.
DOI: 10.3844/ajeassp.2019.147.155
Bier, H. and S. Mostafavi, 2015. Structural optimization
for materially informed design to robotic production
processes. Am. J. Eng. Applied Sci., 8: 549-555.
DOI: 10.3844/ajeassp.2015.549.555
Bolonkin, A., 2009a. Femtotechnology: Nuclear matter
with fantastic properties. Am. J. Eng. Applied Sci.,
2: 501-514. DOI: 10.3844/ajeassp.2009.501.514
Bolonkin, A., 2009b. Converting of matter to nuclear
energy by ab-generator. Am. J. Eng. Applied Sci., 2:
683-693. DOI: 10.3844/ajeassp.2009.683.693
Boucetta, A., 2008. Vector control of a variable
reluctance machine stator and rotor discs imbricates.
Am. J. Eng. Applied Sci., 1: 260-265.
DOI: 10.3844/ajeassp.2008.260.265
Bourahla, N. and A. Blakeborough, 2015. Similitude
distortion compensation for a small scale model
of a knee braced steel frame. Am. J. Eng. Applied
Sci., 8: 481-488.
DOI: 10.3844/ajeassp.2015.481.488
Bucinell, R.B., 2016. Stochastic model for variable
amplitude fatigue induced delamination growth in
graphite/epoxy laminates. Am. J. Eng. Applied Sci.,
9: 635-646. DOI: 10.3844/ajeassp.2016.635.646
Budak, S., Z. Xiao, B. Johnson, J. Cole and M. Drabo et al.,
2016. Highly-efficient advanced thermoelectric
devices from different multilayer thin films. Am. J.
Eng. Applied Sci., 9: 356-363.
DOI: 10.3844/ajeassp.2016.356.363
Buonomano, A., F. Calise and M. Vicidomini, 2016a. A
novel prototype of a small-scale solar power plant:
Dynamic simulation and thermoeconomic analysis.
Am. J. Eng. Applied Sci., 9: 770-788.
DOI: 10.3844/ajeassp.2016.770.788
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
31
Buonomano, A., F. Calise, M.D. d'Accadia, R. Vanoli
and M. Vicidomini, 2016b. Simulation and
experimental analysis of a demonstrative solar
heating and cooling plant installed in Naples (Italy).
Am. J. Eng. Applied Sci., 9: 798-813.
DOI: 10.3844/ajeassp.2016.798.813
Calise, F., M.D. dâ' Accadia, L. Libertini, E. Quiriti and
M. Vicidomini, 2016b. Dynamic simulation and
optimum operation strategy of a trigeneration
system serving a hospital. Am. J. Eng. Applied Sci.,
9: 854-867. DOI: 10.3844/ajeassp.2016.854.867
Calise, F., M.D. dâ' Accadia, L. Libertini, E. Quiriti and
M. Vicidomini, 2016b. Dynamic simulation and
optimum operation strategy of a trigeneration
system serving a hospital. Am. J. Eng. Applied Sci.,
9: 854-867. DOI: 10.3844/ajeassp.2016.854.867
Campo, T., M. Cotto, F. Marquez, E. Elizalde and C.
Morant, 2016. Graphene synthesis by plasma-
enhanced CVD growth with ethanol. Am. J. Eng.
Applied Sci., 9: 574-583.
DOI: 10.3844/ajeassp.2016.574.583
Campo, T., M. Cotto, F. Marquez, E. Elizalde and C.
Morant, 2016. Graphene synthesis by plasma-
enhanced CVD growth with ethanol. Am. J. Eng.
Applied Sci., 9: 574-583.
DOI: 10.3844/ajeassp.2016.574.583
Cao, W., H. Ding, Z. Bin and C. Ziming, 2013. New
structural representation and digital-analysis
platform for symmetrical parallel mechanisms. Int.
J. Adv. Robotic Sys. DOI: 10.5772/56380
Cardu, M., P. Oreste and T. Cicala, 2009. Analysis of the
tunnel boring machine advancement on the Bologna-
Florence railway link. Am. J. Eng. Applied Sci., 2:
416-420. DOI: 10.3844/ajeassp.2009.416.420
Cardu, M., P. Oreste and T. Cicala, 2009. Analysis of the
tunnel boring machine advancement on the Bologna-
Florence railway link. Am. J. Eng. Applied Sci., 2:
416-420. DOI: 10.3844/ajeassp.2009.416.420
Casadei, D., 2015. Bayesian statistical inference for number
counting experiments. Am. J. Eng. Applied Sci., 8:
730-735. DOI: 10.3844/ajeassp.2015.730.735
Casadei, D., 2015. Bayesian statistical inference for number
counting experiments. Am. J. Eng. Applied Sci., 8:
730-735. DOI: 10.3844/ajeassp.2015.730.735
Comanescu, A., 2010. Bazele Modelarii Mecanismelor.
1st Edn., E. Politeh, Press, Bucureşti,
ISBN-10: 6065151157, pp: 274.
Darabi, A., S.A. Soleamani and A. Hassannia, 2008.
Fuzzy based digital automatic voltage regulator of a
synchronous generator with unbalanced loads. Am.
J. Eng. Applied Sci., 1: 280-286.
DOI: 10.3844/ajeassp.2008.280.286
Daud, H., N. Yahya, A.A. Aziz and M.F. Jusoh, 2008.
Development of wireless electric concept powering
electrical appliances. Am. J. Eng. Applied Sci., 1:
12-15. DOI: 10.3844/ajeassp.2008.12.15
De León, J., M., del, C. Cotto and F., Márquez, 2019.
Toxicology of Nanomaterials on Zebrafish. Am. J.
Eng. Applied Sci., 12: 193-203.
DOI: 10.3844/ajeassp.2019.193.203
Demetriou, D., N. Nikitas and K.D. Tsavdaridis, 2015.
Semi active tuned mass dampers of buildings: A
simple control option. Am. J. Eng. Applied Sci., 8:
620-632. DOI: 10.3844/ajeassp.2015.620.632
Dixit, S. and S. Pal, 2015. Synthesis and characterization
of ink (Carbon)-perovskite/polyaniline ternary
composite electrode for sodium chloride separation.
Am. J. Eng. Applied Sci., 8: 527-537.
DOI: 10.3844/ajeassp.2015.527.537
Djalel, D., M. Mourad and H. Labar, 2013. New
approach of electromagnetic fields of the lightning
discharge. Am. J. Eng. Applied Sci., 6: 369-383.
DOI: 10.3844/ajeassp.2013.369.383
Dong, H., N. Giakoumidis, N. Figueroa and N. Mavridis,
2013. Approaching behaviour monitor and vibration
indication in developing a General Moving Object
Alarm System (GMOAS). Int. J. Adv. Robotic Sys.
DOI: 10.5772/56586
Ebrahim, N.A., S. Ahmed, S.H.A. Rashid and Z. Taha,
2012. Technology use in the virtual R&D teams.
Am. J. Eng. Applied Sci., 5: 9-14.
DOI: 10.3844/ajeassp.2012.9.14
El-Labban, H.F., M. Abdelaziz and E.R.I. Mahmoud,
2013. Modification of carbon steel by laser surface
melting: Part I: Effect of laser beam travelling speed
on microstructural features and surface hardness.
Am. J. Eng. Applied Sci., 6: 352-359.
DOI: 10.3844/ajeassp.2013.352.359
Elliott, A., S. AlSalihi, A.L. Merriman and M.M. Basti,
2016. Infiltration of nanoparticles into porous binder
jet printed parts. Am. J. Eng. Applied Sci., 9:
128-133. DOI: 10.3844/ajeassp.2016.128.133
Elmeddahi, Y., H. Mahmoudi, A. Issaadi, M.F.A.
Goosen and R. Ragab, 2016. Evaluating the effects
of climate change and variability on water
resources: A case study of the Cheliff Basin in
Algeria. Am. J. Eng. Applied Sci., 9: 835-845.
DOI: 10.3844/ajeassp.2016.835.845
El-Tous, Y., 2008. Pitch angle control of variable speed
wind turbine. Am. J. Eng. Applied Sci., 1: 118-120.
DOI: 10.3844/ajeassp.2008.118.120
Faizal, A., S. Mulyono, R. Yendra and A. Fudholi, 2016.
Design Maximum Power Point Tracking (MPPT) on
photovoltaic panels using fuzzy logic method. Am.
J. Eng. Applied Sci., 9: 789-797.
DOI: 10.3844/ajeassp.2016.789.797
Farahani, A.S., N.M. Adam and M.K.A. Ariffin, 2010.
Simulation of airflow and aerodynamic forces
acting on a rotating turbine ventilator. Am. J.
Eng. Applied Sci., 3: 159-170.
DOI: 10.3844/ajeassp.2010.159.170
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
32
Farokhi, E. and M. Gordini, 2015. Investigating the
parameters influencing the behavior of knee braced
steel structures. Am. J. Eng. Applied Sci., 8: 567-574.
DOI: 10.3844/ajeassp.2015.567.574
Fathallah, A.Z.M. and R.A. Bakar, 2009. Prediction
studies for the performance of a single cylinder
high speed spark ignition linier engine with spring
mechanism as return cycle. Am. J. Eng. Applied
Sci., 2: 713-720.
DOI: 10.3844/ajeassp.2009.713.720
Fen, Y.W., W.M.M. Yunus, M.M. Moksin, Z.A. Talib
and N.A. Yusof, 2011. Optical properties of
crosslinked chitosan thin film with glutaraldehyde
using surface plasmon resonance technique. Am. J.
Eng. Applied Sci., 4: 61-65.
DOI: 10.3844/ajeassp.2011.61.65
Feraga, C.E., A. Moussaoui, A. Bouldjedri and A.
Yousfi, 2009. Robust position controller for a
permanent magnet synchronous actuator. Am. J.
Eng. Applied Sci., 2: 388-392.
DOI: 10.3844/ajeassp.2009.388.392
Fontánez, K., A., García, M., del, C. Cotto-Maldonado
and J., Duconge et al., 2019. Development of
ionizing radiation sensors based on carbon
nanotubes. Am. J. Eng. Applied Sci., 12: 185-192.
DOI: 10.3844/ajeassp.2019.185.192
Franklin, D.J., 1930. Ingenious Mechanisms for
Designers and Inventors. 1st Edn., Industrial Press,
ISBN-10: 0831110325, pp: 486.
Fu, Y.F., J. Gong, H. Huang, Y.J. Liu and D. Zhu et al.,
2015. Parameters optimization of adaptive cashew
shelling cutter based on BP neural network and
genetic algorithm. Am. J. Eng. Applied Sci., 8:
648-658. DOI: 10.3844/ajeassp.2015.648.658
Ge, L. and X. Xu, 2015. A scheme design of cloud + end
technology in demand side management. Am. J.
Eng. Applied Sci., 8: 736-747.
DOI: 10.3844/ajeassp.2015.736.747
Gupta, P., A. Gupta and A. Asati, 2015. Ultra low power
MUX based compressors for wallace and dadda
multipliers in sub-threshold regime. Am. J. Eng.
Applied Sci., 8: 702-716.
DOI: 10.3844/ajeassp.2015.702.716
Gusti, A.P. and Semin, 2016. The effect of vessel speed
on fuel consumption and exhaust gas emissions.
Am. J. Eng. Applied Sci., 9: 1046-1053.
DOI: 10.3844/ajeassp.2016.1046.1053
Hasan, S. and M.H. El-Naas, 2016. Optimization of a
combined approach for the treatment of carbide
slurry and capture of CO2. Am. J. Eng. Applied Sci.,
9: 449-457. DOI: 10.3844/ajeassp.2016.449.457
Hassan, M., H. Mahjoub and M. Obed, 2012. Voice-
based control of a DC servo motor. Am. J. Eng.
Applied Sci., 5: 89-92.
DOI: 10.3844/ajeassp.2012.89.92
He, B., Z. Wang, Q. Li, H. Xie and R. Shen, 2013. An
analytic method for the kinematics and dynamics of
a multiple-backbone continuum robot. IJARS.
DOI: 10.5772/54051
Helmy, A.K. and G.S. El-Taweel, 2010. Neural network
change detection model for satellite images using
textural and spectral characteristics. Am. J. Eng.
Applied Sci., 3: 604-610.
DOI: 10.3844/ajeassp.2010.604.610
Hirun, W., 2016. Evaluation of interregional freight
generation modelling methods by using nationwide
commodity flow survey data. Am. J. Eng. Applied
Sci., 9: 625-634.
DOI: 10.3844/ajeassp.2016.625.634
Ho, C.Y.F., B.W.K. Ling, S.G. Blasi, Z.W. Chi and
W.C. Siu, 2011. Single step optimal block matched
motion estimation with motion vectors having
arbitrary pixel precisions. Am. J. Eng. Applied Sci.,
4: 448-460. DOI: 10.3844/ajeassp.2011.448.460
Huang, B., S.H. Masood, M. Nikzad, P.R. Venugopal
and A. Arivazhagan, 2016. Dynamic mechanical
properties of fused deposition modelling processed
polyphenylsulfone material. Am. J. Eng. Applied
Sci., 9: 1-11. DOI: 10.3844/ajeassp.2016.1.11
Hypolite, B.P., W.T., Evariste and M.I., Adolphe, 2019. A
10GHZ low-offset dynamic comparator for high-speed
and lower-power ADCS. Am. J. Eng. Applied Sci., 12:
156-165. DOI: 10.3844/ajeassp.2019.156.165
Idarwazeh, S., 2011. Inverse discrete Fourier transform-
discrete Fourier transform techniques for generating
and receiving spectrally efficient frequency division
multiplexing signals. Am. J. Eng. Applied Sci., 4:
598-606. DOI: 10.3844/ajeassp.2011.598.606
Iqbal, 2016. An overview of Energy Loss Reduction
(ELR) software used in Pakistan by WAPDA for
calculating transformer overloading, line losses and
energy losses. Am. J. Eng. Applied Sci., 9: 442-448.
DOI: 10.3844/ajeassp.2016.442.448
Ismail, M.I.S., Y. Okamoto, A. Okada and Y. Uno, 2011.
Experimental investigation on micro-welding of thin
stainless steel sheet by fiber laser. Am. J. Eng. Applied
Sci., 4: 314-320. DOI: 10.3844/ajeassp.2011.314.320
Jaber, A.A. and R. Bicker, 2016. Industrial robot fault
detection based on statistical control chart. Am. J. Eng.
Applied Sci., 9: 251-263.
DOI: 10.3844/ajeassp.2016.251.263
Jafari, N., A. Alsadoon, C.P. Withana, A. Beg and A.
Elchouemi, 2016. Designing a comprehensive
security framework for smartphones and mobile
devices. Am. J. Eng. Applied Sci., 9: 724-734.
DOI: 10.3844/ajeassp.2016.724.734
Jalil, M.I.A. and J. Sampe, 2013. Experimental
investigation of thermoelectric generator modules with
different technique of cooling system. Am. J. Eng.
Applied Sci., 6: 1-7. DOI: 10.3844/ajeassp.2013.1.7
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
33
Jaoude, A.A. and K. El-Tawil, 2013. Analytic and
nonlinear prognostic for vehicle suspension systems.
Am. J. Eng. Applied Sci., 6: 42-56.
DOI: 10.3844/ajeassp.2013.42.56
Jarahi, H. and S. Seifilaleh, 2016. Rock fall hazard zonation
in Haraz Highway. Am. J. Eng. Applied Sci., 9:
371-379. DOI: 10.3844/ajeassp.2016.371.379
Jarahi, H., 2016. Probabilistic seismic hazard
deaggregation for Karaj City (Iran). Am. J. Eng.
Applied Sci., 9: 520-529.
DOI: 10.3844/ajeassp.2016.520.529
Jauhari, K., A. Widodo and I. Haryanto, 2016.
Identification of a machine tool spindle critical
frequency through modal and imbalance response
analysis. Am. J. Eng. Applied Sci., 9: 213-221.
DOI: 10.3844/ajeassp.2016.213.221
Jiang, J., Q. Chen and S. Nimbalkar, 2016. Field data
based method for predicting long-term settlements.
Am. J. Eng. Applied Sci., 9: 466-476.
DOI: 10.3844/ajeassp.2016.466.476
Kaewnai, S. and S. Wongwises, 2011. Improvement of the
runner design of Francis turbine using computational
fluid dynamics. Am. J. Eng. Applied Sci., 4: 540-547.
DOI: 10.3844/ajeassp.2011.540.547
Kamble, V.G. and N. Kumar, 2016. Fabrication and
tensile property analysis of polymer matrix
composites of graphite and silicon carbide as fillers.
Am. J. Eng. Applied Sci., 9: 17-30.
DOI: 10.3844/ajeassp.2016.17.30
Kazakov, V.V., V.I. Yusupov, V.N. Bagratashvili, A.I.
Pavlikov and V.A. Kamensky, 2016. Control of bubble
formation at the optical fiber tip by analyzing
ultrasound acoustic waves. Am. J. Eng. Applied Sci.,
9: 921-927. DOI: 10.3844/ajeassp.2016.921.927
Kechiche, O.B.H.B., H.B.A. Sethom, H. Sammoud and
I.S. Belkhodja, 2011. Optimized high-frequency
signal injection based permanent magnet
synchronous motor rotor position estimation applied
to washing machines. Am. J. Eng. Applied Sci., 4:
390-399. DOI: 10.3844/ajeassp.2011.390.399
Khalifa, A.H.N., A.H. Jabbar and J.A. Muhsin, 2015.
Effect of exhaust gas temperature on the
performance of automobile adsorption air-
conditioner. Am. J. Eng. Applied Sci., 8: 575-581.
DOI: 10.3844/ajeassp.2015.575.581
Khalil, R., 2015. Credibility of 3D volume computation
using GIS for pit excavation and roadway
constructions. Am. J. Eng. Applied Sci., 8: 434-442.
DOI: 10.3844/ajeassp.2015.434.442
Kuli, I., T.M. Abu-Lebdeh, E.H. Fini and S.A. Hamoush,
2016. The use of nano-silica for improving
mechanical properties of hardened cement paste.
Am. J. Eng. Applied Sci., 9: 146-154.
DOI: 10.3844/ajeassp.2016.146.154
Kumar, N.D., R.D. Ravali and PR. Srirekha, 2015.
Design and realization of pre-amplifier and filters
for on-board radar system. Am. J. Eng. Applied Sci.,
8: 689-701. DOI: 10.3844/ajeassp.2015.689.701
Kunanoppadon, J., 2010. Thermal efficiency of a
combined turbocharger set with gasoline engine.
Am. J. Eng. Applied Sci., 3: 342-349.
DOI: 10.3844/ajeassp.2010.342.349
Kwon, S., Y. Tani, H. Okubo and T. Shimomura, 2010.
Fixed-star tracking attitude control of spacecraft
using single-gimbal control moment gyros. Am. J.
Eng. Applied Sci., 3: 49-55.
DOI: 10.3844/ajeassp.2010.49.55
Lamarre, A., E.H. Fini and T.M. Abu-Lebdeh, 2016.
Investigating effects of water conditioning on the
adhesion properties of crack sealant. Am. J. Eng.
Applied Sci., 9: 178-186.
DOI: 10.3844/ajeassp.2016.178.186
Lee, B.J., 2013. Geometrical derivation of differential
kinematics to calibrate model parameters of flexible
manipulator. Int. J. Adv. Robotic Sys.
DOI: 10.5772/55592
Li, R., B. Zhang, S. Xiu, H. Wang and L. Wang et al.,
2015. Characterization of solid residues obtained
from supercritical ethanol liquefaction of swine
manure. Am. J. Eng. Applied Sci., 8: 465- 470.
DOI: 10.3844/ajeassp.2015.465.470
Lin, W., B. Li, X. Yang and D. Zhang, 2013. Modelling
and control of inverse dynamics for a 5-DOF
parallel kinematic polishing machine. Int. J. Adv.
Robotic Sys. DOI: 10.5772/54966
Liu, H., W. Zhou, X. Lai and S. Zhu, 2013. An efficient
inverse kinematic algorithm for a PUMA560-
structured robot manipulator. IJARS.
DOI: 10.5772/56403
Lubis, Z., A.N. Abdalla, Mortaza and R. Ghon, 2009.
Mathematical modeling of the three phase induction
motor couple to DC motor in hybrid electric vehicle.
Am. J. Eng. Applied Sci., 2: 708-712.
DOI: 10.3844/ajeassp.2009.708.712
Madani, D.A. and A. Dababneh, 2016. Rapid entire
body assessment: A literature review. Am. J. Eng.
Applied Sci., 9: 107-118.
DOI: 10.3844/ajeassp.2016.107.118
Malomar, G.E.B., A. Gueye, C. Mbow, V.B. Traore
and A.C. Beye, 2016. Numerical study of natural
convection in a square porous cavity thermally
modulated on both side walls. Am. J. Eng. Applied
Sci., 9: 591-598.
DOI: 10.3844/ajeassp.2016.591.598
Mansour, M.A.A., 2016. Developing an anthropometric
database for Saudi students and comparing Saudi
dimensions relative to Turkish and Iranian peoples.
Am. J. Eng. Applied Sci., 9: 547-557.
DOI: 10.3844/ajeassp.2016.547.557
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
34
Maraveas, C., Z.C. Fasoulakis and K.D. Tsavdaridis,
2015. A review of human induced vibrations on
footbridges. Am. J. Eng. Applied Sci., 8: 422-433.
DOI: 10.3844/ajeassp.2015.422.433
Marghany, M. and M. Hashim, 2009. Robust of doppler
centroid for mapping sea surface current by using
radar satellite data. Am. J. Eng. Applied Sci., 2:
781-788. DOI: 10.3844/ajeassp.2009.781.788
Martins, F.R., A.R. Gonçalves and E.B. Pereira, 2016.
Observational study of wind shear in northeastern
Brazil. Am. J. Eng. Applied Sci., 9: 484-504.
DOI: 10.3844/ajeassp.2016.484.504
Marzuki, M.A.L.B., M.H. Abd Halim and A.R.N.
Mohamed, 2015. Determination of natural
frequencies through modal and harmonic analysis of
space frame race car chassis based on ANSYS. Am.
J. Eng. Applied Sci., 8: 538-548.
DOI: 10.3844/ajeassp.2015.538.548
Mavukkandy, M.O., S. Chakraborty, T. Abbasi and S.A.
Abbasi, 2016. A clean-green synthesis of platinum
nanoparticles utilizing a pernicious weed lantana
(Lantana Camara). Am. J. Eng. Applied Sci., 9: 84-90.
DOI: 10.3844/ajeassp.2016.84.90
Minghini, F., N. Tullini and F. Ascione, 2016. Updating
Italian design guide CNR DT-205/2007 in view of
recent research findings: Requirements for pultruded
FRP profiles. Am. J. Eng. Applied Sci., 9: 702-712.
DOI: 10.3844/ajeassp.2016.702.712
Moezi, N., D. Dideban and A. Ketabi, 2008. A novel
integrated SET based inverter for nano power
electronic applications. Am. J. Eng. Applied Sci., 1:
219-222. DOI: 10.3844/ajeassp.2008.219.222
Mohamed, M.A., A.Y. Tuama, M. Makhtar, M.K.
Awang and M. Mamat, 2016. The effect of RSA
exponential key growth on the multi-core
computational resource. Am. J. Eng. Applied Sci., 9:
1054-1061. DOI: 10.3844/ajeassp.2016.1054.1061
Mohan, K.S.R., P. Jayabalan and A. Rajaraman, 2012.
Properties of fly ash based coconut fiber composite.
Am. J. Eng. Applied Sci., 5: 29-34.
DOI: 10.3844/ajeassp.2012.29.34
Mohseni, E. and K.D. Tsavdaridis, 2016. Effect of nano-
alumina on pore structure and durability of class f fly
ash self-compacting mortar. Am. J. Eng. Applied Sci.,
9: 323-333. DOI: 10.3844/ajeassp.2016.323.333
Momani, M.A., T.A. Al Smadi, FM. Al Taweel and K.A.
Ghaidan, 2011. GPS ionospheric total electron
content and scintillation measurements during the
October 2003 magnetic storm. Am. J. Eng. Applied
Sci., 4: 301-306. DOI: 10.3844/ajeassp.2011.301.306
Momta, P.S., J.O. Omoboh and M.I. Odigi, 2015.
Sedimentology and depositional environment of D2
sand in part of greater ughelli depobelt, onshore
Niger Delta, Nigeria. Am. J. Eng. Applied Sci., 8:
556-566. DOI: 10.3844/ajeassp.2015.556.566
Mondal, R., S. Sahoo and C.S. Rout, 2016. Mixed nickel
cobalt manganese oxide nanorods for supercapacitor
application. Am. J. Eng. Applied Sci., 9: 540-546.
DOI: 10.3844/ajeassp.2016.540.546
Montgomery, J., T.M. Abu-Lebdeh, S.A. Hamoush and
M. Picornell, 2016. Effect of nano-silica on the
compressive strength of harden cement paste at
different stages of hydration. Am. J. Eng. Applied
Sci., 9: 166-177.
DOI: 10.3844/ajeassp.2016.166.177
Moretti, M.L., 2015. Seismic design of masonry and
reinforced concrete infilled frames: A
comprehensive overview. Am. J. Eng. Applied Sci.,
8: 748-766. DOI: 10.3844/ajeassp.2015.748.766
Morse, A., M.M. Mansfield, R.M. Alley, H.A. Kerr and
R.B. Bucinell, 2016b. Traction enhancing products
affect maximum torque at the shoe-floor interface:
A potential increased risk of ACL injury. Am. J.
Eng. Applied Sci., 9: 889-893.
DOI: 10.3844/ajeassp.2016.889.893
Moubarek, T. and A. Gharsallah, 2016. A six-port
reflectometer calibration using Wilkinson power
divider. Am. J. Eng. Applied Sci., 9: 274-280.
DOI: 10.3844/ajeassp.2016.274.280
Nabilou, A., 2016a. Effect of parameters of selection
and replacement drilling bits based on geo-
mechanical factors: (Case study: Gas and oil
reservoir in the Southwest of Iran). Am. J. Eng.
Applied Sci., 9: 380-395.
DOI: 10.3844/ajeassp.2016.380.395
Nabilou, A., 2016b. Study of the parameters of Steam
Assisted Gravity Drainage (SAGD) method for
enhanced oil recovery in a heavy oil fractured
carbonate reservoir. Am. J. Eng. Applied Sci., 9:
647-658. DOI: 10.3844/ajeassp.2016.647.658
Nachiengtai, T., W. Chim-Oye, S. Teachavorasinskun
and W. Sa-Ngiamvibool, 2008. Identification of
shear band using elastic shear wave propagation.
Am. J. Eng. Applied Sci., 1: 188-191.
DOI: 10.3844/ajeassp.2008.188.191
Nahas, R. and S.P. Kozaitis, 2014. Metric for the fusion
of synthetic and real imagery from multimodal
sensors. Am. J. Eng. Applied Sci., 7: 355-362.
DOI: 10.3844/ajeassp.2014.355.362
Nandhakumar, S., V. Selladurai and S. Sekar, 2009.
Numerical investigation of an industrial robot arm
control problem using haar wavelet series. Am. J.
Eng. Applied Sci., 2: 584-589.
DOI: 10.3844/ajeassp.2009.584.589
Ng, K.C., M.Z. Yusoff, K. Munisamy, H. Hasini and
N.H. Shuaib, 2008. Time-marching method for
computations of high-speed compressible flow on
structured and unstructured grid. Am. J. Eng.
Applied Sci., 1: 89-94.
DOI: 10.3844/ajeassp.2008.89.94
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
35
Obaiys, S.J., Z. Abbas, N.M.A. Nik Long, A.F. Ahmad
and A. Ahmedov et al., 2016. On the general
solution of first-kind hypersingular integral
equations. Am. J. Eng. Applied Sci., 9: 195-201.
DOI: 10.3844/ajeassp.2016.195.201
Odeh, S., R. Faqeh, L. Abu Eid and N. Shamasneh, 2009.
Vision-based obstacle avoidance of mobile robot using
quantized spatial model. Am. J. Eng. Applied Sci., 2:
611-619. DOI: 10.3844/ajeassp.2009.611.619
Ong, A.T., A. Mustapha, Z.B. Ibrahim, S. Ramli and
B.C. Eong, 2015. Real-time automatic inspection
system for the classification of PCB flux defects.
Am. J. Eng. Applied Sci., 8: 504-518.
DOI: 10.3844/ajeassp.2015.504.518
Opafunso, Z.O., I.I. Ozigis and I.A. Adetunde, 2009.
Pneumatic and hydraulic systems in coal fluidized
bed combustor. Am. J. Eng. Applied Sci., 2: 88-95.
DOI: 10.3844/ajeassp.2009.88.95
Orlando, N. and E. Benvenuti, 2016. Advanced XFEM
simulation of pull-out and debonding of steel bars
and FRP-reinforcements in concrete beams. Am. J.
Eng. Applied Sci., 9: 746-754.
DOI: 10.3844/ajeassp.2016.746.754
Padula, F. and V. Perdereau, 2013. An on-line path
planner for industrial manipulators. Int. J. Adv.
Robotic Sys. DOI: 10.5772/55063
Pannirselvam, N., P.N. Raghunath and K. Suguna, 2008.
Neural network for performance of glass fibre
reinforced polymer plated RC beams. Am. J. Eng.
Applied Sci., 1: 82-88.
DOI: 10.3844/ajeassp.2008.82.88
Pattanasethanon, S., 2010. The solar tracking system by
using digital solar position sensor. Am. J. Eng. Applied
Sci., 3: 678-682. DOI: 10.3844/ajeassp.2010.678.682
Pérez-de León, G., V.E. Lamberti, R.D. Seals, T.M.
Abu-Lebdeh and S.A. Hamoush, 2016. Gas
atomization of molten metal: Part I. Numerical
modeling conception. Am. J. Eng. Applied Sci., 9:
303-322. DOI: 10.3844/ajeassp.2016.303.322
Perumaal, S. and N. Jawahar, 2013. Automated
trajectory planner of industrial robot for pick-and-
place task. IJARS. DOI: 10.5772/53940
Petrescu, F. and R. Petrescu, 1995a. Contributions to
optimization of the polynomial motion laws of the
stick from the internal combustion engine
distribution mechanism. Bucharest, 1: 249-256.
Petrescu, F. and R. Petrescu, 1995b. Contributions to the
synthesis of internal combustion engine distribution
mechanisms. Bucharest, 1: 257-264.
Petrescu, F. and R. Petrescu, 1997a. Dynamics of cam
mechanisms (exemplified on the classic distribution
mechanism). Bucharest, 3: 353-358.
Petrescu, F. and R. Petrescu, 1997b. Contributions to the
synthesis of the distribution mechanisms of internal
combustion engines with a Cartesian coordinate
method. Bucharest, 3: 359-364.
Petrescu, F. and R. Petrescu, 1997c. Contributions to
maximizing polynomial laws for the active stroke of
the distribution mechanism from internal
combustion engines. Bucharest, 3: 365-370.
Petrescu, F. and R. Petrescu, 2000a. Synthesis of
distribution mechanisms by the rectangular (Cartesian)
coordinate method. Proceedings of the 8th National
Conference on International Participation, (CIP' 00),
Craiova, Romania, pp: 297-302.
Petrescu, F. and R. Petrescu, 2000b. The design
(synthesis) of cams using the polar coordinate
method (triangle method). Proceedings of the 8th
National Conference on International Participation,
(CIP' 00), Craiova, Romania, pp: 291-296.
Petrescu, F. and R. Petrescu, 2002a. Motion laws for
cams. Proceedings of the International Computer
Assisted Design, National Symposium with
Participation, (SNP' 02), Braşov, pp: 321-326.
Petrescu, F. and R. Petrescu, 2002b. Camshaft dynamics
elements. Proceedings of the International Computer
Assisted Design, National Participation Symposium,
(SNP' 02), Braşov, pp: 327-332.
Petrescu, F. and R. Petrescu, 2003. Some elements
regarding the improvement of the engine design.
Proceedings of the National Symposium,
Descriptive Geometry, Technical Graphics and
Design, (GTD' 03), Braşov, pp: 353-358.
Petrescu, F. and R. Petrescu, 2005a. The cam design for
a better efficiency. Proceedings of the International
Conference on Engineering Graphics and Design,
(EGD’ 05), Bucharest, pp: 245-248.
Petrescu, F. and R. Petrescu, 2005b. Contributions at the
dynamics of cams. Proceedings of the 9th IFToMM
International Symposium on Theory of Machines
and Mechanisms, (TMM’ 05), Bucharest, Romania,
pp: 123-128.
Petrescu, F. and R. Petrescu, 2005c. Determining the
dynamic efficiency of cams. Proceedings of the 9th
IFToMM International Symposium on Theory of
Machines and Mechanisms, (TMM’ 05), Bucharest,
Romania, pp: 129-134.
Petrescu, F. and R. Petrescu, 2005d. An original internal
combustion engine. Proceedings of the 9th IFToMM
International Symposium on Theory of Machines
and Mechanisms, (TMM’ 05), Bucharest, Romania,
pp: 135-140.
Petrescu, F. and R. Petrescu, 2005e. Determining the
mechanical efficiency of Otto engine’s mechanism.
Proceedings of the 9th IFToMM International
Symposium on Theory of Machines and
Mechanisms, (TMM 05), Bucharest, Romania, pp:
141-146.
Petrescu, F.I. and R.V. Petrescu, 2011a. Mechanical
Systems, Serial and Parallel (Romanian). 1st Edn.,
LULU Publisher, London, UK, pp: 124.
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
36
Petrescu, F.I.T. and RV. Petrescu, 2011b. Trenuri
Planetare. 1st Edn., Createspace Independent Pub.,
ISBN-13: 978-1468030419, pp: 104.
Petrescu, F.I. and R.V. Petrescu, 2012a. Kinematics of
the planar quadrilateral mechanism. ENGEVISTA,
14: 345-348.
Petrescu, F.I. and R.V. Petrescu, 2012b. Mecatronica-
Sisteme Seriale si Paralele. 1st Edn., Create Space,
USA, ISBN-10: 1495923819, pp: 128.
Petrescu, F.I. and R.V. Petrescu, 2013a. Cinematics of
the 3R dyad. ENGEVISTA, 15: 118-124.
Petrescu, F.I.T. and R.V. Petrescu, 2013b. Forces and
efficiency of cams. Int. Rev. Mech. Eng., 7: 507-511.
Petrescu, F.I.T. and R.V. Petrescu, 2013c. Cams with
high efficiency. Int. Rev. Mech. Eng., 7: 599-606.
Petrescu, F.I.T. and R.V. Petrescu, 2013d. An algorithm
for setting the dynamic parameters of the classic
distribution mechanism. Int. Rev. Modell. Simulat.,
6: 1637-1641.
Petrescu, F.I.T. and R.V. Petrescu, 2013e. Dynamic
synthesis of the rotary cam and translated tappet
with roll. Int. Rev. Modell. Simulat., 6: 600-607.
Petrescu, F.I.T. and R.V. Petrescu, 2014a. Parallel
moving mechanical systems. Independent J.
Manage. Product., 5: 564-580.
Petrescu, F.I.T. and R.V. Petrescu, 2014b. Cam gears
dynamics in the classic distribution. Independent J.
Manage. Product., 5: 166-185.
Petrescu, F.I.T. and R.V. Petrescu, 2014c. High-
efficiency gears synthesis by avoid the interferences.
Independent J. Manage. Product., 5: 275-298.
Petrescu, F.I.T. and R.V. Petrescu, 2014d. Gear design.
J. ENGEVISTA, 16: 313-328.
Petrescu, F.I.T. and R.V. Petrescu, 2014e. Kinetostatic
of the 3R dyad (or 2R module). J. ENGEVISTA, 16:
314-321.
Petrescu, F.I.T. and R.V. Petrescu, 2014f. Balancing
Otto engines. Int. Rev. Mech. Eng., 8: 473-480.
Petrescu, F.I.T. and R.V. Petrescu, 2014g. Machine
equations to the classical distribution. Int. Rev.
Mech. Eng., 8: 309-316.
Petrescu, F.I.T. and R.V. Petrescu, 2014h. Forces of
internal combustion heat engines. Int. Rev. Modell.
Simulat., 7: 206-212.
Petrescu, F.I.T. and R.V. Petrescu, 2014i. Determination
of the yield of internal combustion thermal engines.
Int. Rev. Mech. Eng., 8: 62-67.
Petrescu, F.I.T. and R.V. Petrescu, 2015a. Forces at the
main mechanism of a railbound forging
manipulator. Independent J. Manage. Product., 6:
904-921.
Petrescu, F.I.T. and R.V. Petrescu, 2015b. Kinematics at
the main mechanism of a railbound forging
manipulator. Independent J. Manage. Product., 6:
711-729.
Petrescu, F.I.T. and R.V. Petrescu, 2015c. Machine
motion equations. Independent J. Manage. Product.,
6: 773-802.
Petrescu F.I.T. and R.V. Petrescu, 2015d. Presenting a
railbound forging manipulator. Applied Mech.
Mater., 762: 219-224.
Petrescu, F.I.T. and R.V. Petrescu, 2015e. About the
anthropomorphic robots. J. ENGEVISTA, 17: 1-15.
Petrescu, F.I.T., 2015a. Geometrical synthesis of the
distribution mechanisms. Am. J. Eng. Applied Sci.,
8: 63-81. DOI: 10.3844/ajeassp.2015.63.81
Petrescu, F.I.T., 2015b. Machine motion equations at the
internal combustion heat engines. Am. J. Eng.
Applied Sci., 8: 127-137.
DOI: 10.3844/ajeassp.2015.127.137
Petrescu, F.I.T., 2015c. Machine motion equations at the
internal combustion heat engines. SSRN.
Petrescu, F.I. and R.V. Petrescu, 2016a. Parallel moving
mechanical systems kinematics. ENGEVISTA, 18:
455-491.
Petrescu, F.I. and R.V. Petrescu, 2016b. Direct and
inverse kinematics to the anthropomorphic robots.
ENGEVISTA, 18: 109-124.
Petrescu, F.I. and R.V. Petrescu, 2016c. Dynamic
cinematic to a structure 2R. Revista Geintec-Gestao
Inovacao E Tecnol., 6: 3143-3154.
Petrescu, F.I.T. and R.V. Petrescu, 2016d. An Otto
engine dynamic model. Independent J. Manage.
Product., 7: 038-048.
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017a. Yield at thermal engines
internal combustion. Am. J. Eng. Applied Sci., 10:
243-251. DOI: 10.3844/ajeassp.2017.243.251
Petrescu, R.V., R. Aversa, B. Akash, B. Ronald and J.
Corchado et al., 2017b. Velocities and accelerations at
the 3R mechatronic systems. Am. J. Eng. Applied Sci.,
10: 252-263. DOI: 10.3844/ajeassp.2017.252.263
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017c. Anthropomorphic solid
structures n-r kinematics. Am. J. Eng. Applied Sci.,
10: 279-291. DOI: 10.3844/ajeassp.2017.279.291
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017d. Inverse kinematics at the
anthropomorphic robots, by a trigonometric method.
Am. J. Eng. Applied Sci., 10: 394-411.
DOI: 10.3844/ajeassp.2017.394.411
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017e. Forces at internal
combustion engines. Am. J. Eng. Applied Sci., 10:
382-393. DOI: 10.3844/ajeassp.2017.382.393
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017f. Gears-Part I. Am. J. Eng.
Applied Sci., 10: 457-472.
DOI: 10.3844/ajeassp.2017.457.472
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
37
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017g. Gears-part II. Am. J. Eng.
Applied Sci., 10: 473-483.
DOI: 10.3844/ajeassp.2017.473.483
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017h. Cam-gears forces, velocities,
powers and efficiency. Am. J. Eng. Applied Sci., 10:
491-505. DOI: 10.3844/ajeassp.2017.491.505
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017i. Dynamics of mechanisms
with cams illustrated in the classical distribution.
Am. J. Eng. Applied Sci., 10: 551-567.
DOI: 10.3844/ajeassp.2017.551.567
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017j. Testing by non-destructive
control. Am. J. Eng. Applied Sci., 10: 568-583.
DOI: 10.3844/ajeassp.2017.568.583
Petrescu, R.V., R. Aversa, A. Apicella and F.I.T.
Petrescu, 2017k. Transportation engineering. Am. J.
Eng. Applied Sci., 10: 685-702.
DOI: 10.3844/ajeassp.2017.685.702
Petrescu, R.V., R. Aversa, S. Kozaitis, A. Apicella and
F.I.T. Petrescu, 2017l. The quality of transport and
environmental protection, part I. Am. J. Eng. Applied
Sci., 10: 738-755. DOI: 10.3844/ajeassp.2017.738.755
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017m. Modern propulsions for
aerospace-a review. J. Aircraft Spacecraft Technol.,
1: 1-8. DOI: 10.3844/jastsp.2017.1.8
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017n. Modern propulsions for
aerospace-part II. J. Aircraft Spacecraft Technol., 1:
9-17. DOI: 10.3844/jastsp.2017.9.17
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017o. History of aviation-a short
review. J. Aircraft Spacecraft Technol., 1: 30-49.
DOI: 10.3844/jastsp.2017.30.49
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J.
Corchado et al., 2017p. Lockheed martin-a short
review. J. Aircraft Spacecraft Technol., 1: 50-68.
DOI: 10.3844/jastsp.2017.50.68
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017q. Our universe. J. Aircraft Spacecraft
Technol., 1: 69-79. DOI: 10.3844/jastsp.2017.69.79
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017r. What is a UFO? J. Aircraft
Spacecraft Technol., 1: 80-90.
DOI: 10.3844/jastsp.2017.80.90
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017s. About bell helicopter FCX-001
concept aircraft-a short review. J. Aircraft Spacecraft
Technol., 1: 91-96. DOI: 10.3844/jastsp.2017.91.96
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017t. Home at airbus. J. Aircraft
Spacecraft Technol., 1: 97-118.
DOI: 10.3844/jastsp.2017.97.118
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017u. Airlander. J. Aircraft Spacecraft
Technol., 1: 119-148.
DOI: 10.3844/jastsp.2017.119.148
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017v. When boeing is dreaming-a
review. J. Aircraft Spacecraft Technol., 1: 149-161.
DOI: 10.3844/jastsp.2017.149.161
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017w. About Northrop Grumman. J.
Aircraft Spacecraft Technol., 1: 162-185.
DOI: 10.3844/jastsp.2017.162.185
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017x. Some special aircraft. J. Aircraft
Spacecraft Technol., 1: 186-203.
DOI: 10.3844/jastsp.2017.186.203
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F.
Berto et al., 2017y. About helicopters. J. Aircraft
Spacecraft Technol., 1: 204-223.
DOI: 10.3844/jastsp.2017.204.223
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A.
Apicella et al., 2017z. The modern flight. J. Aircraft
Spacecraft Technol., 1: 224-233.
DOI: 10.3844/jastsp.2017.224.233
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A.
Apicella et al., 2017aa. Sustainable energy for
aerospace vessels. J. Aircraft Spacecraft Technol., 1:
234-240. DOI: 10.3844/jastsp.2017.234.240
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A.
Apicella et al., 2017ab. Unmanned helicopters. J.
Aircraft Spacecraft Technol., 1: 241-248.
DOI: 10.3844/jastsp.2017.241.248
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A.
Apicella et al., 2017ac. Project HARP. J. Aircraft
Spacecraft Technol., 1: 249-257.
DOI: 10.3844/jastsp.2017.249.257
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A.
Apicella et al., 2017ad. Presentation of Romanian
engineers who contributed to the development of
global aeronautics-part I. J. Aircraft Spacecraft
Technol., 1: 258-271.
DOI: 10.3844/jastsp.2017.258.271
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A.
Apicella et al., 2017ae. A first-class ticket to the
planet mars, please. J. Aircraft Spacecraft Technol.,
1: 272-281. DOI: 10.3844/jastsp.2017.272.281
Petrescu, R.V.V., A. Raffaella and S. Kozaitis, 2017af.
Some Basic Reactions in Nuclear Fusion, SSRN.
Am. J. Eng. Applied Sci., 10: 709-716.
DOI: 10.3844/ajeassp.2017.703.708
Petrescu, R.V.V., R. Aversa, S. Kozaitis, A. Apicella and
F.I. Petrescu 2017ag. Deuteron dimensions. SSRN.
Petrescu, R.V.V., R. Aversa, S. Kozaitis, Antonio
Apicella and F.I. Petrescu, 2017ah. Some Proposed
Solutions to Achieve Nuclear Fusion, SSRN. Am. J.
Eng. Applied Sci., 10: 709-716.
DOI: 10.3844/ajeassp.2017.703.708
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
38
Petrescu, R.V.V., R. Aversa, B. Akash and F. Berto,
2017ai. Dynamic elements at MP3R. SSRN.
Petrescu, R.V., R. Aversa, A. Apicella, T. Abu-Lebdeh
and F.I. Petrescu, 2017aj. Nikola Tesla. SSRN.
Petrescu, F.I., B. Grecu, A. Comanescu and R.V.
Petrescu, 2009. Some mechanical design elements.
Proceeding of the International Conference on
Computational Mechanics and Virtual Engineering,
(MVE’ 09), Braşov, pp: 520-525.
Petrescu, F.I.T., 2011. Teoria Mecanismelor si a
Masinilor: Curs Si Aplicatii. 1st Edn., CreateSpace
Independent Publishing Platform. ISBN-10:
1468015826. pp: 432.
Petrescu, F.I.T., 2018a. Dynamic models of rigid memory
mechanisms. SSRN. Am. J. Eng. Applied Sci., 11:
1242-1257. DOI: 10.3844/ajeassp.2018.1242.1257
Petrescu, F.I.T., 2018b. About the triton structure.
SSRN. Am. J. Eng. Applied Sci., 11: 1293.1297
Petrescu, N. and F.I.T. Petrescu, 2018a. Elementary
structure of matter can be studied with new quantum.
Petrescu, N. and F.I.T. Petrescu, 2018b. Geometric-
cinematic synthesis of planetary mechanisms. SSRN.
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar
and S. Kozaitis et al., 2018a. NASA started a
propeller set on board voyager 1 after 37 years of
break. Am. J. Eng. Applied Sci., 11: 66-77.
DOI: 10.3844/ajeassp.2018.66.77
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar
and S. Kozaitis et al., 2018b. There is life on mars?
Am. J. Eng. Applied Sci., 11: 78-91.
DOI: 10.3844/ajeassp.2018.78.91
Petrescu, R.V., R. Aversa, A. Apicella and F.I.T.
Petrescu, 2018c. Friendly environmental transport.
Am. J. Eng. Applied Sci., 11: 154-165.
DOI: 10.3844/ajeassp.2018.154.165
Petrescu, R.V., R. Aversa, B. Akash, T.M. Abu-Lebdeh
and A. Apicella et al., 2018d. Buses running on gas.
Am. J. Eng. Applied Sci., 11: 186-201.
DOI: 10.3844/ajeassp.2018.186.201
Petrescu, R.V., R. Aversa, B. Akash, T.M. Abu-Lebdeh and
A. Apicella et al., 2018e. Some aspects of the structure
of planar mechanisms. Am. J. Eng. Applied Sci., 11:
245-259. DOI: 10.3844/ajeassp.2018.245.259
Petrescu, R.V., R. Aversa, T.M. Abu-Lebdeh, A. Apicella
and F.I.T. Petrescu, 2018f. The forces of a simple
carrier manipulator. Am. J. Eng. Applied Sci., 11:
260-272. DOI: 10.3844/ajeassp.2018.260.272
Petrescu, R.V., R. Aversa, T.M. Abu-Lebdeh, A.
Apicella and F.I.T. Petrescu, 2018g. The dynamics
of the otto engine. Am. J. Eng. Applied Sci., 11:
273-287. DOI: 10.3844/ajeassp.2018.273.287
Petrescu, R.V., R. Aversa, T.M. Abu-Lebdeh, A.
Apicella and F.I.T. Petrescu, 2018h. NASA
satellites help us to quickly detect forest fires. Am.
J. Eng. Applied Sci., 11: 288-296.
DOI: 10.3844/ajeassp.2018.288.296
Petrescu, R.V., R. Aversa, T.M. Abu-Lebdeh, A.
Apicella and F.I.T. Petrescu, 2018i. Kinematics of a
mechanism with a triad. Am. J. Eng. Applied Sci.,
11: 297-308. DOI: 10.3844/ajeassp.2018.297.308
Petrescu, R.V., R. Aversa, A. Apicella and F.I.T.
Petrescu, 2018j. Romanian engineering "on the
wings of the wind". J. Aircraft Spacecraft Technol.,
2: 1-18. DOI: 10.3844/jastsp.2018.1.18
Petrescu, R.V., R. Aversa, A. Apicella and F.I.T. Petrescu,
2018k. NASA Data used to discover eighth planet
circling distant star. J. Aircraft Spacecraft Technol., 2:
19-30. DOI: 10.3844/jastsp.2018.19.30
Petrescu, R.V., R. Aversa, A. Apicella and F.I.T.
Petrescu, 2018l. NASA has found the most distant
black hole. J. Aircraft Spacecraft Technol., 2: 31-39.
DOI: 10.3844/jastsp.2018.31.39
Petrescu, R.V., R. Aversa, A. Apicella and F.I.T. Petrescu,
2018m. Nasa selects concepts for a new mission to
titan, the moon of saturn. J. Aircraft Spacecraft
Technol., 2: 40-52. DOI: 10.3844/jastsp.2018.40.52
Petrescu, R.V., R. Aversa, A. Apicella and F.I.T.
Petrescu, 2018n. NASA sees first in 2018 the direct
proof of ozone hole recovery. J. Aircraft Spacecraft
Technol., 2: 53-64. DOI: 10.3844/jastsp.2018.53.64
Petrescu, R.V.V., R. Aversa, A. Apicella and F.I. Tiberiu
Petrescu, 2018o. Dynamic Synthesis of a Dual-
Clutch Automatic Gearboxes. SSRN.
Petrescu, R.V.V., R. Aversa, A. Apicella and F.I.T.
Petrescu et al., 2018p. Dynamic synthesis of a
classic, manual gearbox, SSRN,
Petrescu, R.V.V., R. Aversa and T.M. Abu-Lebdeh,
2018q. The dynamics of the Otto engine. SSRN.
Petrescu, R.V.V., R. Aversa and T.M. Abu-Lebdeh,
2018r. Kinematics of a Mechanism with a Triad
SSRN. Am. J. Eng. Applied Sci., 11: 297-308.
DOI: 10.3844/ajeassp.2018.297.308
Petrescu, F.I.T., T. Abu-Lebdeh and A. Apicella, 2018s.
Presentation of a mechanism with a maltese cross
(Geneva Driver). Am. J. Eng. Applied Sci., 11:
891-900. DOI: 10.3844/ajeassp.2018.891.900
Petrescu, F.I.T., T. Abu-Lebdeh and A. Apicella, 2018t.
An Analytical Method for Determining Forces
within a Triad, SSRN. Am. J. Eng. Applied Sci., 11:
901-913. DOI: 10.3844/ajeassp.2018.901.913
Petrescu, F.I.T., T. Abu-Lebdeh and A. Apicella, 2018u.
Study of an Oscillating Sliding Mechanism, SSRN.
Am. J. Eng. Applied Sci., 11: 870-880.
DOI: 10.3844/ajeassp.2018.870.880
Petrescu, F.I.T., T. Abu-Lebdeh and A. Apicella, 2018v.
Presentation of the Mechanism in the Cross, SSRN.
Am. J. Eng. Applied Sci., 11: 881-890.
DOI: 10.3844/ajeassp.2018.881.890
Petrescu, F.I.T., A. Apicella, A. Raffaella, R.V. Petrescu
and J.K. Calautit et al., 2016a. Something about the
mechanical moment of Inertia. Am. J. Applied Sci., 13:
1085-1090. DOI: 10.3844/ajassp.2016.1085.1090
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
39
Petrescu, R.V., R. Aversa, A. Apicella and F.I. Petrescu,
2016b. Future medicine services robotics. Am. J.
Eng. Applied Sci., 9: 1062-1087.
DOI: 10.3844/ajeassp.2016.1062.1087
Pisello, A.L., G. Pignatta, C. Piselli, V.L. Castaldo and F.
Cotana, 2016. Investigating the dynamic thermal
behavior of building envelope in summer conditions by
means of in-field continuous monitoring. Am. J. Eng.
Applied Sci., 9: 505-519.
DOI: 10.3844/ajeassp.2016.505.519
Pourmahmoud, N., 2008. Rarefied gas flow modeling
inside rotating circular cylinder. Am. J. Eng. Applied
Sci., 1: 62-65. DOI: 10.3844/ajeassp.2008.62.65
Pravettoni, M., C.S.P. Lòpez and R.P. Kenny, 2016.
Impact of the edges of a backside diffusive reflector
on the external quantum efficiency of luminescent
solar concentrators: Experimental and computational
approach. Am. J. Eng. Applied Sci., 9: 53-63.
DOI: 10.3844/ajeassp.2016.53.63
Qutbodin, K., 2010. Merging autopilot/flight control and
navigation-flight management systems. Am. J. Eng.
Applied Sci., 3: 629-630.
DOI: 10.3844/ajeassp.2010.629.630
Rajbhandari, S., Z. Ghassemlooy and M. Angelova,
2011. The performance of a dual header pulse
interval modulation in the presence of artificial light
interferences in an indoor optical wireless
communications channel with wavelet denoising.
Am. J. Eng. Applied Sci., 4: 513-519.
DOI: 10.3844/ajeassp.2011.513.519
Rajput, R.S., S. Pandey and S. Bhadauria, 2016.
Correlation of biodiversity of algal genera with
special reference to the waste water effluents from
industries. Am. J. Eng. Applied Sci., 9: 1127-1133.
DOI: 10.3844/ajeassp.2016.1127.1133
Rajupillai, K., S. Palaniammal and K. Bommuraju, 2015.
Computational intelligence and application of frame
theory in communication systems. Am. J. Eng. Applied
Sci., 8: 633-637. DOI: 10.3844/ajeassp.2015.633.637
Rama, G., D. Marinkovic and M. Zehn, 2016. Efficient
co-rotational 3-node shell element. Am. J. Eng.
Applied Sci., 9: 420-431.
DOI: 10.3844/ajeassp.2016.420.431
Raptis, K.G., G.A. Papadopoulos, T.N. Costopoulos and
A.D. Tsolakis, 2011. Experimental study of load
sharing in roller-bearing contact by caustics and
photoelasticity. Am. J. Eng. Applied Sci., 4:
294-300. DOI: 10.3844/ajeassp.2011.294.300
Rea, P. and E. Ottaviano, 2016. Analysis and mechanical
design solutions for sit-to-stand assisting devices.
Am. J. Eng. Applied Sci., 9: 1134-1143.
DOI: 10.3844/ajeassp.2016.1134.1143
Rhode-Barbarigos, L., V. Charpentier, S. Adriaenssens and
O. Baverel, 2015. Dialectic form finding of structurally
integrated adaptive structures. Am. J. Eng. Applied
Sci., 8: 443-454. DOI: 10.3844/ajeassp.2015.443.454
Riccio, A., R. Cristiano and S. Saputo, 2016b. A brief
introduction to the bird strike numerical simulation.
Am. J. Eng. Applied Sci., 9: 946-950.
DOI: 10.3844/ajeassp.2016.946.950
Riccio, A., U. Caruso, A. Raimondo and A. Sellitto,
2016a. Robustness of XFEM method for the
simulation of cracks propagation in fracture
mechanics problems. Am. J. Eng. Applied Sci., 9:
599-610. DOI: 10.3844/ajeassp.2016.599.610
Rich, F. and M.A. Badar, 2016. Statistical analysis of
auto dilution Vs manual dilution process in
inductively coupled plasma spectrometer tests. Am.
J. Eng. Applied Sci., 9: 611-624.
DOI: 10.3844/ajeassp.2016.611.624
Rohit, K. and S. Dixit, 2016. Mechanical properties of
waste biaxially oriented polypropylene metallized
films (BOPP), LLDPE: LDPE films with sisal
fibres. Am. J. Eng. Applied Sci., 9: 913-920.
DOI: 10.3844/ajeassp.2016.913.920
Rulkov, N.F., A.M. Hunt, P.N. Rulkov and A.G.
Maksimov, 2016. Quantization of map-based neuronal
model for embedded simulations of neurobiological
networks in real-time. Am. J. Eng. Applied Sci., 9:
973-984. DOI: 10.3844/ajeassp.2016.973.984
Saikia, A. and N. Karak, 2016. Castor oil based
epoxy/clay nanocomposite for advanced
applications. Am. J. Eng. Applied Sci., 9: 31-40.
DOI: 10.3844/ajeassp.2016.31.40
Sallami, A., N. Zanzouri and M. Ksouri, 2016. Robust
diagnosis of a DC motor by bond graph approach.
Am. J. Eng. Applied Sci., 9: 432-438.
DOI: 10.3844/ajeassp.2016.432.438
Samantaray, K.S., S. Sahoo and C.S. Rout, 2016.
Hydrothermal synthesis of CuWO4-reduced
graphene oxide hybrids and supercapacitor
application. Am. J. Eng. Applied Sci., 9: 584-590.
DOI: 10.3844/ajeassp.2016.584.590
Santos, F.A. and C. Bedon, 2016. Preliminary
experimental and finite-element numerical
assessment of the structural performance of SMA-
reinforced GFRP systems. Am. J. Eng. Applied Sci.,
9: 692-701. DOI: 10.3844/ajeassp.2016.692.701
Semin and R.A. Bakar, 2008. A technical review of
compressed natural gas as an alternative fuel for
internal combustion engines. Am. J. Eng. Applied Sci.,
1: 302-311. DOI: 10.3844/ajeassp.2008.302.311
Semin, A.R.I. and R.A. Bakar, 2009a. Combustion
temperature effect of diesel engine convert to
compressed natural gas engine. Am. J. Eng. Applied
Sci., 2: 212-216. DOI: 10.3844/ajeassp.2009.212.216
Semin, A.R.I. and R.A. Bakar, 2009b. Effect of diesel
engine converted to sequential port injection
compressed natural gas engine on the cylinder
pressure Vs crank angle in variation engine speeds.
Am. J. Eng. Applied Sci., 2: 154-159.
DOI: 10.3844/ajeassp.2009.154.159
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
40
Semin S., A.R. Ismail and R.A. Bakar, 2009c. Diesel
engine convert to port injection CNG engine using
gaseous injector nozzle multi holes geometries
improvement: A review. Am. J. Eng. Applied Sci.,
2: 268-278. DOI: 10.3844/ajeassp.2009.268.278
Sepúlveda, J.A.M., 2016. Outlook of municipal solid
waste in Bogota (Colombia). Am. J. Eng. Applied
Sci., 9: 477-483.
DOI: 10.3844/ajeassp.2016.477.483
Serebrennikov, A., D. Serebrennikov and Z. Hakimov,
2016. Polyethylene pipeline bending stresses at an
installation. Am. J. Eng. Applied Sci., 9: 350-355.
DOI: 10.3844/ajeassp.2016.350.355
Shanmugam, K., 2016. Flow dynamic behavior of fish
oil/silver nitrate solution in mini-channel, effect of
alkane addition on flow pattern and interfacial
tension. Am. J. Eng. Applied Sci., 9: 236-250.
DOI: 10.3844/ajeassp.2016.236.250
Shruti, 2016. Comparison in cover media under
stegnography: Digital media by hide and seek
approach. Am. J. Eng. Applied Sci., 9: 297-302.
DOI: 10.3844/ajeassp.2016.297.302
Stavridou, N., E. Efthymiou and C.C. Baniotopoulos,
2015a. Welded connections of wind turbine towers
under fatigue loading: Finite element analysis and
comparative study. Am. J. Eng. Applied Sci., 8:
489-503. DOI: 10.3844/ajeassp.2015.489.503
Stavridou, N., E. Efthymiou and C.C. Baniotopoulos,
2015b. Verification of anchoring in foundations of
wind turbine towers. Am. J. Eng. Applied Sci., 8:
717-729. DOI: 10.3844/ajeassp.2015.717.729
Suarez, L., T.M. Abu-Lebdeh, M. Picornell and S.A.
Hamoush, 2016. Investigating the role of fly ash and
silica fume in the cement hydration process. Am. J.
Eng. Applied Sci., 9: 134-145.
DOI: 10.3844/ajeassp.2016.134.145
Syahrullah, O.I. and N. Sinaga, 2016. Optimization and
prediction of motorcycle injection system
performance with feed-forward back-propagation
method Artificial Neural Network (ANN). Am. J.
Eng. Applied Sci., 9: 222-235.
DOI: 10.3844/ajeassp.2016.222.235
Sylvester, O., I. Bibobra and O. Augustina, 2015b.
Report on the evaluation of Ugua J2 and J3 reservoir
performance. Am. J. Eng. Applied Sci., 8: 678-688.
DOI: 10.3844/ajeassp.2015.678.688
Sylvester, O., I. Bibobra and O.N. Ogbon, 2015a. Well
test and PTA for reservoir characterization of key
properties. Am. J. Eng. Applied Sci., 8: 638-647.
DOI: 10.3844/ajeassp.2015.638.647
Taher, S.A., R. Hematti and M. Nemati, 2008.
Comparison of different control strategies in GA-
based optimized UPFC controller in electric power
systems. Am. J. Eng. Applied Sci., 1: 45-52.
DOI: 10.3844/ajeassp.2008.45.52
Takeuchi, T., Y. Kinouchi, R. Matsui and T. Ogawa,
2015. Optimal arrangement of energy-dissipating
members for seismic retrofitting of truss structures.
Am. J. Eng. Applied Sci., 8: 455-464.
DOI: 10.3844/ajeassp.2015.455.464
Theansuwan, W. and K. Triratanasirichai, 2011. The
biodiesel production from roast Thai sausage oil by
transesterification reaction. Am. J. Eng. Applied Sci.,
4: 130-132. DOI: 10.3844/ajeassp.2011.130.132
Thongwan, T., A. Kangrang and S. Homwuttiwong,
2011. An estimation of rainfall using fuzzy set-
genetic algorithms model. Am. J. Eng. Applied Sci.,
4: 77-81. DOI: 10.3844/ajeassp.2011.77.81
Tourab, W., A. Babouri and M. Nemamcha, 2011.
Experimental study of electromagnetic environment in
the vicinity of high voltage lines. Am. J. Eng. Applied
Sci., 4: 209-213. DOI: 10.3844/ajeassp.2011.209.213
Tsolakis, A.D. and K.G. Raptis, 2011. Comparison of
maximum gear-tooth operating bending stresses
derived from niemann's analytical procedure and the
finite element method. Am. J. Eng. Applied Sci., 4:
350-354. DOI: 10.3844/ajeassp.2011.350.354
Vernardos, S.M. and C.J. Gantes, 2015. Cross-section
optimization of sandwich-type cylindrical wind
turbine towers. Am. J. Eng. Applied Sci., 8:
471-480. DOI: 10.3844/ajeassp.2015.471.480
Wang, J. and Y. Yagi, 2016. Fragment-based visual
tracking with multiple representations. Am. J. Eng.
Applied Sci., 9: 187-194.
DOI: 10.3844/ajeassp.2016.187.194
Wang, L., G. Wang and C.A. Alexander, 2015.
Confluences among big data, finite element analysis
and high-performance computing. Am. J. Eng. Applied
Sci., 8: 767-774. DOI: 10.3844/ajeassp.2015.767.774
Wang, L., T. Liu, Y. Zhang and X. Yuan, 2016. A
methodology for continuous evaluation of cloud
resiliency. Am. J. Eng. Applied Sci., 9: 264-273.
DOI: 10.3844/ajeassp.2016.264.273
Waters, C., S. Ajinola and M. Salih, 2016. Dissolution
sintering technique to create porous copper with
sodium chloride using polyvinyl alcohol solution
through powder metallurgy. Am. J. Eng. Applied Sci.,
9: 155-165. DOI: 10.3844/ajeassp.2016.155.165
Wessels, L. and H. Raad, 2016. Recent advances in point
of care diagnostic tools: A review. Am. J. Eng.
Applied Sci., 9: 1088-1095.
DOI: 10.3844/ajeassp.2016.1088.1095
Yang, M.F. and Y. Lin, 2015. Process is unreliable and
quantity discounts supply chain integration
inventory model. Am. J. Eng. Applied Sci., 8:
602-610. DOI: 10.3844/ajeassp.2015.602.610
Yeargin, R., R. Ramey and C. Waters, 2016. Porosity
analysis in porous brass using dual approaches. Am.
J. Eng. Applied Sci., 9: 91-97.
DOI: 10.3844/ajeassp.2016.91.97
Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2020, Volume 4: 15.41
DOI: 10.3844/jmrsp.2020.15.41
41
You, M., X. Huang, M. Lin, Q. Tong and X. Li et al.,
2016. Preparation of LiCoMnO4 assisted by
hydrothermal approach and its electrochemical
performance. Am. J. Eng. Applied Sci., 9: 396-405.
DOI: 10.3844/ajeassp.2016.396.405
Zeferino, R.S., J.A.R. Ramón, E. de Anda Reyes, R.S.
González and U. Pal, 2016. Large scale synthesis of
ZnO nanostructures of different morphologies
through solvent-free mechanochemical synthesis
and their application in photocatalytic dye
degradation. Am. J. Eng. Applied Sci., 9: 41-52.
DOI: 10.3844/ajeassp.2016.41.52
Zhao, B., 2013. Identification of multi-cracks in the gate
rotor shaft based on the wavelet finite element
method. Am. J. Eng. Applied Sci., 6: 309-319.
DOI: 10.3844/ajeassp.2013.309.319
Zheng, H. and S. Li, 2016. Fast and robust maximum
power point tracking for solar photovoltaic systems.
Am. J. Eng. Applied Sci., 9: 755-769.
DOI: 10.3844/ajeassp.2016.755.769
Zotos, I.S. and T.N. Costopoulos, 2009. On the use of
rolling element bearings' models in Precision
maintenance. Am. J. Eng. Applied Sci., 2: 344-352.
DOI: 10.3844/ajeassp.2009.344.352
Zulkifli, R., K. Sopian, S. Abdullah and M.S. Takriff,
2008. Effect of pulsating circular hot air jet
frequencies on local and average nusselt number.
Am. J. Eng. Applied Sci., 1: 57-61.
DOI: 10.3844/ajeassp.2008.57.61
Zulkifli, R., K. Sopian, S. Abdullah and M.S. Takriff,
2009. Experimental study of flow structures of
circular pulsating air jet. Am. J. Eng. Applied Sci.,
2: 171-175. DOI: 10.3844/ajeassp.2009.171.175
Zurfi, A. and J. Zhang, 2016a. Model identification and
wall-plug efficiency measurement of white LED
modules. Am. J. Eng. Applied Sci., 9: 412-419.
DOI: 10.3844/ajeassp.2016.412.419
Zurfi, A. and J. Zhang, 2016b. Exploitation of battery
energy storage in load frequency control-a literature
survey. Am. J. Eng. Applied Sci., 9: 1173-1188.
DOI: 10.3844/ajeassp.2016.1173.1188