Article

Affect of moringa oleifera given against pregnant and breastfeeding mothers cortisol

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Objective This study to assess the affect of moringa oleifera given against pregnant and breastfeeding mothers cortisol. Method Sample 40 pregnant women, low education, no work statusin, the experimental method (Randomized Double Blind design), Saliva samples from nursing mothers tested by Laboratory using KIT ELISA. Results Pre cortisol in the iron tablet and Moringa flour group was p = 0.0003, post pregnancy cortisol results in the iron group and Moringa flour, p = 0.119, decrement greater in the group with Moringa flour ± SD 2.91 ± 7:20, group of iron ± SD 3.60 ± 6:37, based on test of both groups the presence of the value p = 0.006, at 3 months of age, p = 0.923 (p > 0.05) at 6 months of age p = 0.496 (p > 0.05), a greater decrease occurred in the Moringa flour group with a value of ± SD = ↓ 5.44 ± 16.77, based on test of both groups the presence of the value p (p = 0.359). Conclusion Moringa flour provides the same benefits as Fe against cortisol levels during pregnancy but not significant at the lactation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Background: Iron and folic acid supplementation have been recommended in pregnancy for anaemia prevention, and may improve other maternal, pregnancy, and infant outcomes. Objectives: To examine the effects of daily oral iron supplementation during pregnancy, either alone or in combination with folic acid or with other vitamins and minerals, as an intervention in antenatal care. Search methods: We searched the Cochrane Pregnancy and Childbirth Trials Registry on 18 January 2024 (including CENTRAL, MEDLINE, Embase, CINAHL, ClinicalTrials.gov, WHO's International Clinical Trials Registry Platform, conference proceedings), and searched reference lists of retrieved studies. Selection criteria: Randomised or quasi-randomised trials that evaluated the effects of oral supplementation with daily iron, iron + folic acid, or iron + other vitamins and minerals during pregnancy were included. Data collection and analysis: Review authors independently assessed trial eligibility, ascertained trustworthiness based on pre-defined criteria, assessed risk of bias, extracted data, and conducted checks for accuracy. We used the GRADE approach to assess the certainty of the evidence for primary outcomes. We anticipated high heterogeneity amongst trials; we pooled trial results using a random-effects model (average treatment effect). Main results: We included 57 trials involving 48,971 women. A total of 40 trials compared the effects of daily oral supplements with iron to placebo or no iron; eight trials evaluated the effects of iron + folic acid compared to placebo or no iron + folic acid. Iron supplementation compared to placebo or no iron Maternal outcomes: Iron supplementation during pregnancy may reduce maternal anaemia (4.0% versus 7.4%; risk ratio (RR) 0.30, 95% confidence interval (CI) 0.20 to 0.47; 14 trials, 13,543 women; low-certainty evidence) and iron deficiency at term (44.0% versus 66.0%; RR 0.51, 95% CI 0.38 to 0.68; 8 trials, 2873 women; low-certainty evidence), and probably reduces maternal iron-deficiency anaemia at term (5.0% versus 18.4%; RR 0.41, 95% CI 0.26 to 0.63; 7 trials, 2704 women; moderate-certainty evidence), compared to placebo or no iron supplementation. There is probably little to no difference in maternal death (2 versus 4 events, RR 0.57, 95% CI 0.12 to 2.69; 3 trials, 14,060 women; moderate-certainty evidence). The evidence is very uncertain for adverse effects (21.6% versus 18.0%; RR 1.29, 95% CI 0.83 to 2.02; 12 trials, 2423 women; very low-certainty evidence) and severe anaemia (Hb < 70 g/L) in the second/third trimester (< 1% versus 3.6%; RR 0.22, 95% CI 0.01 to 3.20; 8 trials, 1398 women; very low-certainty evidence). No trials reported clinical malaria or infection during pregnancy. Infant outcomes: Women taking iron supplements are probably less likely to have infants with low birthweight (5.2% versus 6.1%; RR 0.84, 95% CI 0.72 to 0.99; 12 trials, 18,290 infants; moderate-certainty evidence), compared to placebo or no iron supplementation. However, the evidence is very uncertain for infant birthweight (MD 24.9 g, 95% CI -125.81 to 175.60; 16 trials, 18,554 infants; very low-certainty evidence). There is probably little to no difference in preterm birth (7.6% versus 8.2%; RR 0.93, 95% CI 0.84 to 1.02; 11 trials, 18,827 infants; moderate-certainty evidence) and there may be little to no difference in neonatal death (1.4% versus 1.5%, RR 0.98, 95% CI 0.77 to 1.24; 4 trials, 17,243 infants; low-certainty evidence) or congenital anomalies, including neural tube defects (41 versus 48 events; RR 0.88, 95% CI 0.58 to 1.33; 4 trials, 14,377 infants; low-certainty evidence). Iron + folic supplementation compared to placebo or no iron + folic acid Maternal outcomes: Daily oral supplementation with iron + folic acid probably reduces maternal anaemia at term (12.1% versus 25.5%; RR 0.44, 95% CI 0.30 to 0.64; 4 trials, 1962 women; moderate-certainty evidence), and may reduce maternal iron deficiency at term (3.6% versus 15%; RR 0.24, 95% CI 0.06 to 0.99; 1 trial, 131 women; low-certainty evidence), compared to placebo or no iron + folic acid. The evidence is very uncertain about the effects of iron + folic acid on maternal iron-deficiency anaemia (10.8% versus 25%; RR 0.43, 95% CI 0.17 to 1.09; 1 trial, 131 women; very low-certainty evidence), or maternal deaths (no events; 1 trial; very low-certainty evidence). The evidence is uncertain for adverse effects (21.0% versus 0.0%; RR 44.32, 95% CI 2.77 to 709.09; 1 trial, 456 women; low-certainty evidence), and the evidence is very uncertain for severe anaemia in the second or third trimester (< 1% versus 5.6%; RR 0.12, 95% CI 0.02 to 0.63; 4 trials, 506 women; very low-certainty evidence), compared to placebo or no iron + folic acid. Infant outcomes: There may be little to no difference in infant low birthweight (33.4% versus 40.2%; RR 1.07, 95% CI 0.31 to 3.74; 2 trials, 1311 infants; low-certainty evidence), comparing iron + folic acid supplementation to placebo or no iron + folic acid. Infants born to women who received iron + folic acid during pregnancy probably had higher birthweight (MD 57.73 g, 95% CI 7.66 to 107.79; 2 trials, 1365 infants; moderate-certainty evidence), compared to placebo or no iron + folic acid. There may be little to no difference in other infant outcomes, including preterm birth (19.4% versus 19.2%; RR 1.55, 95% CI 0.40 to 6.00; 3 trials, 1497 infants; low-certainty evidence), neonatal death (3.4% versus 4.2%; RR 0.81, 95% CI 0.51 to 1.30; 1 trial, 1793 infants; low-certainty evidence), or congenital anomalies (1.7% versus 2.4; RR 0.70, 95% CI 0.35 to 1.40; 1 trial, 1652 infants; low-certainty evidence), comparing iron + folic acid supplementation to placebo or no iron + folic acid. A total of 19 trials were conducted in malaria-endemic countries, or in settings with some malaria risk. No studies reported maternal clinical malaria; one study reported data on placental malaria. Authors' conclusions: Daily oral iron supplementation during pregnancy may reduce maternal anaemia and iron deficiency at term. For other maternal and infant outcomes, there was little to no difference between groups or the evidence was uncertain. Future research is needed to examine the effects of iron supplementation on other maternal and infant health outcomes, including infant iron status, growth, and development.
Article
Full-text available
Both basal and stress-induced secretory activities of the hypothalamic-pituitary-adrenal (HPA) axis are distinctly modified in lactating females. On the one hand, it aims to meet the physiological demands of the mother, and on the other hand, the appropriate and stable plasma cortisol level is one of the essential factors for the proper offspring development. Specific adaptations of HPA axis activity to lactation have been extensively studied in several animal species and humans, providing interesting data on the HPA axis plasticity mechanism. However, most of the data related to this phenomenon are derived from studies in rats. The purpose of this review is to highlight these adaptations, with a particular emphasis on stress reaction and differences that occur between species. Existing data on breastfeeding women are also included in several aspects. Finally, data from the experiments in sheep are presented, indicating a new regulatory factor of the HPA axis—salsolinol—which typical role was revealed in lactation. It is suggested that this dopamine derivative is involved in both maintaining basal and suppressing stress-induced HPA axis activities in lactating dams.
Article
Full-text available
In low- and middle-income countries (LMIC), determinants of women's and children's health are complex and differential vulnerability may exist to risk factors of perinatal distress and preterm birth. We examined the contribution of maternal perinatal distress on preterm birth and infant health in terms of infant survival and mother-infant interaction. A critical narrative and interpretive literature review was conducted. Peer-reviewed electronic databases (MEDLINE, Embase, Global Health, CINHAL), grey literature, and reference lists were searched, followed by a consultation exercise. The literature was predominantly from high-income countries. We identify determinants of perinatal distress and explicate changes in the hypothalamic-pituitary-adrenal axis, sympathetic, immune and cardiovascular systems, and behavioral responses resulting in pathophysiological effects. We suggest cultural-neutral composite measures of allostatic mediators (i.e., several biomarkers) of maternal perinatal distress as objective indicators of dysregulation in body systems in pregnant women in LMIC. Understanding causal links of maternal perinatal distress to preterm birth in women in LMIC should be a priority. The roles of allostasis and allostatic load are considered within the context of the health of pregnant women and fetuses/newborns in LMIC with emphasis on identifying objective indicators of the level of perinatal distress and protective factors or processes contributing to resilience while facing toxic stress. We propose a prospective study design with multiple measures across pregnancy and postpartum requiring complex statistical modeling. Building research capacity through partnering researchers in high-income countries and LMIC and reflecting on unique ethical challenges will be important to generating new knowledge in LMIC.
Article
Full-text available
Cortisol concentrations in hair and saliva collected from male and female adults over a 15-hour period were compared for differences in overall level and cyclic pattern. Typical diurnal fluctuations were noted for both salivary and hair cortisol, with some individual differences that are congruent with the previous literature. Issues of the link between central and peripheral HPA axes are raised for discussion and further investigation, and hypothetical explanations for the diurnal variability shown in these two sets of cortisol secretion patterns are discussed from an evolutionary advantage perspective.
Article
Literature on the use of plasma cortisol to quantify psychophysiological stress in humans is extensive. However, in parturition at term gestation, the use of cortisol as a biomarker of stress is particularly complex. Plasma cortisol levels increase as labor progresses. This increase seems to be important for maintenance of maternal/fetal well-being and facilitation of normal labor progress. Unique physiological and methodological issues involved in the use of cortisol as a biomarker of stress in labor present challenges for researchers. This review examines these issues, suggests mixed methods and within-subject repeated measures designs, and offers recommendations for assay procedures for parturient sampling. Documentation of clinical interventions and delivery outcomes may elucidate relationships among psychophysiological stressors, cortisol, and normal labor progress. With attention to these methodological issues, analysis of plasma cortisol may lead to clinical interventions that support normal labor physiology.
Article
The consequences of prenatal maternal stress for development were examined in 125 full-term infants at 3, 6, and 12 months of age. Maternal cortisol and psychological state were evaluated 5 times during pregnancy. Exposure to elevated concentrations of cortisol early in gestation was associated with a slower rate of development over the 1st year and lower mental development scores at 12 months. Elevated levels of maternal cortisol late in gestation, however, were associated with accelerated cognitive development and higher scores at 12 months. Elevated levels of maternal pregnancy-specific anxiety early in pregnancy were independently associated with lower 12-month mental development scores. These data suggest that maternal cortisol and pregnancy-specific anxiety have programming influences on the developing fetus.
The effect of moringa leaf extract in breastfeeding mothers against anemia status and breast milk iron content
  • Zakaria
Levels and trends in child malnutrition
  • Who Unicef
  • World Bank Group
Effect of moringa leaves extract on occupational stress and nutritional status of pregnant women informal sector workers
  • Muis