Article

A call for universal criteria of high-intensity interval training in cardiac rehabilitation

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... MICT is structurally more like a single repetitive series in HIIT protocol. 4 Indeed, HIIT can elicit various physiological adaptations such as endurance or strength improvement, or a mix of the two, due to the diversity of training protocols. Moreover, cardiopulmonary adaptations are generally the first physiological responses to be considered when designing exercise programme, 5 not necessarily compulsory for training itself (i.e. ...
Article
In a position paper in EJPC by Hansen et al.,¹ authors provide detailed and interesting recommendations for cardiac rehabilitation providers concerning the design of exercise programme, one of which is that it should primarily be aimed at optimizing total energy expenditure rather than focusing on exercise intensity. However, we are still confused about how to match total energy expenditure between high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) in cardiac rehabilitation practice. Despite the priority given to total energy expenditure in this article, exercise intensity remains a key issue in prescribing exercise. Although energy supplies (aerobic and anaerobic energy) and activations of muscle fibres (type I, IIA, and IIB) during almost all exercise activities are not exclusive, there are dominant energy supplies and muscle fibre recruitments with their own attributes in different training zones divided by the first and second ventilation threshold, eliciting in corresponding physiological responses, respectively (Figure 1A).² One of which is often overlooked that post-exercise metabolic responses to HIIT will remain elevated in an attempt to compensate for oxygen deficit driven by ‘high intensity’ during exercise.³ Consequently, HIIT may be underestimated despite matching total energy expenditure between HIIT and MICT with isocaloric protocols, which will potentially contribute to maximizing effect size of HIIT.
... In addition, different exercise intensity domains should be reconsidered in the guidelines. 22,23 Conflict of interest: none declared. ...
Article
Full-text available
Background: The present study compared the effects of training and detraining periods of high-intensity interval training (HIIT), moderate-intensity interval training (MIIT) and moderate-intensity continuous training (MICT) on functional performance, body composition, resting blood pressure and heart rate in elderly women nursing home residents. Methods: Forty-six volunteers (age, 80.8 ± 5.2 y; body mass, 69.8 ± 5.2 kg, height, 164.2 ± 4.12 cm) were divided into groups that performed treadmill exercise twice-weekly HIIT (4 bouts of 4-min intervals at 85-95% of the maximal heart rate [HRmax], interspersed by 4 min at 65% HRmax), MIIT (4 bouts of 4 min intervals at 55-75% HRmax, interspersed by 4 min at 45-50% HRmax) and MICT (30-min at 55-75% HRmax). Tests were performed before and after 8 weeks of training and 2 and 4 weeks of detraining. ANCOVA was used to analyze dependent variable changes. Results: After 8 weeks HIIT promoted greater reductions in body mass (HIIT = - 1.6 ± 0.1 kg; MICT = - 0.9 ± 0.1 kg; MIIT = - 0.9 ± 0.1 kg; p = 0.001), fat mass (HIIT = - 2.2 ± 0.1%; MICT = - 0.7 ± 0.1%; MIIT = - 1.2 ± 0.1%; p < 0.001) and resting heart rate (HIIT = - 7.3 ± 0.3%; MICT = - 3.6 ± 0.3%; MIIT = - 5.1 ± 0.3%; p < 0.001) and greater improvement in the chair stand test (HIIT = 3.4 ± 0.1 reps; MICT = 2.5 ± 0.1 reps; MIIT = 3.1 ± 0.1 reps; p < 0.001) when compared to MIIT and MICT. These improvements were sustained after 2 and 4 weeks of detraining only in the HIIT group. Conclusion: HIIT promoted greater benefits for body composition and functional performance than MICT and MIIT and also showed less pronounced effects of detraining. This suggests that the intensity of physical exercise is an important factor to consider when prescribing exercise to the elderly.
Article
Full-text available
Objectives The present study compares the effect of high-intensity interval training (HIIT; 18 min) and moderate-intensity continuous training (MIT; 1 h) on reverse cholesterol transport (RCT) elements in obese subjects. Methods Thirty adult male rats were induced high-fat diet (HFD) for 12 weeks. After four weeks, the rats were randomly divided into three groups while simultaneously continuing the HFD for the remaining eight weeks. Group specificities were HFD–control, HFD–MIT and HFD–HIIT. The rats were sacrificed 48 h after the last training session and the samples were collected. Analysis of variance and Pearson’s correlation test were used for the statistical analyses (significance level: p ≤ 0.05). Results The results showed that both HIIT and MIT improved heart ABCA1, ABCG1, ABCG4, ABCG5, ABCG8, LXR-α and PPARγ gene expression as well as plasma Apo A1, LCAT, lipids and lipoproteins ( p ≤ 0.05). Moreover, higher cardiac ABCA1, ABCG1, ABCG4, ABCG5, ABCG8 and PPARγ expression and plasma high-density lipoprotein cholesterol ( p ≤ 0.05) concentrations were found in the HFD–HIIT group compared with the HFD–MIT group. Conclusion HIIT may have more cardioprotective effects than MIT against atherosclerosis, along with saving time, as supported by the changes observed in the main factors involved in the RCT process.
Article
Full-text available
There is heterogeneity in the observed O2peak response to similar exercise training, and different exercise approaches produce variable degrees of exercise response (trainability). The aim of this study was to combine data from different laboratories to compare O2peak trainability between various volumes of interval training and Moderate Intensity Continuous Training (MICT). For interval training, volumes were classified by the duration of total interval time. High-volume High Intensity Interval Training (HIIT) included studies that had participants complete more than 15 min of high intensity efforts per session. Low-volume HIIT/Sprint Interval Training (SIT) included studies using less than 15 min of high intensity efforts per session. In total, 677 participants across 18 aerobic exercise training interventions from eight different universities in five countries were included in the analysis. Participants had completed 3 weeks or more of either high-volume HIIT (n = 299), low-volume HIIT/SIT (n = 116), or MICT (n = 262) and were predominately men (n = 495) with a mix of healthy, elderly and clinical populations. Each training intervention improved mean O2peak at the group level (P < 0.001). After adjusting for covariates, high-volume HIIT had a significantly greater (P < 0.05) absolute O2peak increase (0.29 L/min) compared to MICT (0.20 L/min) and low-volume HIIT/SIT (0.18 L/min). Adjusted relative O2peak increase was also significantly greater (P < 0.01) in high-volume HIIT (3.3 ml/kg/min) than MICT (2.4 ml/kg/min) and insignificantly greater (P = 0.09) than low-volume HIIT/SIT (2.5 mL/kg/min). Based on a high threshold for a likely response (technical error of measurement plus the minimal clinically important difference), high-volume HIIT had significantly more (P < 0.01) likely responders (31%) compared to low-volume HIIT/SIT (16%) and MICT (21%). Covariates such as age, sex, the individual study, population group, sessions per week, study duration and the average between pre and post O2peak explained only 17.3% of the variance in O2peak trainability. In conclusion, high-volume HIIT had more likely responders to improvements in O2peak compared to low-volume HIIT/SIT and MICT.
Article
Full-text available
Introduction and objectives: High-interval intensity training (HIT) has been suggested to improve peak VO2 in cardiac rehabilitation programs. However, the optimal HIT protocol is unknown. The objective of this study was to identify the most effective doses of HIT to optimize peak VO2 in coronary artery disease (CAD) and heart failure (HF) patients. Methods: A search was conducted in 6 databases (MEDLINE, Web of Science, LILACS, CINAHL, Academic Search Complete, and SportDiscus). Studies using a HIT protocol in CAD or HF patients and measuring peak VO2 were included. The PEDro Scale and Cochrane Collaboration tools were used. Results: Analyses reported significant improvements in peak VO2 after HIT in both diseases (P = .000001), with a higher increase in HF patients (P = .03). Nevertheless, in HF patients, there were no improvements when the intensity recovery was ≤ 40% of peak VO2 (P = .19) and the frequency of training was ≤ 2 d/wk (P = .07). There were significant differences regarding duration in CAD patients, with greater improvements in peak VO2 when the duration was < 12 weeks (P = .05). In HF, programs lasting < 12 weeks did not significantly improve peak VO2 (P = .1). Conclusions: The HIT is an effective method for improving peak VO2 in HF and CAD, with a significantly greater increase in HF patients. The recovery intervals should be active and be between 40% and 60% of peak VO2 in HF patients. Training frequency should be ≥ 2 d/wk for CAD patients and ≥ 3 d/wk for HF patients.
Article
Full-text available
Background In a previous meta-analysis including nine trials comparing aerobic interval training with aerobic continuous training in patients with coronary artery disease, we found a significant difference in peak oxygen uptake favoring aerobic interval training. Objective The objective of this study was to (1) update the original meta-analysis focussing on peak oxygen uptake and (2) evaluate the effect on secondary outcomes. Methods We conducted a systematic review with a meta-analysis by searching PubMed and SPORTDiscus databases up to March 2017. We included randomized trials comparing aerobic interval training and aerobic continuous training in patients with coronary artery disease or chronic heart failure. The primary outcome was change in peak oxygen uptake. Secondary outcomes included cardiorespiratory parameters, cardiovascular risk factors, cardiac and vascular function, and quality of life. ResultsTwenty-four papers were identified (n = 1080; mean age 60.7 ± 10.7 years). Aerobic interval training resulted in a higher increase in peak oxygen uptake compared with aerobic continuous training in all patients (1.40 mL/kg/min; p < 0.001), and in the subgroups of patients with coronary artery disease (1.25 mL/kg/min; p = 0.001) and patients with chronic heart failure with reduced ejection fraction (1.46 mL/kg/min; p = 0.03). Moreover, a larger increase of the first ventilatory threshold and peak heart rate was observed after aerobic interval training in all patients. Other cardiorespiratory parameters, cardiovascular risk factors, and quality of life were equally affected. Conclusion This meta-analysis adds further evidence to the clinically significant larger increase in peak oxygen uptake following aerobic interval training vs. aerobic continuous training in patients with coronary artery disease and chronic heart failure. More well-designed randomized controlled trials are needed to establish the safety of aerobic interval training and the sustainability of the training response over longer periods.
Article
Full-text available
Background: -Small studies have suggested that high intensity interval training (HIIT) is superior to moderate continuous training (MCT) in reversing cardiac remodeling and increasing aerobic capacity in heart failure patients with reduced ejection fraction (HFrEF). The present multicenter trial compared 12 weeks supervised interventions of HIIT, MCT, or a recommendation of regular exercise (RRE). Methods: -261 patients with LVEF ≤35% and NYHA II-III were randomly assigned to HIIT at 90-95% of maximal heart rate (HRmax), MCT at 60-70% of HRmax or RRE. Thereafter, patients were encouraged to continue exercising on their own. Clinical assessments were performed at baseline, after the intervention, and at follow-up after 52 weeks. Primary endpoint was between groups comparison of change in left ventricular end-diastolic diameter from baseline to 12 weeks. Results: -Groups did not differ for age (median 60 years), gender (19% women), ischemic etiology (59%), or medication. Change in left ventricular end-diastolic diameter from baseline to 12 weeks was not different between HIIT and MCT, P=0.45; respective changes versus RRE were -2.8 mm (-5.2, -0.4; P=0.02) in HIIT and -1.2 mm (-3.6, 1.2; P=0.34) in MCT. There was also no difference between HIIT and MCT in peak oxygen uptake, P=0.70, but both were superior to RRE. However, none of these changes were maintained at follow-up after 52 weeks. Serious adverse events were not statistically different during supervised intervention or at follow-up at 52 weeks (HIIT 39%, MCT 25%, RRE 34%, P=0.16). Training records showed that 51% of patients exercised below prescribed target during supervised HIIT and 80% above in MCT. Conclusions: -HIIT was not superior to MCT in changing left ventricular remodeling or aerobic capacity, and its feasibility remains unresolved in heart failure patients. Clinical Trial Registration-http://www.clinicaltrials.gov Unique identifier: NCT00917046.
Article
Full-text available
The high-energy demand during high-intensity exercise (HIE) necessitates that anaerobic processes cover an extensive part of the adenosine triphosphate (ATP) requirement. Anaerobic energy release results in depletion of phosphocreatine (PCr) and accumulation of lactic acid, which set an upper limit of anaerobic ATP production and thus HIE performance. This report focuses on the effects of training and ergogenic supplements on muscle energetics and HIE performance. Anaerobic capacity (i.e. the amount of ATP that can be produced) is determined by the muscle content of PCr, the buffer capacity and the volume of the contracting muscle mass. HIE training can increase buffer capacity and the contracting muscle mass but has no effect on the concentration of PCr. Dietary supplementation with creatine (Cr), bicarbonate, or beta-alanine has a documented ergogenic effect. Dietary supplementation with Cr increases muscle Cr and PCr and enhances performance, especially during repeated short periods of HIE. The ergogenic effect of Cr is related to an increase in temporal and spatial buffering of ATP and to increased muscle buffer capacity. Bicarbonate loading increases extracellular buffering and can improve performance during HIE by facilitating lactic acid removal from the contracting muscle. Supplementation with beta-alanine increases the content of muscle carnosine, which is an endogenous intracellular buffer. It is clear that performance during HIE can be improved by interventions that increase the capacity of anaerobic ATP production, suggesting that energetic constraints set a limit for performance during HIE.
Article
Full-text available
Background Exercise-based cardiac rehabilitation increases peak oxygen uptake (peak VO2), which is an important predictor of mortality in cardiac patients. However, it remains unclear which exercise characteristics are most effective for improving peak VO2 in coronary artery disease (CAD) patients. Proof of concept papers comparing Aerobic Interval Training (AIT) and Moderate Continuous Training (MCT) were conducted in small sample sizes and findings were inconsistent and heterogeneous. Therefore, we aimed to compare the effects of AIT and Aerobic Continuous Training (ACT) on peak VO2, peripheral endothelial function, cardiovascular risk factors, quality of life and safety, in a large multicentre study. Methods Two-hundred CAD patients (LVEF > 40%, 90% men, mean age 58.4 ± 9.1 years) were randomized to a supervised 12-week cardiac rehabilitation program of three weekly sessions of either AIT (90-95% of peak heart rate (HR)) or ACT (70-75% of peak HR) on a bicycle. Primary outcome was peak VO2; secondary outcomes were peripheral endothelial function, cardiovascular risk factors, quality of life and safety. Results Peak VO2 (ml/kg/min) increased significantly in both groups (AIT 22.7 ± 17.6% versus ACT 20.3 ± 15.3%; p-time < 0.001). In addition, flow-mediated dilation (AIT 63.7 ± 117% versus ACT 39.6 ± 100%; p-time < 0.001), quality of life and some other cardiovascular risk factors including resting diastolic blood pressure and HDL-C improved significantly after training. Improvements were equal for both training interventions. Conclusions Contrary to earlier smaller trials, we observed similar improvements in exercise capacity and peripheral endothelial function following AIT and ACT in a large population of CAD patients.
Article
Full-text available
High-intensity interval training (HIT) is a well-known, time-efficient training method for improving cardiorespiratory and metabolic function and, in turn, physical performance in athletes. HIT involves repeated short (<45 s) to long (2-4 min) bouts of rather high-intensity exercise interspersed with recovery periods (refer to the previously published first part of this review). While athletes have used 'classical' HIT formats for nearly a century (e.g. repetitions of 30 s of exercise interspersed with 30 s of rest, or 2-4-min interval repetitions ran at high but still submaximal intensities), there is today a surge of research interest focused on examining the effects of short sprints and all-out efforts, both in the field and in the laboratory. Prescription of HIT consists of the manipulation of at least nine variables (e.g. work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, between-series recovery duration and intensity); any of which has a likely effect on the acute physiological response. Manipulating HIT appropriately is important, not only with respect to the expected middle- to long-term physiological and performance adaptations, but also to maximize daily and/or weekly training periodization. Cardiopulmonary responses are typically the first variables to consider when programming HIT (refer to Part I). However, anaerobic glycolytic energy contribution and neuromuscular load should also be considered to maximize the training outcome. Contrasting HIT formats that elicit similar (and maximal) cardiorespiratory responses have been associated with distinctly different anaerobic energy contributions. The high locomotor speed/power requirements of HIT (i.e. ≥95 % of the minimal velocity/power that elicits maximal oxygen uptake [v/p[Formula: see text]O2max] to 100 % of maximal sprinting speed or power) and the accumulation of high-training volumes at high-exercise intensity (runners can cover up to 6-8 km at v[Formula: see text]O2max per session) can cause significant strain on the neuromuscular/musculoskeletal system. For athletes training twice a day, and/or in team sport players training a number of metabolic and neuromuscular systems within a weekly microcycle, this added physiological strain should be considered in light of the other physical and technical/tactical sessions, so as to avoid overload and optimize adaptation (i.e. maximize a given training stimulus and minimize musculoskeletal pain and/or injury risk). In this part of the review, the different aspects of HIT programming are discussed, from work/relief interval manipulation to HIT periodization, using different examples of training cycles from different sports, with continued reference to the cardiorespiratory adaptations outlined in Part I, as well as to anaerobic glycolytic contribution and neuromuscular/musculoskeletal load.
Article
Full-text available
High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their 'red zone,' which generally means reaching at least 90 % of their maximal oxygen uptake ([Formula: see text]O2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90 % of [Formula: see text]O2max (T@[Formula: see text]O2max). In addition to T@[Formula: see text]O2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@[Formula: see text]O2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).
Article
Full-text available
There are 3 distinct yet closely integrated processes that operate together to satisfy the energy requirements of muscle. The anaerobic energy system is divided into alactic and lactic components, referring to the processes involved in the splitting of the stored phosphagens, ATP and phosphocreatine (PCr), and the nonaerobic breakdown of carbohydrate to lactic acid through glycolysis. The aerobic energy system refers to the combustion of carbohydrates and fats in the presence of oxygen. The anaerobic pathways are capable of regenerating ATP at high rates yet are limited by the amount of energy that can be released in a single bout of intense exercise. In contrast, the aerobic system has an enormous capacity yet is somewhat hampered in its ability to delivery energy quickly. The focus of this review is on the interaction and relative contribution of the energy systems during single bouts of maximal exercise. A particular emphasis has been placed on the role of the aerobic energy system during high intensity exercise. Attempts to depict the interaction and relative contribution of the energy systems during maximal exercise first appeared in the 1960s and 1970s. While insightful at the time, these representations were based on calculations of anaerobic energy release that now appear questionable. Given repeated reproduction over the years, these early attempts have lead to 2 common misconceptions in the exercise science and coaching professions. First, that the energy systems respond to the demands of intense exercise in an almost sequential manner, and secondly, that the aerobic system responds slowly to these energy demands, thereby playing little role in determining performance over short durations. More recent research suggests that energy is derived from each of the energy-producing pathways during almost all exercise activities. The duration of maximal exercise at which equal contributions are derived from the anaerobic and aerobic energy systems appears to occur between 1 to 2 minutes and most probably around 75 seconds, a time that is considerably earlier than has traditionally been suggested.
Article
Full-text available
Exercise training reduces the symptoms of chronic heart failure. Which exercise intensity yields maximal beneficial adaptations is controversial. Furthermore, the incidence of chronic heart failure increases with advanced age; it has been reported that 88% and 49% of patients with a first diagnosis of chronic heart failure are >65 and >80 years old, respectively. Despite this, most previous studies have excluded patients with an age >70 years. Our objective was to compare training programs with moderate versus high exercise intensity with regard to variables associated with cardiovascular function and prognosis in patients with postinfarction heart failure. Twenty-seven patients with stable postinfarction heart failure who were undergoing optimal medical treatment, including beta-blockers and angiotensin-converting enzyme inhibitors (aged 75.5+/-11.1 years; left ventricular [LV] ejection fraction 29%; VO2peak 13 mL x kg(-1) x min(-1)) were randomized to either moderate continuous training (70% of highest measured heart rate, ie, peak heart rate) or aerobic interval training (95% of peak heart rate) 3 times per week for 12 weeks or to a control group that received standard advice regarding physical activity. VO2peak increased more with aerobic interval training than moderate continuous training (46% versus 14%, P<0.001) and was associated with reverse LV remodeling. LV end-diastolic and end-systolic volumes declined with aerobic interval training only, by 18% and 25%, respectively; LV ejection fraction increased 35%, and pro-brain natriuretic peptide decreased 40%. Improvement in brachial artery flow-mediated dilation (endothelial function) was greater with aerobic interval training, and mitochondrial function in lateral vastus muscle increased with aerobic interval training only. The MacNew global score for quality of life in cardiovascular disease increased in both exercise groups. No changes occurred in the control group. Exercise intensity was an important factor for reversing LV remodeling and improving aerobic capacity, endothelial function, and quality of life in patients with postinfarction heart failure. These findings may have important implications for exercise training in rehabilitation programs and future studies.
Article
Secondary prevention through comprehensive cardiac rehabilitation has been recognized as the most cost-effective intervention to ensure favourable outcomes across a wide spectrum of cardiovascular disease, reducing cardiovascular mortality, morbidity and disability, and to increase quality of life. The delivery of a comprehensive and ‘modern’ cardiac rehabilitation programme is mandatory both in the residential and the out-patient setting to ensure expected outcomes. The present position paper aims to update the practical recommendations on the core components and goals of cardiac rehabilitation intervention in different cardiovascular conditions, in order to assist the whole cardiac rehabilitation staff in the design and development of the programmes, and to support healthcare providers, insurers, policy makers and patients in the recognition of the positive nature of cardiac rehabilitation. Starting from the previous position paper published in 2010, this updated document maintains a disease-oriented approach, presenting both well-established and more controversial aspects. Particularly for implementation of the exercise programme, advances in different training modalities were added and new challenging populations were considered. A general table applicable to all cardiovascular conditions and specific tables for each clinical condition have been created for routine practice.
Article
Background Heart failure with preserved ejection fraction (HFpEF) is a prevalent syndrome, with exercise intolerance being one of its hallmarks, contributing to worse quality of life and mortality. High-intensity interval training is an emerging training option, but its efficacy in HFpEF patients is still unknown. Design Single-blinded randomized clinical trial. Methods Single-blinded randomized clinical trial with exercise training 3 days per week for 12 weeks. HFpEF patients were randomly assigned to high-intensity interval training or moderate continuous training. At baseline and after 12 week follow-up, patients underwent clinical assessment, echocardiography and cardiopulmonary exercise testing (CPET). Results Mean age was 60 ± 9 years and 63% were women. Both groups ( N = 19) showed improved peak oxygen consumption (VO 2 ), but high-intensity interval training patients ( n = 10) had a significantly higher increase, of 22%, compared with 11% in the moderate continuous training ( n = 9) individuals (3.5 (3.1 to 4.0) vs. 1.9 (1.2 to 2.5) mL·kg ⁻¹ ·min ⁻¹ , p < 0.001). Ventilatory efficiency and other CPET measures, as well as quality of life score, increased equally in the two groups. Left ventricular diastolic function also improved with training, reflected by a significant reduction in E/e′ ratio by echocardiography (−2.6 (−4.3 to −1.0) vs. −2.2 (−3.6 to −0.9) for high-intensity interval training and moderate continuous training, respectively; p < 0.01). There were no exercise-related adverse events. Conclusions This randomized clinical trial provided evidence that high-intensity interval training is a potential exercise modality for HFpEF patients, being more effective than moderate continuous training in improving peak VO 2 . However, the two strategies were equally effective in improving ventilatory efficiency and other CPET parameters, quality of life score and diastolic function after 3 months of training.
Article
Background In the United Kingdom (UK), exercise intensity is prescribed from a fixed percentage range (% heart rate reserve (%HRR)) in cardiac rehabilitation programmes. We aimed to determine the accuracy of this approach by comparing it with an objective, threshold-based approach incorporating the accurate determination of ventilatory anaerobic threshold (VAT). We also aimed to investigate the role of baseline cardiorespiratory fitness status and exercise testing mode dependency (cycle vs. treadmill ergometer) on these relationships. Design and methods A maximal cardiopulmonary exercise test was conducted on a cycle ergometer or a treadmill before and following usual-care circuit training from two separate cardiac rehabilitation programmes from a single region in the UK. The heart rate corresponding to VAT was compared with current heart rate-based exercise prescription guidelines. Results We included 112 referred patients (61 years (59–63); body mass index 29 kg·m–2 (29–30); 88% male). There was a significant but relatively weak correlation (r = 0.32; p = 0.001) between measured and predicted %HRR, and values were significantly different from each other (p = 0.005). Within this cohort, we found that 55% of patients had their VAT identified outside of the 40–70% predicted HRR exercise training zone. In the majority of participants (45%), the VAT occurred at an exercise intensity <40% HRR. Moreover, 57% of patients with low levels of cardiorespiratory fitness achieved VAT at <40% HRR, whereas 30% of patients with higher fitness achieved their VAT at >70% HRR. VAT was significantly higher on the treadmill than the cycle ergometer (p < 0.001). Conclusion In the UK, current guidelines for prescribing exercise intensity are based on a fixed percentage range. Our findings indicate that this approach may be inaccurate in a large proportion of patients undertaking cardiac rehabilitation.
Article
Exercise-based cardiac rehabilitation is integral to secondary prevention in patients with coronary artery disease. Recently, the effectiveness and “superiority” of high-intensity interval training (HIIT) is a purported time-saving alternative to “traditional” moderate-intensity continuous training (MICT) in cardiac rehabilitation. The rationale for HIIT adoption is, however, not fully substantiated in the scientific literature. Established guidelines for exercise testing and training, when carefully adhered to, reduce the likelihood of triggering a cardiac event or inducing musculoskeletal injury. Clinicians should likewise consider patient risk stratification and introduce HIIT as an alternative to MICT only after patients exhibit stable and asymptomatic responses to vigorous exercise training. Although HIIT adherence appears comparable with MICT during outpatient rehabilitation, compliance drops dramatically for unsupervised exercise. Despite the enthusiasm surrounding HIIT, its main advantage over MICT appears to be short-term exercise performance outcomes and indices of vascular function. Regarding benefits to cardiovascular disease risk factor modification, management of vital signs, and measures of cardiac performance, current evidence indicates that HIIT does not outperform MICT. Long-term outcomes to HIIT are currently uncertain and logistical constraints to HIIT incorporation need additional clarification. Based on these limited findings, derived from facilities and clinicians at the forefront of cardiac rehabilitation, the routine adoption of HIIT should be viewed cautiously. In conclusion, the current review highlights numerous specific research directives that are needed before the safety and effectiveness of HIIT can be confirmed and widely adopted in patients with known or suspected coronary artery disease, especially in unsupervised, nonmedical settings.
Article
Introduction and objectives High-interval intensity training (HIT) has been suggested to improve peak VO2 in cardiac rehabilitation programs. However, the optimal HIT protocol is unknown. The objective of this study was to identify the most effective doses of HIT to optimize peak VO2 in coronary artery disease (CAD) and heart failure (HF) patients. Methods A search was conducted in 6 databases (MEDLINE, Web of Science, LILACS, CINAHL, Academic Search Complete, and SportDiscus). Studies using a HIT protocol in CAD or HF patients and measuring peak VO2 were included. The PEDro Scale and Cochrane Collaboration tools were used. Results Analyses reported significant improvements in peak VO2 after HIT in both diseases (P = .000001), with a higher increase in HF patients (P = .03). Nevertheless, in HF patients, there were no improvements when the intensity recovery was ≤ 40% of peak VO2 (P = .19) and the frequency of training was ≤ 2 d/wk (P = .07). There were significant differences regarding duration in CAD patients, with greater improvements in peak VO2 when the duration was < 12 weeks (P = .05). In HF, programs lasting < 12 weeks did not significantly improve peak VO2 (P = .1). Conclusions The HIT is an effective method for improving peak VO2 in HF and CAD, with a significantly greater increase in HF patients. The recovery intervals should be active and be between 40% and 60% of peak VO2 in HF patients. Training frequency should be ≥ 2 d/wk for CAD patients and ≥ 3 d/wk for HF patients.
Article
The purpose of this systematic review and meta-analysis is to assess the effect of concurrent high intensity interval training (HIIT) and resistance training (RT) on strength and hypertrophy. Five electronic databases were searched using terms related to HIIT, RT, and concurrent training. Effect size (ES), calculated as standardised differences in the means, were used to examine the effect of concurrent HIIT and RT compared to RT alone on muscle strength and hypertrophy. Sub-analyses were performed to assess region-specific strength and hypertrophy, HIIT modality (cycling versus running), and inter-modal rest responses. Compared to RT alone, concurrent HIIT and RT led to similar changes in muscle hypertrophy and upper body strength. Concurrent HIIT and RT resulted in a lower increase in lower body strength compared to RT alone (ES = −0.248, p = 0.049). Sub analyses showed a trend for lower body strength to be negatively affected by cycling HIIT (ES = −0.377, p = 0.074) and not running (ES = −0.176, p = 0.261). Data suggests concurrent HIIT and RT does not negatively impact hypertrophy or upper body strength, and that any possible negative effect on lower body strength may be ameliorated by incorporating running based HIIT and longer inter-modal rest periods.
Article
The aim of this study was to investigate the effects of very high intensity sprint interval training (SIT) on metabolic and vascular risk factors in overweight/obese sedentary men. Ten men (age, 32.1 ± 8.7 years; body mass index, 31.0 ± 3.7 kg m(-2)) participated. After baseline metabolic, anthropometric, and fitness measurements, participants completed a 2-week SIT intervention, comprising 6 sessions of 4 to 6 repeats of 30-second Wingate anaerobic sprints on an electromagnetically braked cycle ergometer, with 4.5-minute recovery between each repetition. Metabolic, anthropometric, and fitness assessments were repeated post-intervention. Both maximal oxygen uptake (2.98 ± 0.15 vs 3.23 ± 0.14 L min(-1), P = .013) and mean Wingate power (579 ± 24 vs 600 ± 19 W, P = .040) significantly increased after 2 weeks of SIT. Insulin sensitivity index (5.35 ± 0.72 vs 4.34 ± 0.72, P = .027) and resting fat oxidation rate in the fasted state (0.13 ± 0.01 vs 0.11 ± 0.01 g min(-1), P = .019) were significantly higher and systolic blood pressure (121 ± 3 vs 127 ± 3 mm Hg, P = .020) and resting carbohydrate oxidation in the fasted state (0.03 ± 0.01 vs 0.08 ± 0.02 g min(-1), P = .037) were significantly lower 24 hours post-intervention compared with baseline, but these changes were no longer significant 72 hours post-intervention. Significant decreases in waist (98.9 ± 3.1 vs 101.3 ± 2.7 cm, P = .004) and hip (109.8 ± 2.2 vs 110.9 ± 2.2 cm, P = .017) circumferences compared with baseline were also observed after the intervention. Thus, 2 weeks of SIT substantially improved a number of metabolic and vascular risk factors in overweight/obese sedentary men, highlighting the potential for this to provide an alternative exercise model for the improvement of vascular and metabolic health in this population.
SMARTEX Heart Failure Study (Study of Myocardial Recovery After Exercise Training in Heart Failure) Group. High-intensity interval training in patients with heart failure with reduced ejection fraction
  • Ø Ellingsen
  • M Halle
  • V Conraads
Low-volume high-intensity aerobic interval training is an efficient method to improve cardiorespiratory fitness after myocardial infarction: pilot study from the INTERFARCT Project
  • J A Jayo-Montoya
  • S Maldonado-Martín
  • Aispuru
  • Gr
High-intensity interval training is effective and superior to moderate continuous training in patients with heart failure with preserved ejection fraction: a randomized clinical trial
  • A Donelli Da Silveira
  • J Beust De Lima
  • Silva Da
  • D Piardi