In this chapter, chemical industrial processes are considered, and Linear Algebra-Based Control Design (LAB CD) is the approach used to design the controller. First, the case of dealing with a nonlinear first principles–based model of the process is considered. Then, an experimental linearized model around an operating point is considered, and, again, the LAB CD methodology is applied to design the control. The simple model based on a first-order plus time delay (FOPTD) transfer function is used, and the controlled plant behavior is shown to be appropriate for small changes in the reference. A gain-scheduling adaptation scheme is suggested for larger reference changes. Thence, a design applicable to a large variety of processes is obtained. In order to better illustrate the procedure, the control design for a typical continuous stirred tank reactor (CSTR) is developed.