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Abstract. The aim of this study is to establish a reliable and widely applicable muscle strength 

(MS) estimation model based on the Mechanomyography (MMG). Seven healthy male 

volunteers were recruited to collect MMG and MS during the isometric contraction of their 

triceps. For MMG, 18 features were extracted. For the extreme gradient boosting (XGBoost) 

model and the quadratic polynomial (QP) model, the feature combination with the best 

estimation result was selected. The MS estimation performance of the XGBoost model and the 

QP model were compared. The performance of the QP model on the estimation of MS in 

different frequencies, different fatigue states and time periods was evaluated by using t-test. 

The results showed that when the number of features exceeds three, the model estimation 

accuracy has not improved significantly; and there was no significant difference in the 

estimation result of MS between the two models (p < 0.05), though the QP model was slightly 

better. The normalized root mean square error (NRMSE) and goodness of fit R of the MS 

estimation by the QP model were: 0.1343 ± 0.0296 and 0.8273 ± 0.0376. There was no 

significant difference in the MS estimation results in different conditions (p < 0.05). 

1.  Introduction 

Muscle strength (MS) estimation has been widely used in many fields, such as exoskeleton [1], 

prosthetic control [2], rehabilitation robot [3], and muscle disease research [4]. At present, the 

biomedical signals used for MS estimation are mainly electromyography (EMG) and 

Mechanomyography (MMG). MMG is a low frequency signal generated by the lateral vibration of 

muscle fibers during muscle contraction, which can reflect the mechanical characteristics of muscle 

contraction. Compared with EMG, MMG has certain advantages: a) due to the propagation 

characteristics of MMG in muscle tissue, the MMG sensors do not need to be accurately placed [5, 6]; 

b) MMG is a mechanical signal which will not be influenced by the change of the skin impedance due 

to sweating [7]. Thus, as a counterpart of EMG, MMG is widely used in the researches of the action 

pattern recognition [7-9], muscle fatigue [10-12] and so on. Some studies have shown that there is a 

non-linear relationship between MMG and MS [13, 14], suggesting that MMG could be used for MS 

estimation. Ibitoye et al. [1] selected root mean square (RMS) and peak-to-peak (PP) value as MMG 

features, and used support vector regression (SVR) model to realize the MS estimation of the 

quadriceps. Lei et al. [15] selected RMS and spectral variance as MMG features, and find that 
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artificial neural network (ANN) is superior than linear model in estimating biceps MS. Youn et al. [16] 

selected mean average value (MAV) and zero crossing (ZC) as MMG features, and find that ANN has 

better estimation effect on biceps MS than multiple linear regression model. 

Extreme gradient boosting (XGBoost) is a decision tree method, which has been widely used in the 

prediction task. XGBoost has advantages of low computational complexity, and high accuracy [17-19]. 

Studies have found there is a non-linear relationship between MMG features and MS [13, 20, 21], and 

the quadratic polynomial (QP) as a simple nonlinear model has been proven available in the study of 

estimating MS by EMG [22]. Therefore, in this study, XGBoost and QP model are selected for 

comparative analysis, and the performance of the two models on MS estimation during isometric 

contraction of the triceps brachii has been compared. 18 types of time-domain, frequency-domain, and 

time-frequency domain features of MMG were extracted, and the optimal feature combination to 

estimate MS were selected according to the model. The applicability of the model to MS estimation at 

different frequencies, different fatigue states, and different periods were validated by hypothesis t-test. 

2.  Method 

2.1.  Experiment 

In this study, the triceps brachii was selected as the research object. A triaxial accelerometer 

(ADXL335, Analog Devices, USA) that was fixed at the abdominal position of the triceps brachii was 

used to collect MMG. A tension sensor (ZNLBS-VI-30KG, Bengbu Chino Sensor, China) was 

selected to collect the force signal. A data acquisition card (NI9205, National Instruments, USA) was 

used to acquire the MMG and MS signals with 1000 Hz sampling frequency. The signals were filtered 

with a digital filter with a bandwidth of 2 ~ 50Hz.  

Seven male volunteers (mean±SD, aged = 24.4±1.1 years; mass = 65.6±7.0 kg) were recruited in 

this experiment. None of them had a history of motor neurological diseases, no sports injuries in the 

upper limbs, and no intense exercise in the two days before the experiment. The experiment was 

performed after all volunteers knew the experimental process and signed the informed consent. The 

experimental setup is shown in Figure 1. 

 
The experiment was conducted in three days in total. On the first day, the subjects were required to 

familiarize with the experiment process, and to collect data on the second and third days to avoid 

residual fatigue. During the experiment days, subjects were required to not exercise vigorously. 

Experiments were divided into two steps: (1) The subject's Maximum voluntary contraction (MVC) 

was measured and used as the standard for measuring the strength. To avoid instantaneous abnormal 

force, the subject was required to slowly improve the force until it could no longer rise. This process 

was repeated three times, and the subject got fully rest between tests, and the average value of the 

maximum force achieved three times was taken as the final MVC. (2) According to the prompt sound, 

 
Monitor 

 

 

 

Tension sensor 

Accelerometer 

 

Acquisition card 

 

Figure 1. Experimental setup. During the 

experiment, the subject was required to sit on a 

non-slip chair with the upper body in an upright 

position, and both the angle between the forearm 

and the body and the angle between the forearm 

and the forearm were90°. To avoid force on the 

wrist, the tension sensor is fixed at the end of the 

forearm, the monitor in front of the subject will 

show the measured MS curve, providing visual 

feedback to the subject to ensure that the 

contraction is accurate. 
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the subjects made sinusoidal contraction with the frequency of 1Hz and 0.5Hz and a random 

contraction between 0 and 70% MVC. 

In the experiment of the first day, the duration of 0.5Hz and random contraction is 60s. The 1Hz 

contraction needs to be done twice, once for 60s, and the other time until fatigue. The experiment 

process without the 60s-length 1Hz experiment of the first day was repeated the next day. To avoid 

residual muscle fatigue, adequate rest was taken between adjacent tests. After the experiment, the 

subjects' 1Hz data from non-fatigue to fatigue were divided into three sections. The first section was 

the non-fatigue state, and the third section was the fatigue state. At last received 9 sets of data from 

each subject, as shown in Table 1. 

Table 1. The 9 sets of data from each subject 

Day1 1Hz non-fatigue×2 1Hz fatigue 0.5Hz non-fatigue Random non-fatigue 

Day2 1Hz non-fatigue 1Hz fatigue 0.5Hz non-fatigue Random non-fatigue 

2.2.  Feature extraction and selection 

In this study, sliding windows were used for feature extraction of MMG. The window length is 400 

data points, and the overlap length is 350 data points. 

18 features [23, 24] were extracted in this study, including time domain features: MAV, simple 

square integral (SSI), variance (VAR), RMS, log root mean square (LRMS), log detector (LOG), 

waveform length (WL), difference absolute standard deviation value (DASD), zero-crossing rate (ZC); 

frequency domain characteristics: mean power frequency (MPF), mean frequency (MNF), the 1st, 2nd 

and 3rd spectrum moment (SM1, SM2, SM3), variance of central frequency (VCF), frequency variance 

(FVAR), root mean square power spectrum (rmsPS); time-frequency domain characteristics: wavelet 

packet energy (WPE). 

In order to obtain the optimal number of features and feature combinations, this study used a full 

permutation of a single feature, two features, three features, and four features to train the model. 

2.3.  Model training methods 

In this study, the algorithms were implemented in the platform of Python3.6. The regression module in 

the XGBoost library was selected as the XGBoost model, and the grid search function of the scikit-

learn library was used to optimize the model parameters. LinearRegression module of scikit-learn 

library was used for training the QP model. 

2.4.  Evaluation methods 

In previous studies, the goodness of fit R [25] and normalized root mean square error (NRMSE) [26] 

were usually used as the evaluation indexes of the MS estimation effect. The calculation formulas are: 
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where 𝑦𝑖 is the actual MS value, 𝑦̃𝑖 is the estimated MS value, 𝑦𝑚𝑎𝑥 is the maximum actual MS, 𝑦𝑚𝑖𝑛 

is the minimum actual MS, and N is the total number of data points. 

3.  Results 

3.1.  Feature selection 

The calculation results of the seven subjects were averaged, and the feature with the best estimation 

effect in each quantitative feature combination was selected. The results are shown in Table 2.  
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Table 2. Maximum goodness of fit R and corresponding features 

 XGBoost model QP model 

 R Features R Features 

A single feature 0.785 WL 0.784 WL 

Two features 0.797 WL+DASD 0.801 LRMS+WL 

Three features 0.807 RMS+WL+DASD 0.811 RMS+WL+DASD 

Four features 0.808 SSI+WL+DASD+SM2 0.812 RMS+WL+DASD+WPE 

It could be seen from Table 2 that when the number of features is over two, the optimal fitting 

goodness R has not significantly improved. And for both two models, the combination of RMS, WL 

and DASD is the best among the combination of three features. Therefore, this study finally selected 

RMS, WL, and DASD as the input features. 

3.2.  Model comparison 

In order to compare the performance of the two models on MS estimation, this study used the non-

fatigue sinusoidal contraction data (7 persons × 1 group per person) with a frequency of 1 Hz on the 

first day as the training set, and the remaining data (7 persons × 8 groups per person) as a test set, 

NRMSE and R were calculated separately for each set of data. The calculated average values of 

NRMSE and R of XGBoost estimation results were: 0.1412 ± 0.0285, 0.8187 ± 0.0353; and of QP 

estimation results were: 0.1343 ± 0.0296, 0.8273 ± 0.0376. It could be seen that the performance of the 

QP estimation was slightly better than that of the XGBoost. As a result, the QP model was finally 

selected as the model of MS estimation in this study. The estimation effect is shown in Figure 2. 

 
Figure 2. MS curve estimated by QP model 

3.3.  Model applicability 

In order to verify the applicability of the model, the sinusoidal contraction with a frequency of 1 Hz in 

the non-fatigue state acquired from the first day was used as training data. The method of controlling 

variables was used in three variables (frequency, fatigue state, experiment day) to compare and 

analyze the model applicability. The NRMSE and the R between the estimated MS and the measured 

value are shown in Figure 3. 
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Figure 3. NRMSE, R between estimated and measured MS 

The three characters of the horizontal axis in Figure 3 indicate whether the test data and the training 

data on the same day (S is the same day and D is a different day), whether they are fatigued (T is the 

fatigued state, and N is the non-fatigued state), and the contraction frequency (1 is 1Hz, 0.5 is 0.5Hz, 

R is random contraction). For example, S-N-1 indicates the muscle strength of 1Hz in the non-fatigue 

state on the same day. 

In order to verify whether the model has significant differences between the estimation results of 

different data sets, a hypothesis t-test was used. Take the significance level α = 0.05, and calculate the 

statistical t value between the estimated muscle strength values of the model for different frequencies, 

fatigue states, and periods as shown in Table 3. 

Table 3. Statistical t value for NRMSE difference and R difference 

Data pair S-N-1/S-T-1 S-N-1/S-N-0.5 S-N-1/S-N-R S-N-1/D-N-1 

t（NRMSE） 0.7763 0.3242 0.3266 0.2538 

t（R） 1.0638 0.7628 1.220 0.2219 

The critical value 𝑡𝛼 2⁄ (𝑛1 + 𝑛2 − 2) = 𝑡0.025(12) = 2.1788, which is bigger than all the data in 

Table 3. Therefore, the QP model trained on the first day of non-fatigue 1Hz data could be used. It is 

suitable for estimating MS in different fatigue states, different frequencies and different days. 

4.  Conclusion 

In this study, features of MMG were extracted and selected for the XGBoost model and the QP model, 

and a combination of RMS, WL, and DASD was used to compare the performance of XGBoost model 

and QP model on MS estimation. Finally, the applicability of the QP model was verified by t-test. The 

results showed that when the number of features exceeds three, the estimation accuracy of the two 

models does not improve significantly; the estimation performance of the QP model is slightly better 

than that of the XGBoost model, but there were no significant difference between the results of two 

models (p < 0.05). Moreover, there was no significant difference among the estimation results of the 

MS estimation under different conditions by QP model (p < 0.05), indicating that QP model could be 

used for MS estimation based on MMG. This study can provide a reliable model for the MS research 

in the fields of clinical medicine and rehabilitation engineering.  
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