Preprint

Blockchain for Mobile Edge Computing: Consensus Mechanisms and Scalability

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Mobile edge computing (MEC) and next-generation mobile networks are set to disrupt the way intelligent and autonomous systems are interconnected. This will have an effect on a wide range of domains, from the Internet of Things to autonomous mobile robots. The integration of such a variety of MEC services in a inherently distributed architecture requires a robust system for managing hardware resources, balancing the network load and securing the distributed applications. Blockchain technology has emerged a solution for managing MEC services, with consensus protocols and data integrity checks that enable transparent and efficient distributed decision-making. In addition to transparency, the benefits from a security point of view are evident. Nonetheless, blockchain technology faces significant challenges in terms of scalability. In this chapter, we review existing consensus protocols and scalability techniques in both well-established and next-generation blockchain architectures. From this, we evaluate the most suitable solutions for managing MEC services and discuss the benefits and drawbacks of the available alternatives.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
This conceptual paper discusses how different aspects involving the autonomous operation of robots and vehicles will change when they have access to next-generation mobile networks. 5G and beyond connectivity is bringing together a myriad of technologies and industries under its umbrella. High-bandwidth, low-latency edge computing services through network slicing have the potential to support novel application scenarios in different domains including robotics, autonomous vehicles, and the Internet of Things. In particular, multi-tenant applications at the edge of the network will boost the development of autonomous robots and vehicles offering computational resources and intelligence through reliable offloading services. The integration of more distributed network architectures with distributed robotic systems can increase the degree of intelligence and level of autonomy of connected units. We argue that the last piece to put together a services framework with third-party integration will be next-generation low-latency blockchain networks. Blockchains will enable a transparent and secure way of providing services and managing resources at the Multi-Access Edge Computing (MEC) layer. We overview the state-of-the-art in MEC slicing, distributed robotic systems and blockchain technology to define a framework for services the MEC layer that will enhance the autonomous operations of connected robots and vehicles.
Conference Paper
Full-text available
Fleets of autonomous mobile robots are becoming ubiquitous in industrial environments such as logistic warehouses. This ubiquity has led in the Internet of Things field towards more distributed net-work architectures, which have crystallized under the rising edge and fog computing paradigms. In this paper, we propose the combi-nation of an edge computing approach with computational offload-ing for mobile robot navigation. As smaller and relatively simpler robots become more capable, their penetration in different domains rises. These large multi-robot systems are often characterized by constrained computational and sensing resources. An efficient com-putational offloading scheme has the potential to bring multiple operational enhancements. However, with the most cost-effective autonomous navigation method being visual-inertial odometry,streaming high-quality images can induce latency increments with a consequent negative impact on operational performance. In this paper, we analyze the impact that image quality and compression have on the state-of-the-art on visual inertial odometry. Our results indicate that over one order of magnitude in image size and network bandwidth can be reduced without compromising the accuracy of the odometry methods even in challenging environments.This opens the door to further optimization by dynamically assessing the trade-off between image quality, network load, latency and performance of the visual-inertial odometry and localization accuracy.
Conference Paper
Full-text available
Traditional cloud-centric architectures for Internet-of-Things applications are being replaced by distributed approaches. The Edge and Fog computing paradigms crystallize the concept of moving computation towards the edge of the network, closer to where the data originates. This has important benefits in terms of energy efficiency, network load optimization and latency control. The combination of these paradigms with embedded artificial intelligence in edge devices, or Edge AI, enables further improvements. In turn, the development of blockchain technology and distributed architectures for peer-to-peer communication and trade allows for higher levels of security. This can have a significant impact on data-sensitive and mission-critical applications in the IoT. In this paper, we discuss the potential of an Edge AI capable system architecture for the Blockchain of Things. We show how this architecture can be utilized in health monitoring applications. Furthermore, by analyzing raw data directly at the edge layer, we inherently avoid the possibility of breaches of sensitive information, as raw data is never stored nor transferred outside of the local network.
Conference Paper
Full-text available
A recent trend in the IoT is to shift from traditional cloud-centric applications towards more distributed approaches embracing the fog and edge computing paradigms. In autonomous robots and vehicles, much research has been put into the potential of offloading computationally intensive tasks to cloud computing. Visual odometry is a common example, as real-time analysis of one or multiple video feeds requires significant on-board computation. If this operations are offloaded, then the on-board hardware can be simplified, and the battery life extended. In the case of self-driving cars, efficient offloading can significantly decrease the price of the hardware. Nonetheless, offloading to cloud computing compromises the system's latency and poses serious reliability issues. Visual odometry offloading requires streaming of video-feeds in real-time. In a multi-vehicle scenario, enabling efficient data compression without compromising performance can help save bandwidth and increase reliability.
Conference Paper
Full-text available
The edge and fog computing paradigms enable more responsive and smarter systems without relying on cloud servers for data processing and storage. This reduces network load as well as latency. Nonetheless, the addition of new layers in the network architecture increases the number of security vulnerabilities. In privacy-critical systems, the appearance of new vulnerabilities is more significant. To cope with this issue, we propose and implement an Ethereum Blockchain based architecture with edge artificial intelligence to analyze data at the edge of the network and keep track of the parties that access the results of the analysis, which are stored in distributed databases. A use case of edge AI for ECG feature extraction and real-time support of multiple sensor nodes is analyzed in the experiments.
Conference Paper
Full-text available
Offloading computationally intensive tasks such as lidar or visual odometry from mobile robots has multiple benefits. Resource constrained robots can make use of their network capabilities to reduce the data processing load and be able to perform a larger number tasks in a more efficient manner. However, previous works have mostly focused on cloud offloading, which increases latency and reduces reliability, or high-end edge devices. Instead, we explore the utilization of FPGAs at the edge for computational offloading with minimal latency and high parallelism. We present the potential for modelling feature-based odometry in VHDL and utilizing FPGA implementations.
Conference Paper
Full-text available
The agricultural and farming industries have been widely influenced by the disruption of the Internet of Things. The impact of the IoT is more limited in countries with less penetration of mobile internet such as sub-Saharan countries, where agriculture commonly accounts for 10 to 50% of their GPD. The boom of low-power wide-area networks (LPWAN) in the last decade, with technologies such as LoRa or NB-IoT, has mitigated this providing a relatively cheap infrastructure that enables low-power and long-range transmissions. Nonetheless, the benefits that LPWAN technologies enable have the disadvantage of low-bandwidth transmissions. Therefore, the integration of Edge and Fog computing, moving data analytics and compression near end devices, is key in order to extend functionality. By integrating artificial intelligence at the local network layer, or Edge AI, we present a system architecture and implementation that expands the possibilities of smart agriculture and farming applications with Edge and Fog computing and LPWAN technology for large area coverage. We propose and implement a system consisting on a sensor node, an Edge gateway, LoRa repeaters, Fog gateway, cloud servers and end-user terminal application. At the Edge layer, we propose the implementation of a CNN-based image compression method in order to send in a single message information about hundreds or thousands of sensor nodes within the gateway's range. We use advanced compression techniques to reduce the size of data up to 67% with a decompression error below 5%, within a novel scheme for IoT data.
Article
Full-text available
Offloading computation-intensive tasks (e.g., blockchain consensus processes and data processing tasks) to the edge/cloud is a promising solution for blockchain-empowered mobile edge computing. However, the traditional offloading approaches (e.g., auction-based and game-theory approaches) fail to adjust the policy according to the changing environment and cannot achieve long-term performance. Moreover, the existing deep reinforcement learning-based offloading approaches suffer from the slow convergence caused by high-dimensional action space. In this paper, we propose a new model-free deep reinforcement learning-based online computation offloading approach for blockchain-empowered mobile edge computing in which both mining tasks and data processing tasks are considered. First, we formulate the online offloading problem as a Markov decision process by considering both the blockchain mining tasks and data processing tasks. Then, to maximize long-term offloading performance, we leverage deep reinforcement learning to accommodate highly dynamic environments and address the computational complexity. Furthermore, we introduce an adaptive genetic algorithm into the exploration of deep reinforcement learning to effectively avoid useless exploration and speed up the convergence without reducing performance. Lastly, our experimental results demonstrate that our algorithm can converge quickly and outperform three benchmark policies.
Article
Full-text available
Blockchain and AI are promising techniques for next-generation wireless networks. Blockchain can establish a secure and decentralized resource sharing environment. AI can be explored to solve problems with uncertain, time-variant, and complex features. Both of these techniques have recently seen a surge in interest. The integration of these two techniques can further enhance the performance of wireless networks. In this article, we first propose a secure and intelligent architecture for next-generation wireless networks by integrating AI and blockchain into wireless networks to enable flexible and secure resource sharing. Then we propose a blockchain empowered content caching problem to maximize system utility, and develop a new caching scheme by utilizing deep reinforcement learning. Numerical results demonstrate the effectiveness of the proposed scheme.
Article
Full-text available
Edge computing provides a unified platform for computing, networking, and storage resources, enabling data to be processed in a timely and efficient manner near the source. Thus, it has become the basic platform for industrial Internet of things (IIoT). However, computing′s unique features have also introduced new security problems. To solve the problem, in this paper, blockchain-based identity management combining access control mechanism is designed under edge computing. The self-certified cryptography is utilized to realize the registration and authentication of network entities. We bind the generated implicit certificate to its identity and construct the identity and certificate management mechanism based on blockchain. Secondly, an access control mechanism based on Bloom filter is designed and integrated with identity management. Moreover, for secure communication in resource-constrained edge devices, a lightweight secret key agreement protocol based on self-authenticated public key is constructed. These mechanisms work together to provide data security guarantees for IIoT such as authentication, auditability, and confidentiality.
Conference Paper
Full-text available
Remote healthcare monitoring has exponentially grown over the past decade together with the increasing penetration of Internet of Things (IoT) platforms. IoT-based health systems help to improve the quality of healthcare services through real-time data acquisition and processing. However, traditional IoT architectures have some limitations. For instance, they cannot properly function in areas with poor or unstable Internet. Low power wide area network (LPWAN) technologies, including long-range communication protocols such as LoRa, are a potential candidate to overcome the lacking network infrastructure. Nevertheless, LPWANs have limited transmission bandwidth not suitable for high data rate applications such as fall detection systems or electrocardiography monitoring. Therefore, data processing and compression are required at the edge of the network. We propose a system architecture with integrated artificial intelligence that combines Edge and Fog computing, LPWAN technology, IoT and deep learning algorithms to perform health monitoring tasks. In particular, we demonstrate the feasibility and effectiveness of this architecture via a use case of fall detection using recurrent neural networks. We have implemented a fall detection system from the sensor node and Edge gateway to cloud services and end-user applications. The system uses inertial data as input and achieves an average precision of over 90\% and an average recall over 95\% in fall detection.
Article
Full-text available
One of the most important discoveries and creative developments that is playing a vital role in the professional world today is blockchain technology. Blockchain technology moves in the direction of persistent revolution and change. It is a chain of blocks that covers information and maintains trust between individuals no matter how far they are. In the last couple of years, the upsurge in blockchain technology has obliged scholars and specialists to scrutinize new ways to apply blockchain technology with a wide range of domains. The dramatic increase in blockchain technology has provided many new application opportunities, including healthcare applications. This survey provides a comprehensive review of emerging blockchain-based healthcare technologies and related applications. In this inquiry, we call attention to the open research matters in this fast-growing field, explaining them in some details. We also show the potential of blockchain technology in revolutionizing healthcare industry.
Conference Paper
Full-text available
The development of autonomous vehicles or advanced driving assistance platforms has had a great leap forward getting closer to human daily life over the last decade. Nevertheless, it is still challenging to achieve an efficient and fully autonomous vehicle or driving assistance platform due to many strict requirements and complex situations or unknown environments. One of the main remaining challenges is a robust situational awareness in autonomous vehicles in unknown environments. An autonomous system with a poor situation awareness due to low quantity or quality of data may directly or indirectly cause serious consequences. For instance, a person's life might be at risk due to a delay caused by a long or incorrect path planning of an autonomous ambulance. Internet of Everything (IoE) is currently becoming a prominent technology for many applications such as automation. In this paper, we propose an IoE-based architecture consisting of a heterogeneous team of cars and drones for enhancing situational awareness in autonomous cars, especially when dealing with critical cases of natural disasters. In particular, we show how an autonomous car can plan in advance the possible paths to a given destination, and send orders to other vehicles. These, in turn, perform terrain reconnaissance for avoiding obstacles and dealing with difficult situations. Together with a map merging algorithm deployed into the team, the proposed architecture can help to save traveling distance and time significantly in case of complex scenarios.
Conference Paper
Full-text available
Increased automation and intelligence in computer systems have revealed limitations of Cloud-based computing such as unpredicted latency in safety-critical and performance-sensitive applications. The amount of data generated from ubiquitous sensors has reached a degree where it becomes impractical to always store and process in the Cloud. Edge computing brings computation and storage to the Edge of the network near to where the data originates yielding reduced network load and better performance of services. In parallel, new wireless communication technologies have appeared to facilitate the expansion of Internet of Things (IoT). Instead of seeking higher data rates, low-power wide-area network aims at battery-powered sensor nodes and devices which require reliable communication for a prolonged period of time. Recently, Long Range (LoRa) has become a popular choice for IoT-based solutions. In this paper, we explore and analyze different application fields and related works which use LoRa and investigate potential improvement opportunities and considerations. Furthermore, we propose a generic architecture to integrate Edge computation capability in IoT-based applications for enhanced performance.
Article
Full-text available
The emerging blockchain protocols provide a decentralized architecture that is suitable of supporting Internet of Things (IoT) interactions. However, keeping a local copy of the blockchain ledger is infeasible for low-power and memory-constrained devices. For this reason, they are equipped with lightweight software implementations that only download the useful data structures, e.g. state of accounts, from the blockchain network, when they are updated. In this paper, we consider and analyze a novel scheme, implemented by the nodes of the blockchain network, which aggregates the blockchain data in periodic updates and further reduces the communication cost of the connected IoT devices. We show that the aggregation period should be selected based on the channel quality, the offered rate, and the statistics of updates of the useful data structures. The results, obtained for the Ethereum protocol, illustrate the benefits of the aggregation scheme in terms of a reduced duty cycle of the device, particularly for low signal-to-noise ratios, and the overall reduction of the amount of information transmitted in downlink from the wireless base station to the IoT device. A potential application of the proposed scheme is to let the IoT device request more information than actually needed, hence increasing its privacy, while keeping the communication cost constant. In conclusion, our work is the first to provide rigorous guidelines for the design of lightweight blockchain protocols with wireless connectivity.
Article
Full-text available
Until now, most systems for Internet of Things (IoT) management, have been designed in a Cloud-centric manner, getting benefits from the unified platform that the Cloud offers. However, a Cloud-centric infrastructure mainly achieves static sensor and data streaming systems, which do not support the direct configuration management of IoT components. To address this issue, a virtualization of IoT components (Virtual Resources) is introduced at the edge of the IoT network. This research also introduces permission-based Blockchain protocols to handle the provisioning of Virtual Resources directly onto edge devices. The architecture presented by this research focuses on the use of Virtual Resources and Blockchain protocols as management tools to distribute configuration tasks towards the edge of the IoT network. Results from lab experiments demonstrate the successful deployment and communication performance (response time in milliseconds) of Virtual Resources on two edge platforms, Raspberry Pi and Edison board. This work also provides performance evaluations of two permission-based blockchain protocol approaches. The first blockchain approach is a Blockchain as a Service (BaaS) in the Cloud, Bluemix. The second blockchain approach is a private cluster hosted in a Fog network, Multichain.
Article
Full-text available
The edge of the network has the potential to host services for supporting a variety of user applications, ranging in complexity from data preprocessing, image and video rendering, and interactive gaming, to embedded systems in autonomous cars and built environments. However, the computational and data resources over which such services are hosted, and the actors that interact with these services, have an intermittent availability and access profile, introducing significant risk for user applications that must rely on them. This article investigates the development of an edge marketplace, which is able to support multiple providers for offering services at the network edge, and to enable demand supply for influencing the operation of such a marketplace. Resilience, cost, and quality of service and experience will subsequently enable such a marketplace to adapt its services over time. This article also describes how distributed-ledger technologies (such as blockchains) provide a promising approach to support the operation of such a marketplace and regulate its behavior (such as the GDPR in Europe) and operation. Two application scenarios provide context for the discussion of how such a marketplace would function and be utilized in practice.
Article
Full-text available
Mobile edge computing (MEC) is being introduced and leveraged in many domains, but few studies have addressed MEC for secure in-home therapy management. To this end, this paper presents an in-home therapy management framework, which leverages the IoT nodes and the blockchain-based decentralized MEC paradigm to support low-latency, secure, anonymous, and always-available spatiotemporal multimedia therapeutic data communication within an on-demand data-sharing scenario. To the best of our knowledge, this non-invasive, MEC-based IoT therapy platform is first done by our group. This platform can provide a full-body joint range of motion data for physically challenged individuals in a decentralized manner. With MEC, the framework can provide therapy diagnostic and analytical data on demand to a large portion of humanity who are either born with disabilities or became disabled due to accidents, war-time injuries, or old age. For security, the framework uses blockchain–Tor-based distributed transactions to preserve the therapeutic data privacy, ownership, generation, storage, and sharing. Our initial test results from a complete implementation of the framework show that it can support a sufficiently large number of users without considerable increase in mean processing time.
Article
Full-text available
Spatial challenges for the vehicular Internet of Things come from mobility, high density, sparse connectivity, and heterogeneity. In this article, we propose two techniques, namely decentralized moving edge and multi-tier multi-access edge clustering, to handle these challenges. The "vehicle as an edge" concept of the decentralized moving edge provides a more suitable solution to meet the throughput and latency performance requirements by conducting distributed communication, data caching, and computing tasks at vehicles. Multi-tier multi-access edge clustering generates different levels of clusters for more efficient integration of different types of access technologies including licensed/unlicensed long-range low-throughput communications and unlicensed short-range high-throughput communications. We employ fuzzy logic to jointly consider multiple inherently contradictory metrics and use Q-learning to achieve a self-evolving capability. Realistic computer simulations are conducted to show the advantage of the proposed protocols over alternatives, an
Article
Full-text available
The drastically increasing volume and the growing trend on the types of data have brought in the possibility of realizing advanced applications such as enhanced driving safety, and have enriched existing vehicular services through data sharing among vehicles and data analysis. Due to limited resource of vehicles, mobile edge computing integrated with vehicular networks gives rise to Vehicular Edge COmputing and Networks (VECONs) for providing powerful computing and massive storage resources. However, vehicular edge computing servers consisted of roadside units cannot be fully trusted, which may result in serious security and privacy challenges. We exploit consortium blockchain and smart contract technologies to achieve secure data storage and sharing in vehicular edge networks. These technologies efficiently prevent data sharing without authorization. In addition, we propose a reputation based data sharing scheme to ensure high-quality data sharing among vehicles. A three-weight subjective logic model is utilized for precisely managing reputation of the vehicles. Numerical results based on a real dataset show that our schemes achieve reasonable efficiency and high-level security for data sharing in VECONs.
Conference Paper
Full-text available
Due to the centralization of authority in the management of data generated by IoT devices, there is a lack of transparency in how user data is being shared among third party entities. With the popularity of adoption of blockchain technology, which provide decentralized management of assets such as currency as seen in Bitcoin, we propose a decentralized system of data management for IoT devices where all data access permission is enforced using smart contracts and the audit trail of data access is stored in the blockchain. With smart contracts applications, multiple parties can specify rules to govern their interactions which is independently enforced in the blockchain without the need for a centralized system. We provide a framework that store the hash of the data in the blockchain and store the raw data in a secure storage platform using trusted execution environment (TEE). In particular, we consider Intel SGX as a part of TEE that ensure data security and privacy for sensitive part of the application (code and data). Keywords-IoT; Blockchain; SGX; P
Conference Paper
Full-text available
Designing a secure permissionless distributed ledger (blockchain) that performs on par with centralized payment processors, such as Visa, is a challenging task. Most existing distributed ledgers are unable to scale-out, i.e., to grow their total processing capacity with the number of validators; and those that do, compromise security or decentralization. We present OmniLedger, a novel scale-out distributed ledger that preserves longterm security under permissionless operation. It ensures security and correctness by using a bias-resistant public-randomness protocol for choosing large, statistically representative shards that process transactions, and by introducing an efficient cross-shard commit protocol that atomically handles transactions affecting multiple shards. OmniLedger also optimizes performance via parallel intra-shard transaction processing, ledger pruning via collectively-signed state blocks, and low-latency "trust-but-verify" validation for low-value transactions. An evaluation of our experimental prototype shows that OmniLedger's throughput scales linearly in the number of active validators, supporting Visa-level workloads and beyond, while confirming typical transactions in under two seconds.
Article
Full-text available
There is no doubt that Internet of Things (IoT) occupy a very important role in our daily lives. Indeed, numerous objects that we use every time, are being equipped with electronic devices and protocol suites in order to make them interconnected and connected to the Internet. In IoT, things process and exchange data without human intervention. Therefore, because of this full autonomy, these entities need to recognize and authenticate each other as well as to ensure the integrity of their exchanged data. Otherwise, they will be the target of malicious users and malicious use. Due to the size and other features of IoT, it is almost impossible to create an efficient centralized authentication system. To remedy this limit, in this paper, we propose an original decentralized system called bubbles of trust, which ensures a robust identification and authentication of devices. Furthermore, it protects the data integrity and availability. To achieve such a goal, our approach relies on the security advantages provided by blockchains, and serves to create secure virtual zones (bubbles) where things can identify and trust each other. We also provided a real implementation1 of our mechanism using the C++ language and Ethereum blockchain. The obtained results prove its ability to satisfy IoT security requirements, its efficiency, and its low cost
Article
Full-text available
The electricity that is expended in the process of mining Bitcoin has become a topic of heavy debate over the past few years. It is a process that makes Bitcoin extremely energy-hungry by design, as the currency requires a huge amount of hash calculations for its ultimate goal of processing financial transactions without intermediaries (peer-to-peer). The primary fuel for each of these calculations is electricity. The Bitcoin network can be estimated to consume at least 2.55 gigawatts of electricity currently, and potentially 7.67 gigawatts in the future, making it comparable with countries such as Ireland (3.1 gigawatts) and Austria (8.2 gigawatts). Economic models tell us that Bitcoin’s electricity consumption will gravitate toward the latter number. A look at Bitcoin miner production estimates suggests that this number could already be reached in 2018.
Conference Paper
Full-text available
The blockchain technology is a relatively new approach in the field of information technologies. As one of its first implementations, bitcoin as a cryptocurrency has gained a lot of attention. Together with Ethereum, blockchain implementation with focus on smart contracts, they represent the very core of modern cryptocurrency development. This paper is meant to give a brief introduction to these topics.
Conference Paper
Full-text available
Fabric is a modular and extensible open-source system for deploying and operating permissioned blockchains and one of the Hyperledger projects hosted by the Linux Foundation (www.hyperledger.org). Fabric is the first truly extensible blockchain system for running distributed applications. It supports modular consensus protocols, which allows the system to be tailored to particular use cases and trust models. Fabric is also the first blockchain system that runs distributed applications written in standard, general-purpose programming languages, without systemic dependency on a native cryptocurrency. This stands in sharp contrast to existing block-chain platforms that require "smart-contracts" to be written in domain-specific languages or rely on a cryptocurrency. Fabric realizes the permissioned model using a portable notion of membership, which may be integrated with industry-standard identity management. To support such flexibility, Fabric introduces an entirely novel blockchain design and revamps the way blockchains cope with non-determinism, resource exhaustion, and performance attacks. This paper describes Fabric, its architecture, the rationale behind various design decisions, its most prominent implementation aspects, as well as its distributed application programming model. We further evaluate Fabric by implementing and benchmarking a Bitcoin-inspired digital currency. We show that Fabric achieves end-to-end throughput of more than 3500 transactions per second in certain popular deployment configurations, with sub-second latency, scaling well to over 100 peers.
Article
Full-text available
There are several distributed ledger protocols potentially suitable for the Internet of things (IoT), including the Ethereum, Hyperledger Fabric and IOTA. This paper briefly presents and compares them from the IoT application development perspective. The IoT applications based on blockchain (BC) can incorporate the on-chain logic –the smart contracts– and Web, mobile or embedded client front-end application parts. We present three possible architectures for the IoT front-end BC applications. They differ in positioning of Ethereum blockchain clients (local device, remote server) and in positioning of key store needed for the management of outgoing transactions. The practical constraints of these architectures, which utilize the Ethereum network for trusted transaction exchange, are the data volumes, the location and synchronization of the full blockchain node and the location and the access to the Ethereum key store. Results of these experiments indicate that a full Ethereum node is not likely to reliably run on a constrained IoT devices. Therefore the architecture with remote Ethereum clients seems to be a viable approach, where two sub-options exist and differ in key store location/management. In addition, we proposed the use of architectures with a proprietary communication between the IoT device and remote blockchain client to further reduce the network traffic and enhance security. We expect it to be able to operate over low-power, low-bitrate mobile technologies, too. Our research clarifies differences in architectural approaches, but final decision for a particular ledger protocol and front-end application architecture is at strongly based on the particular intended use case.
Article
Full-text available
The automotive and telco industries have taken an investment bet on the connected car market, pushing for the digital transformation of the sector by exploiting recent Information and Communication Technology (ICT) progress. As ICT developments continue, it is expected that the technology advancements will be able to fulfill the sophisticated requirements for vehicular use cases, such as low latency and reliable communications for safety, high computing power to process large amount of sensed data, and increased bandwidth for on-board infotainment. The aforementioned requirements have received significant focus during the ongoing definition of the 3GPP 5G mobile standards, where there has been a drive to facilitate vertical industries such as automotive, in addition to providing the core aspects of the communication infrastructure. Of the technology enablers for 5G, Multi-access Edge Computing (MEC) can be considered essential. That is, a cloud environment located at the edge of the network, in proximity of the end-users and coupled with the service provider's network infrastructure. Even before 5G is rolled out, current mobile networks can already target support for these challenging use cases using MEC technology. This is because MEC is able to fulfill low latency and high bandwidth requirements, and, in addition, it lends itself to be deployed at the vertical industrial sector premises such as road infrastructure, air/sea ports, smart factories, etc., thus, bringing computing power where it is needed most. This work showcases the automotive use cases that are relevant for MEC, providing insights into the technologies specified and investigated by the ETSI MEC Industry Specification Group (ISG), who were the pioneer in creating a standardized computing platform for advanced mobile networks with regards to network edge related use cases.
Chapter
Smart cities are already a reality, with hyperconnected urban areas and increasing ubiquity of Internet of things (IoT) devices. These connected devices generate and transmit a vast amount of data about the city’s environment, traffic, and any other aspects that define the interaction between the cities and their citizens. The appearance and rising penetration of new computing paradigms and low-power wireless area network technologies are turning traditional cloud architectures that gather data from Wi-Fi, Bluetooth, or GSM/LTE connected devices into more distributed platforms with computation at different network layers. At the same time, low-power wide-area network (LPWAN) technology has opened a whole new world of opportunities in the IoT. More concretely, LPWAN solutions that operate on unlicensed radio bands have enabled low-power and long-distance communication to industry, researchers, public organizations, and individuals equally. Together with these, the increasing penetration of the edge and fog computing paradigms is allowing for smarter IoT solutions that do not necessarily rely on cloud servers. In this chapter, we present a hybrid edge-fog-cloud computing architecture for monitoring environment parameters and traffic flow in a city with a very small footprint in terms of installed infrastructure. In particular, we put an emphasis on traffic monitoring and propose a lightweight image processing algorithm that estimates traffic density.
Article
Blockchain, as the underlying technology of crypto-currencies, has attracted significant attention. It has been adopted in numerous applications, such as smart grid and Internet-of-Things. However, there is a significant scalability barrier for blockchain, which limits its ability to support services with frequent transactions. On the other side, edge computing is introduced to extend the cloud resources and services to be distributed at the edge of the network, but currently faces challenges in its decentralized management and security. The integration of blockchain and edge computing into one system can enable reliable access and control of the network, storage and computation distributed at the edges, hence providing a large scale of network servers, data storage and validity computation near the end in a secure manner. Despite the prospect of integrated blockchain and edge computing systems, its scalability enhancement, self organization, functions integration, resource management and new security issues remain to be addressed before widespread deployment. In this survey, we investigate some of the work that has been done to enable the integrated blockchain and edge computing system and discuss the research challenges. We identify several vital aspects of the integration of blockchain and edge computing: motivations, frameworks, enabling functionalities and challenges. Finally, some broader perspectives are explored.
Article
With the rapid development of internet of things (IoT), it has brought great convenience to users in different fields, such as smart home, smart transportation and so on. However, it also carries potential security risks. In order to solve this challenge, in this paper, we first introduce three layers of IoT, i.e., perception layer, network layer and application layer, then corresponding security problems of three layers are introduced. Second, we propose a high-level security management scheme based on blockchain for different IoT devices in the full life cycle. Finally, we give open research problems and future work.
Conference Paper
Smart home presents a challenge in control and monitoring of its wireless sensors networks (WSN) and the internet of things (IoT) devices which form it. The current IoT architectures are centralized, complex, with poor security in its communications and with upstream communication channels mainly. As a result, there are problems with data reliability. These problems include data missing, malicious data inserted, communications network overload, and overload of computing power at the central node. In this paper a new architecture is presented. This architecture based in blockchain introduce the edge computing layer and a new algorithm to improve data quality and false data detection.
Article
Recently, there has been an increasing interest in the Internet of Things (IoT). While some analysts disvalue the IoT hype, several technology leaders, governments, and researchers are putting serious efforts to develop solutions enabling wide IoT deployment. Thus, the huge amount of generated data, the high network scale, the security and privacy concerns, the new requirements in terms of QoS, and the heterogeneity in this ubiquitous network of networks make its implementation a very challenging task. SDN, a new networking paradigm, has revealed its usefulness in reducing the management complexities in today's networks. Additionally, SDN, having a global view of the network, has presented effective security solutions. On the other hand, fog computing, a new data service platform, consists of pushing the data to the network edge reducing the cost (in terms of bandwidth consumption and high latency) of “big data” transportation through the core network. In this paper, we critically review the SDN and fog computing-based solutions to overcome the IoT main challenges, highlighting their advantages, and exposing their weaknesses. Thus, we make recommendations at the end of this paper for the upcoming research work.
Conference Paper
Today, Internet of Things (IoT) devices are the pow- erhouse of data generation with their ever-increasing numbers and widespread penetration. Similarly, artificial intelligence (AI) and machine learning (ML) solutions are getting integrated to all kinds of services, making products significantly more "smarter". The centerpiece of these technologies is "data". IoT device vendors should be able keep up with the increased throughput and come up with new business models. On the other hand, AI/ML solutions will produce better results if training data is diverse and plentiful. In this paper, we propose a blockchain-based, decentralized and trustless data marketplace where IoT device vendors and AI/ML solution providers may interact and collaborate. By facilitating a transparent data exchange platform, access to consented data will be democratized and the variety of services targeting end-users will increase. Proposed data marketplace is implemented as a smart contract on Ethereum blockchain and Swarm is used as the distributed storage platform.
Article
This paper addresses the issue of current Internet of Things (IoT) development---the decentralized IoT model---in a manner of a peer-to-peer network and interoperable IoT devices. This paper proposes a new IoT software architecture, the Devify software framework, to address the peer-to-peer IoT network and the interoperable IoT device development. Besides, the work also shows through experiments that an IoT application server can simply use the flow-based programming (FBP) paradigm to define the application as a data exchange network. Therefore, the software architecture also provides such FBP runtime environment for writing IoT application servers.
Article
EVCE computing is an attractive network paradigm involving seamless connections among heterogeneous vehicular contexts. It will be a trend along with EVs becoming popular in V2X. The EVs act as potential resource infrastructures referring to both information and energy interactions, and there are serious security challenges for such hybrid cloud and edge computing. Context-aware vehicular applications are identified according to the perspectives of information and energy interactions. Blockchain-inspired data coins and energy coins are proposed based on distributed consensus, in which data contribution frequency and energy contribution amount are applied to achieve the proof of work. Security solutions are presented for securing vehicular interactions in EVCE computing.
Conference Paper
Low power communication is a major milestone for the Internet of Things (IoT). Low-Power Wide-Area Network (LPWAN) technologies seek to provide a large coverage area and long battery life at the cost of a reduced bandwidth compared to traditional networks. Commercially-available LPWAN solutions typically involve the usage of a wireless infrastructure from a network provider; with the notable exception of crowd-sourced networks, which use gateways from other users for wireless communication to end-devices. In this paper, we analyse the feasability of a fully decentralized LPWAN infrastructure and build a working prototype based on the LoRaWAN protocol.
Article
IOTA is a revolutionary new, next generation public distributed ledger that utilizes a novel invention, called a “Tangle”, at its core. The Tangle is a new data structure based on a Directed Acyclic Graph (DAG). As such it has no Blocks, no Chain and also no Miners. Because of this radical new architecture, things in IOTA work quite differently compared to other Blockchains.