Content uploaded by Waiching Sun
Author content
All content in this area was uploaded by Waiching Sun on May 25, 2020
Content may be subject to copyright.
Computer Methods in Applied Mechanics and Engineering manuscript No.
(will be inserted by the editor)
A phase field model for cohesive fracture in micropolar continua1
Hyoung Suk Suh ·WaiChing Sun ·Devin O’Connor2
3
Received: April 24, 2020/ Accepted: date4
Abstract While crack nucleation and propagation in the brittle or quasi-brittle regime can be predicted5
via variational or material-force-based phase field fracture models, these models often assume that the6
underlying elastic response of the material is non-polar and yet a length scale parameter must be intro-7
duced to enable the sharp cracks represented by a regularized implicit function. However, many materials8
with internal microstructures that contain surface tension, micro-cracks, micro-fracture, inclusion, cavity9
or those of particulate nature often exhibit size-dependent behaviors in both the path-independent and10
path-dependent regimes. This paper is intended to introduce a unified treatment that captures the size ef-11
fect of the materials in both elastic and damaged states. By introducing a cohesive micropolar phase field12
fracture theory, along with the computational model and validation exercises, we explore the interacting13
size-dependent elastic deformation and fracture mechanisms exhibits in materials of complex microstruc-14
tures. To achieve this goal, we introduce the distinctive degradation functions of the force-stress-strain and15
couple-stress-micro-rotation energy-conjugated pairs for a given regularization profile such that the macro-16
scopic size-dependent responses of the micropolar continua is insensitive to the length scale parameter of17
the regularized interface. Then, we apply the variational principle to derive governing equations from the18
micropolar stored energy and dissipative functionals. Numerical examples are introduced to demonstrate19
the proper way to identify material parameters and the capacity of the new formulation to simulate com-20
plex crack patterns in the quasi-static regime.21
Keywords micropolar damage, phase field fracture, cohesive fracture, regularization length sensitivity22
1 Introduction23
The size effect and the corresponding length scale parameter associated with the phase field fracture model24
for brittle or quasi-brittle materials have been a subject of intensive research in recent years [Francfort and25
Marigo,1998,Bourdin et al.,2008,de Borst and Verhoosel,2016,Wang and Sun,2017,Aldakheel et al.,26
2018,Wu and Nguyen,2018,Geelen et al.,2018,Bryant and Sun,2018,Choo and Sun,2018b,Qinami27
et al.,2019,Noii et al.,2020]. Due to the fact that the phase field approach employ regularized (smoothed)28
implicit function to represent sharp interface, the physical interpretation of the length scale parameter29
(and in some cases, the lack thereof) has become a hotly debated topic among the computational fracture30
mechanics community. The lack of consensus on the definition of length scale has also been sometimes31
perceived as a weakness, especially when compared with the embedded discontinuity approaches such32
as XFEM or assumed strain models [Mo¨
es et al.,1999,Armero and Linder,2008,Wang and Sun,2018,33
2019a,b].34
Corresponding author: WaiChing Sun
Assistant Professor, Department of Civil Engineering and Engineering Mechanics, Columbia University, 614 SW Mudd, Mail
Code: 4709, New York, NY 10027 Tel.: 212-854-3143, Fax: 212-854-6267, E-mail: wsun@columbia.edu
2 Hyoung Suk Suh et al.
The early attempt to justify the introduction of the length scale parameter for phase field fracture mod-35
els can be tracked back to the first variational fracture model in Francfort and Marigo [1998] where the36
variational fracture model is expected to exhibit Γ−convergence and therefore may converge to the sharp37
interface model as the mesh size and the length scale parameter approaches zero. While this line of work38
(e.g., Bourdin et al. [2008] and May et al. [2015]) provides a theoretical justification, in practice, the length39
scale parameter must still be sufficiently large compared to the mesh size in order to solve the phase field40
governing equation. This could be problematic if the simulations are designed for boundary value prob-41
lems at the large scales (e.g., hydraulic fracture, faulting of geological formation) where the small mesh42
size, even concentrated at a local regions, become impractical.43
One strategy to overcome this issue is to decouple or eliminate the effect of the length scale parameters44
on the constitutive responses such that a relatively large length scale parameter can be used for numerical45
purposes without compromising the accuracy of the constitutive responses. To derive a phase field fracture46
model that exhibits macroscopic responses independent or at least not sensitive to the length scale param-47
eters, Wu and Nguyen [2018] and Geelen et al. [2019] both introduce new crack surface density functionals48
and the corresponding degradation function derived from cohesive zone models such that the underlying49
traction-separation law is independent of the length scale parameter. Their simulations have shown that50
the resultant fracture patterns and the macroscopic constitutive responses are both insensitive to the length51
scale parameters in the sub-critical regime.52
Another strategy to circumvent the length scale issue is to determine the underlying relationship53
among the length scale parameters and other material parameters (e.g., Young’s modulus, tensile strength)54
that can be obtained from a specific set of experimental tests [Nguyen et al.,2016,Pham et al.,2017,Choo55
and Sun,2018a]. However, these previous works also show that the analytical expression of the length scale56
parameter may vary in according to the chosen inverse problems and hence the length scale parameter is57
likely only valid for backward calibration for a specific problem but cannot be used for general-purposed58
forward predictions. Furthermore, identifying the correct length scale parameter for a given inverse prob-59
lem does not imply that such a length scale parameter is sufficiently large to ensure the solvability of the60
discretized governing equation(s).61
Nevertheless, one key aspect that is often overlooked in the phase field fracture modeling is that materials with62
internal structures that enables size effects on damage and fracture may likely exhibit size effect in the elastic regimes.63
Examples of these materials include concrete, composite, particulate materials as well as some metamate-64
rials [Dietsche et al.,1993,Bazant and Planas,1997,Trovalusci et al.,2014,Wang et al.,2016,Aldakheel,65
2020]. Since these materials exhibit large internal length scales compared to the length scale of damage or66
fracture, suitable size effect must be carefully incorporated in both the elastic and path-dependent regimes67
to capture the size-dependence properly. This paper is the first attempt to formulate a new cohesive mi-68
cropolar phase field fracture theory that leads to a physically justified/identifiable size-dependent effect69
for both the path-independent elastic responses and the path-dependent damage and fracture in a higher-70
order continuum undergoing infinitesimal deformation. By extending the length-scale-parameter insensi-71
tive formulation that approximates cohesive-type of response to the micropolar materials, we introduce72
a third strategy where one may employ sufficiently large phase field length scale parameters to address73
the numerical needs without comprising the correct size effect that should exhibit in the numerical simu-74
lations. In order words, the resultant model is the best of both worlds, one that benefits from the physical75
justification of having a consistent size effect in both the elastic and damage regimes and yet retains the76
convenience of the approach in Wu and Nguyen [2018], Geelen et al. [2019], and Wu et al. [2020].77
The rest of the paper is organized as follows. We first briefly summarize the theory of micropolar elas-78
ticity (Section 2), and introduce the strain energy split approach that enables one to explore the effects of the79
partitioned energy densities. We then extend the regularized length-scale-insensitive phase field formula-80
tion to the micropolar material models such that the length scale parameter for the phase field is insensitive81
to the macroscopic responses. This treatment then enables us to replicate the size effect characterized by82
the higher-order material parameters (e.g., bending and torsion stiffnesses) that can be experimentally83
sought. Furthermore, by enforcing the macroscopic responses not sensitive to the phase field length scale84
parameter, it enables us to conduct simulations in a spatial domain without the size constraint imposed85
by the ratio between the phase field length scale and mesh. For completeness, the details of the finite el-86
ement discretization and operator-split solution scheme are discussed. Numerical examples are given to87
Micropolar phase field fracture 3
verify the implementation, provide evidences on how micropolarity affects the macroscopic behaviors for88
quasi-brittle materials, and showcase the applicability of the proposed models.89
As for notations and symbols, bold-faced and blackboard bold-faced letters denote tensors (including90
vectors which are rank-one tensors); the symbol ’·’ denotes a single contraction of adjacent indices of two91
tensors (e.g., a·b=aibior c·d=cijdjk); the symbol ‘:’ denotes a double contraction of adjacent indices92
of tensor of rank two or higher (e.g., C:ε=Cijk l εkl); the symbol ‘⊗’ denotes a juxtaposition of two vectors93
(e.g., a⊗b=aibj) or two symmetric second order tensors [e.g., (α⊗β)ijkl =αij βkl]. We also define identity94
tensors: I=δij,I=δik δjl , and ¯
I=δil δjk, where δij is the Kronecker delta. As for sign conventions, unless95
specified, the directions of the tensile stress and dilative pressure are considered as positive.96
2 Theory of micropolar elasticity97
In this section, we briefly summarize the kinematic and constitutive relations of an isotropic micropolar98
elastic materials undergoing infinitesimal deformation. In this case, the kinematics of micropolar materials99
is characterized by both the displacement field and the micro-rotations. The resultant strain tensor is no100
longer symmetric due to the higher-order kinematics. We thus decompose the strain tensor into symmetric101
and skew-symmetric parts, which consequently enables us to split the stored energy density into three dif-102
ferent parts. This energy split approach opens the door for us to explore the effects of distinct degradation103
of partitioned energy conjugated pairs, which will be discussed later in this study.104
2.1 Kinematics105
Let us consider a micropolar elastic body B ⊂ R3with material points Pidentified by the position vec-
tors x∈ B that undergoes infinitesimal deformation. As illustrated in Fig. 1, unlike the classical non-polar
(Boltzmann) approach, each material point experiences micro-rotation θ(x,t), in addition to the transla-
tional displacement u(x,t)at time t. The micro-rotation represents the local rotation of the material point
x, which is independent of the displacement field. Consequently, the rotational part of the polar decom-
position of the displacement gradient (i.e., macro-rotation) is also independent of the micro-rotation. The
micropolar strain ¯εand micro-curvature ¯κcan be defined as follows [Eringen,1966,Sachio et al.,1984,
Ehlers and Volk,1998,Eringen,2012,Atroshchenko and Bordas,2015,Grbˇ
ci´
c et al.,2018]:
¯ε=∇uT−3
E·θ, (1)
¯κ=∇θ, (2)
where 3
E=3
Eijk is the Levi-Civita permutation tensor. The definition of micropolar strain in Eq. (1) im-106
plies that the normal strains (i.e., diagonal entries of the micropolar strain tensor) that contributes to the107
stretching are equivalent to those in the classical approach, whereas the shear strains (i.e., off-diagonal108
entries of the micropolar strain tensor) are dependent on the micro-rotation. Since the micropolar strain109
tensor is non-symmetric, we therefore decompose the micropolar strain tensor into symmetric (¯εsym ) and110
skew-symmetric parts (¯εskew), i.e.,111
¯ε=1
2(∇u+∇uT)
| {z }
:=¯εsym
+1
2(∇uT−∇u)−3
E·θ
| {z }
:=¯εskew
. (3)
Notice that ¯εsym is equivalent to the Boltzmann strain tensor in classical non-polar approach.112
4 Hyoung Suk Suh et al.
B
<latexit sha1_base64="CLl2lse2Lh/bkRhQt7R2hmqFqQw=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQKuiy6cSUV7AOaUCbTSTt0Mgkzk0IJ+RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5ttbWNza3tis71d29/YND++i4o+JUEtomMY9lL8CKciZoWzPNaS+RFEcBp91gclf43SmVisXiSc8S6kd4JFjICNZGGti2x3TmRViPCebZbZ4P7JpTd+ZAq8QtSQ1KtAb2lzeMSRpRoQnHSvVdJ9F+hqVmhNO86qWKJphM8Ij2DRU4osrP5slzdG6UIQpjaZ7QaK7+3shwpNQsCsxkkVEte4X4n9dPdXjjZ0wkqaaCLA6FKUc6RkUNaMgkJZrPDMFEMpMVkTGWmGhTVtWU4C5/eZV0GnX3st54vKo1H8o6KnAKZ3ABLlxDE+6hBW0gMIVneIU3K7NerHfrYzG6ZpU7J/AH1ucPFUaT/A==</latexit>
P
<latexit sha1_base64="ed+B83hNJhM02q/HcTPUWNWztOI=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQKuiy4EdxUsA9oQplMJ+3QyYOZm0IJBT/EjQtF3Pon7vwbJ20X2nrgwuGce5kzJ0il0Og439ba+sbm1nZpp7y7t39waB8dt3SSKcabLJGJ6gRUcyli3kSBkndSxWkUSN4ORreF3x5zpUUSP+Ik5X5EB7EIBaNopJ5tewJzL6I4ZFTmjem0Z1ecqjMDWSXuglRggUbP/vL6CcsiHiOTVOuu66To51ShYJJPy16meUrZiA5419CYRlz7+Sz5lJwbpU/CRJmJkczU3xc5jbSeRIHZLDLqZa8Q//O6GYY3fi7iNEMes/lDYSYJJqSogfSF4gzlxBDKlDBZCRtSRRmassqmBHf5y6ukVau6l9Xaw1Wlfv80r6MEp3AGF+DCNdThDhrQBAZjeIZXeLNy68V6tz7mq2vWosIT+APr8wdPs5SH</latexit>
Original
<latexit sha1_base64="gvpxCN9tHp+yGncnnXl8FhJnmtQ=">AAAB+HicbVBNS8NAEN34WetHox69BIvgqSRV0GPBi56sYD+gDWWznbRLN5uwOxFr6C/x4kERr/4Ub/4bt20O2vpg4PHeDDPzgkRwja77ba2srq1vbBa2its7u3sle/+gqeNUMWiwWMSqHVANgktoIEcB7UQBjQIBrWB0NfVbD6A0j+U9jhPwIzqQPOSMopF6dqmL8IjZreIDLqmY9OyyW3FncJaJl5MyyVHv2V/dfszSCCQyQbXueG6CfkYVciZgUuymGhLKRnQAHUMljUD72ezwiXNilL4TxsqURGem/p7IaKT1OApMZ0RxqBe9qfif10kxvPQzLpMUQbL5ojAVDsbONAWnzxUwFGNDKFPc3OqwIVWUocmqaELwFl9eJs1qxTurVO/Oy7WbPI4COSLH5JR45ILUyDWpkwZhJCXP5JW8WU/Wi/VufcxbV6x85pD8gfX5A2tnk5o=</latexit>
configuration
<latexit sha1_base64="tVOc3hJJ6QRqjFpEWDEGbZ8eJXQ=">AAAB/XicbVDLSgNBEJz1GeNrfdy8DAbBU9iNgh4DXvQWwTwgCWF2MpsMmZ1ZZnrFuAR/xYsHRbz6H978GyebPWhiQUNR1U13VxALbsDzvp2l5ZXVtfXCRnFza3tn193bbxiVaMrqVAmlWwExTHDJ6sBBsFasGYkCwZrB6GrqN++ZNlzJOxjHrBuRgeQhpwSs1HMPO8AeIKVKhnyQ6Eyd9NySV/Yy4EXi56SEctR67lenr2gSMQlUEGPavhdDNyUaOBVsUuwkhsWEjsiAtS2VJGKmm2bXT/CJVfo4VNqWBJypvydSEhkzjgLbGREYmnlvKv7ntRMIL7spl3ECTNLZojARGBSeRoH7XDMKYmwJoZrbWzEdEk0o2MCKNgR//uVF0qiU/bNy5fa8VL3J4yigI3SMTpGPLlAVXaMaqiOKHtEzekVvzpPz4rw7H7PWJSefOUB/4Hz+ALe0lg8=</latexit>
Deformed
<latexit sha1_base64="ROtt8NuzSARmWsIlgphflEXylu8=">AAAB+HicbVBNS8NAEN34WetHox69BIvgqSRV0GNBD3qrYD+gDWWzmbZLd5OwOxFr6C/x4kERr/4Ub/4bt20O2vpg4PHeDDPzgkRwja77ba2srq1vbBa2its7u3sle/+gqeNUMWiwWMSqHVANgkfQQI4C2okCKgMBrWB0NfVbD6A0j6N7HCfgSzqIeJ8zikbq2aUuwiNm19CPlYRw0rPLbsWdwVkmXk7KJEe9Z391w5ilEiJkgmrd8dwE/Ywq5EzApNhNNSSUjegAOoZGVIL2s9nhE+fEKKFjVpuK0JmpvycyKrUey8B0SopDvehNxf+8Tor9Sz/jUZIiRGy+qJ8KB2NnmoITcgUMxdgQyhQ3tzpsSBVlaLIqmhC8xZeXSbNa8c4q1bvzcu02j6NAjsgxOSUeuSA1ckPqpEEYSckzeSVv1pP1Yr1bH/PWFSufOSR/YH3+AFQvk4s=</latexit>
configuration
<latexit sha1_base64="tVOc3hJJ6QRqjFpEWDEGbZ8eJXQ=">AAAB/XicbVDLSgNBEJz1GeNrfdy8DAbBU9iNgh4DXvQWwTwgCWF2MpsMmZ1ZZnrFuAR/xYsHRbz6H978GyebPWhiQUNR1U13VxALbsDzvp2l5ZXVtfXCRnFza3tn193bbxiVaMrqVAmlWwExTHDJ6sBBsFasGYkCwZrB6GrqN++ZNlzJOxjHrBuRgeQhpwSs1HMPO8AeIKVKhnyQ6Eyd9NySV/Yy4EXi56SEctR67lenr2gSMQlUEGPavhdDNyUaOBVsUuwkhsWEjsiAtS2VJGKmm2bXT/CJVfo4VNqWBJypvydSEhkzjgLbGREYmnlvKv7ntRMIL7spl3ECTNLZojARGBSeRoH7XDMKYmwJoZrbWzEdEk0o2MCKNgR//uVF0qiU/bNy5fa8VL3J4yigI3SMTpGPLlAVXaMaqiOKHtEzekVvzpPz4rw7H7PWJSefOUB/4Hz+ALe0lg8=</latexit>
u
<latexit sha1_base64="hukVYJWcIN0xQxyA6aIBgaCE4ok=">AAAB9XicdVDLSgMxFL1TX7W+qi7dBIvgqsxUQZcFN7qrYB/QjiWTybShmWRIMkoZ+h9uXCji1n9x59+YaSvU14GQwzn3cg8nSDjTxnU/nMLS8srqWnG9tLG5tb1T3t1raZkqQptEcqk6AdaUM0GbhhlOO4miOA44bQeji9xv31GlmRQ3ZpxQP8YDwSJGsLHSbS+QPNTj2H5ZOumXK17VnQK5v8iXVYE5Gv3yey+UJI2pMIRjrbuemxg/w8owwumk1Es1TTAZ4QHtWipwTLWfTVNP0JFVQhRJZZ8waKoubmQ41nk0OxljM9Q/vVz8y+umJjr3MyaS1FBBZoeilCMjUV4BCpmixPCxJZgoZrMiMsQKE2OLKi2W8D9p1areSbV2fVqpX83rKMIBHMIxeHAGdbiEBjSBgIIHeIJn5955dF6c19lowZnv7MM3OG+fU6aTEg==</latexit>
✓
<latexit sha1_base64="XqoEtkjteo3ql+3iXVTF8cAZMa0=">AAAB/HicdVDLSsNAFJ3UV62vaJduBovgqiRV0GXBje4q2Ae0oUwmk3boZBJmboQQ6q+4caGIWz/EnX/jpK1QXweGOZxzL/dw/ERwDY7zYZVWVtfWN8qbla3tnd09e/+go+NUUdamsYhVzyeaCS5ZGzgI1ksUI5EvWNefXBZ+944pzWN5C1nCvIiMJA85JWCkoV0d+LEIdBaZLx/AmAGZDu2aW3dmwM4v8mXV0AKtof0+CGKaRkwCFUTrvusk4OVEAaeCTSuDVLOE0AkZsb6hkkRMe/ks/BQfGyXAYazMk4Bn6vJGTiJd5DOTEYGx/ukV4l9eP4Xwwsu5TFJgks4PhanAEOOiCRxwxSiIzBBCFTdZMR0TRSiYvirLJfxPOo26e1pv3JzVmteLOsroEB2hE+Sic9REV6iF2oiiDD2gJ/Rs3VuP1ov1Oh8tWYudKvoG6+0TqeaVcg==</latexit>
Fig. 1: Kinematics of a micropolar continuum.
2.2 Constitutive model and strain energy split113
To ensure stable elastic responses, the micropolar strain energy must fulfill strong ellipticity condition. To114
fulfill this requirement, we consider a micropolar strain energy density ψe(¯ε, ¯κ)that takes a quadratic form:115
ψe(¯ε, ¯κ) = 1
2¯ε:C: ¯ε+1
2¯κ:D: ¯κ. (4)
Here, Cand Dare constitutive moduli that possess the major symmetry (i.e., C=Cijkl =Ckl ij , and116
D=Dijkl =Dkli j ):117
C=λ(I⊗I)+(µ+κ)I+µ¯
I;D=α(I⊗I)+β¯
I+γI, (5)
where λ,µ,κ,α,β, and γare the material constants. The strong ellipticity of the strain energy density118
defined in Eq. (4) implies that the following inequalities must be hold [Diegele et al.,2004,Li and Lee,119
2009,Eringen,2012]:120
3λ+2µ+κ≥0 ; 2µ+κ≥0 ; κ≥0 ;
3α+β+γ≥0 ; γ+β≥0 ; γ−β≥0. (6)
These material constants, including the size-dependent ones are related to the following material parame-121
ters that have been individually identified via experiments [Yavari et al.,2002,Atroshchenko and Bordas,122
2015,Lakes and Drugan,2015]:123
E=(2µ+κ) (3λ+2µ+κ)
2λ+2µ+κYoung’s modulus,
G=2µ+κ
2shear modulus,
ν=λ
2λ+2µ+κPoisson’s ratio,
lt=sβ+γ
2µ+κcharacteristic length in torsion,
lb=rγ
2(2µ+κ)characteristic length in bending,
χ=β+γ
α+β+γpolar ratio,
N=rκ
2(µ+κ)coupling number, N∈[0, 1].
(7)
The relations in Eq. (7) indicates that the size-dependence of the elasticity responses are related to the124
higher-order kinematics and kinetic. Although identification of the material parameters that characterize125
the size effect remains challenging as demonstrated in Bigoni and Drugan [2007] and Neff et al. [2010], these126
micropolar material parameters are obtainable through well-documented inverse problems or analytical127
solutions, at least for a subset of micropolar materials such as porous media [Bigoni and Drugan,2007].128
This unambiguity is helpful for practical purposes.129
Micropolar phase field fracture 5
In Eq. (7), the characteristic lengths ltand lbimply the nonlocal nature of micropolar material by quan-130
tifying the range of couple stress through their relationship to the micro-curvature. The coupling number131
N, on the other hand, quantifies the level of shear stress asymmetry that represents the degree of microp-132
olarity of the material, e.g., N=0 corresponds to the classical elasticity while N=1 corresponds to133
the couple-stress theory [Mindlin and Tiersten,1962,Mindlin,1963,McGregor and Wheel,2014]. In the134
remainder of this paper, unless specified, we set N=0.5 for micropolar continuum simulations.135
Since this study aims to develop a framework that explores the interaction between size-dependent136
micropolar elasticity and fracture mechanisms, we split the strain energy density into three different parts137
[based on the decomposition of the micropolar strain, cf. Eq. (3)]: (1) the Boltzmann part ψB
e(¯εsym ); (2) the138
micro-continuum coupling part ψC
e(¯εskew ); and (3) the pure micro-rotational part ψR
e(¯κ), i.e.,139
ψe(¯ε, ¯κ) = ψB
e(¯εsym ) + ψC
e(¯εskew ) + ψR
e(¯κ), (8)
where the partitioned strain energy densities can be written as:
ψB
e(¯εsym ) = 1
2hλ(¯εsym :I)2+(2µ+κ)¯εsym : ¯εsym i, (9)
ψC
e(¯εskew ) = 1
2κ¯εskew : ¯εskew, (10)
ψR
e(¯κ) = 1
2hα(¯κ:I)2+β¯κ: ¯κT+γ¯κ: ¯κi. (11)
The force stress ¯
σcan be found by taking partial derivative of the energy density with respect to the140
micropolar strain. By using Eq. (3), the force stress can also be partitioned into ¯
σBand ¯
σC, which are the141
results of the pure non-polar deformation and the micro-continuum coupling effects, respectively:142
¯
σ=∂ψe
∂¯ε=∂
∂¯ε(ψB
e+ψC
e) = λ(¯εsym :I)I+(2µ+κ)¯εsym
| {z }
:=¯
σB
+κ¯εskew
| {z }
:=¯
σC
. (12)
Similarly, the couple stress ¯mRthat is caused by the pure micro-rotation can be obtained as follows:143
¯mR=∂ψe
∂¯κ=∂ψR
e
∂¯κ=α(¯κ:I)I+β¯κT+γ¯κ. (13)
Based on the split approach, notice that the partitioned energy densities in Eqs. (9)-(11) can be recovered144
by:145
ψB
e=1
2¯
σB: ¯εsym ;ψC
e=1
2¯
σC: ¯εskew ;ψR
e=1
2¯mR: ¯κ, (14)
where (¯
σ=¯
σB+¯
σC, ¯ε=¯εsym +¯εskew )and (¯mR, ¯κ)are the energy-conjugated pairs. This partition of en-146
ergy then provides a mean to introduce different degradation mechanisms for different kinematic modes.147
3 Phase field model for damaged micropolar continua148
This section presents a variational phase field framework to model cohesive fracture in micropolar materi-149
als. Our starting point is the energy split introduced in Section 2. We introduce distinct degradation for the150
Boltzmann, coupling and micro-rotational energy-conjugated pairs and derive, for the first time, the ac-151
tion functional for the variational phase field fracture framework for micropolar continua. The governing152
equations are then sought by seeking the stationary point, i.e., the Euler-Lagrange equation. To ensure that153
the size effect exhibited in the simulations are originated from the micropolar effect, we adopt the crack154
surface density functional originally proposed by Wu and Nguyen [2018] and Geelen et al. [2019] to elim-155
inate the sensitivity of the regularization length scale for the phase field fracture in Boltzmann continua.156
Our 1D analysis in Section 3.5 and numerical results in Section 5.1 suggest that this same crack surface157
density functional may also eliminate the sensitivity of the regularization length scale parameter for the158
micropolar framework.159
6 Hyoung Suk Suh et al.
3.1 Phase field approximation of cohesive fracture160
This study adopts a phase field approach to represent cracks via an implicit function [Bourdin et al.,2008,161
Miehe et al.,2010a,Borden et al.,2012,Clayton and Knap,2015]. Let Γbe the discontinuous surface within162
a micropolar elastic body B. We approximate the fracture surface area AΓas AΓd, which is the volume163
integration of crack surface density Γd(d,∇d)over B,164
AΓ≈AΓd=ZB
Γd(d,∇d)dV, (15)
where dis the phase field which varies from 0 in undamaged regions to 1 in completely damaged regions.165
In this study, we consider the following crack surface density functional, which is originally used to intro-166
duce elliptic regularization of the Mumford-Shah functional for image segmentation [Mumford and Shah,167
1989], i.e.,168
Γd(d,∇d)=1
c01
lc
w(d) + lc(∇d·∇d);c0=4Z1
0qw(s)ds, (16)
where lcis the regularization length scale that governs the size of the diffusive crack zone, c0>0 is a169
normalization constant, and w(d)is one of the function that controls the shape of the regularized profile of170
the phase field [Clayton and Knap,2011,Mesgarnejad et al.,2015,Bleyer and Alessi,2018]. Γ−convergence171
requires that the sharp cracks can be recovered by reducing the length scale parameter lcto zero such that172
[Clayton and Knap,2015,Wu and Nguyen,2018],173
AΓ=lim
lc→0AΓd. (17)
The local dissipation function w(d)should be a monotonically increasing function of d, and we distinguish174
between the following two choices for this function:175
w(d) = (d2
d. (18)
The quadratic local dissipation w(d) = d2is the most widely used approach in simulating brittle fracture,176
and has become the standard in the phase field approximation [Bourdin et al.,2008,Miehe et al.,2010a,b,177
Bourdin et al.,2011,Borden et al.,2012,Miehe et al.,2015a,c,Aldakheel et al.,2018,Choo and Sun,2018a,178
Bryant and Sun,2018,Chukwudozie et al.,2019]. The major disadvantage of the quadratic local dissipa-179
tion is that the damage evolution initiates as soon as the load is applied so that there is no pure elastic180
response. However, the linear model w(d) = d, combined with suitable degradation functions, describes181
the cohesive fracture that possesses a threshold energy that is independent of the regularization length lc
182
[Lorentz et al.,2012,Mesgarnejad et al.,2015,Lorentz,2017,Geelen et al.,2019]. Also, in this case, the ma-183
terial is characterized by an elastic phase until the stored energy density reaches the threshold value. Since184
this study aims to decouple the regularization length lcfor large-scale simulations, we adopt the linear185
dissipation function to take advantage of the aforementioned characteristics. The expression for the crack186
surface energy density in Eq. (16) then becomes:187
Γd(d,∇d)=3
8lc
d+3lc
8(∇d·∇d). (19)
3.2 Free energy functional188
It should be noted that the crack propagation within a body Bcorresponds to the creation of new free189
surfaces Γ. This implies that the rate of change of the internal energy should be equal to the rate of change190
of the surface energy that contributes to the crack growth. By assuming that this concept can be applied to191
the micropolar elastic material as well, the total potential energy Ψcan be defined as follows [Bilgen and192
Weinberg,2019,Geelen et al.,2019]:193
Ψ=ZBψe(¯ε, ¯κ)dV +ZΓGcdΓ, (20)
Micropolar phase field fracture 7
where Gcis critical energy release rate that quantifies the resistance to cracking. Then, revisiting Eqs. (8)194
and (15), we approximate the functional by195
Ψ≈ZBψdV, (21)
with196
ψ=gB(d)ψB+
e(¯εsym ) + gC(d)ψC
e(¯εskew ) + gR(d)ψR
e(¯κ) + ψB−
e(¯εsym )
| {z }
:=ψbulk(¯εsym, ¯εskew , ¯κ,d)
+GcΓd(d,∇d), (22)
where ψbulk(¯εsym, ¯εskew, ¯κ,d)is the degrading elastic bulk energy, and gi(d)are the stiffness degradation197
functions for the corresponding fictitious undamaged energy density parts ψi
e(i=B,C,R). Here, notice198
that we decompose ψB
e(¯εsym )into a positive and negative parts, and degrade only the positive part in order199
to avoid crack propagation under compression, i.e.,200
ψB
e=ψB+
e+ψB−
e. (23)
In this study, we adopt the spectral decomposition scheme of Miehe et al. [2010a], so that each part can be201
written as:202
ψB±
e=1
2hλh¯εsym :Ii2
±+(2µ+κ)¯εsym
±: ¯εsym
±i; ¯εsym
±=
3
∑
a=1D¯
εsym
aE±(na⊗na), (24)
where h•i±=(•±|•|)/2 is the Macaulay bracket operator, ¯
εsym
ais the principal Boltzmann strains, and203
naare the corresponding principal directions.204
In order to investigate the effects of each energy density part, one may assume that the partitioned205
strain energy densities can either be degraded (i∈D)or remain completely undamaged (i∈U), i.e.,206
gi(d) = (g(d)if i∈D
1 if i∈U;D∪U={B,C,R};D∩U=∅. (25)
Here, g(d)is a monotonically decreasing function that satisfies the following conditions [Pham and Marigo,207
2013]:208
g(0) = 1 ; g(1) = 0 ; g0(d)≤0 for d∈[0, 1], (26)
where the superposed prime denotes derivative with respect to d. Explicit form of this function is provided209
in Section 3.4. Notice that this general approach can be tailored to many different situations. For example,210
one may only degrade the pure Boltzmann part of the strain energy, i.e., D={B},U={C,R}:211
ψbulk(¯εsym, ¯εskew, ¯κ,d) = g(d)ψB+
e(¯εsym ) + ψC
e(¯εskew ) + ψR
e(¯κ) + ψB−
e(¯εsym ), (27)
or degrade the entire strain energy density, i.e., D={B,C,R},U=∅:212
ψbulk(¯εsym, ¯εskew, ¯κ,d) = g(d)hψB+
e(¯εsym ) + ψC
e(¯εskew ) + ψR
e(¯κ)i+ψB−
e(¯εsym ). (28)
3.3 Derivation of Euler-Lagrange equations via variational principle213
Let Vdenote an appropriate function space. Then, based on the fundamental lemma of calculus of varia-214
tions, the necessary condition for the energy functional Ψ:V→Rin Eq. (21) to have a local extremum at215
a point χ0∈Vis that,216
δψ
δχ(χ0) = 0, (29)
where ψis the energy density that is previously defined in Eq. (22), χ:={u,θ,d}indicates the field217
variables, and δ(•)/δχdenotes the functional derivative with respect to χ. Notice that Eq. (29) is the so-218
called Euler-Lagrange equations, which yield the governing partial differential equations to be solved.219
8 Hyoung Suk Suh et al.
The linear momentum balance equation can be recovered by seeking the stationary point where the220
functional derivative of ψwith respect to uvanishes. By assuming no body forces and by only considering221
the single derivative, we have,222
δψ
δu=∂ψ
∂u−∇· ∂ψ
∂∇u=0. (30)
By revisiting Eq. (22), we get:223
∂ψ
∂u=0, (31)
and by Eq. (12),224
∇· ∂ψ
∂∇u=∇·gB(d)∂ψB
e
∂∇u+gC(d)∂ψC
e
∂∇u=∇·hgB(d)¯
σB+gC(d)¯
σCi, (32)
since the decomposition of the micropolar strain in Eq. (3) yields the following:
∂ψB
e
∂∇u=∂ψB
e
∂¯εsym :∂¯εsym
∂∇u=∂ψB
e
∂¯εsym :1
2(I+¯
I)=∂ψB
e
∂¯εsym =¯
σB, (33)
∂ψC
e
∂∇u=∂ψC
e
∂¯εskew :∂¯εskew
∂∇u=∂ψC
e
∂¯εskew :1
2(¯
I−I)=∂ψC
e
∂¯εskew =¯
σC. (34)
Similarly, assuming no body couples, the balance of angular momentum can be obtained by searching the225
local extremum where the functional derivative of ψwith respect to the micro-rotation θvanishes, i.e.,226
δψ
δθ=∂ψ
∂θ−∇· ∂ψ
∂∇θ=0. (35)
The partial derivative of ψwith respect to θis:227
∂ψ
∂θ=gC(d)∂ψC
e
∂θ=gC(d)∂ψC
e
∂¯εskew :∂¯εskew
∂θ=−3
E:hgC(d)¯
σCi. (36)
By Eq. (13), the partial derivative of ψwith respect to ∇θbecomes:228
∇· ∂ψ
∂∇θ=∇·gR(d)∂ψR
e
∂¯κ=∇·hgR(d)¯mRi. (37)
The damage evolution equation (i.e., functional derivative of ψwith respect to the phase field d) can also229
be recovered as follows:230
δψ
δd=∂ψ
∂d−∇· ∂ψ
∂∇d=0, (38)
where, by revisiting Eq. (19),231
∂ψ
∂d=g0(d)"∑
i∈D
ψi
e#+3Gc
8lc, (39)
and232
∇· ∂ψ
∂∇d=∇·3Gclc
4∇d. (40)
Finally, collecting the terms from Eqs. (30)-(40), we obtain the following coupled system of partial differ-
ential equations to be solved:
∇·hgB(d)¯
σB+gC(d)¯
σCi=0balance of linear momentum, (41)
∇·hgR(d)¯mRi+3
E:hgC(d)¯
σCi=0balance of angular momentum, (42)
g0(d)F+3
81−2l2
c∇2d=0 nondimensionalized damage evolution equation, (43)
where ∇2(•) = ∇·∇(•)is the Laplacian operator, and Fis the degrading nondimensionalized strain233
energy density:234
F=
∑
i∈D
ψi
e
Gc/lc. (44)
Micropolar phase field fracture 9
3.4 Crack irreversibility and degradation function235
As far as D6=∅, we prevent crack healing by following the treatment used in [Miehe et al.,2015b,Choo236
and Sun,2018a,Bryant and Sun,2018] which ensures the irreversibility constraint by enforcing the driving237
force to be non-negative. Although the stored energy density is split into three different parts, we simply238
introduce one distinct history function or driving force Hwhich is the pseudo-temporal maximum of the239
degrading nondimensionalized energy density. Inserting our definition into Eq. (43) gives:240
g0(d)H+3
81−2l2
c∇2d=0. (45)
Revisiting Section 3.1, the term cohesive denotes that the model should possess a threshold for the loading,241
where damage does not develop below this value. Therefore, we particularly restrict the crack growth to242
initiate above a threshold energy density ψcrit by using the following history function, in order to approxi-243
mate the cohesive response:244
H=max
τ∈[0,t]Fcrit +Fcrit F
Fcrit −1+;Fcrit =ψcrit
Gc/lc, (46)
where Fcrit is the nondimensionalized threshold energy. Note that Eq. (45) is the field equation that is245
actually solved for the phase field in this study.246
We complete our formulation by specifying the degradation function g(d). This study adopts a quasi-247
quadratic degradation function [Lorentz et al.,2011,2012,Geelen et al.,2019], which is a rational function248
of the phase field d. The quasi-quadratic degradation function has an associated upper bound on the reg-249
ularization length lc, and is defined as:250
g(d) = (1−d)2
(1−d)2+md (1+pd);lc≤3Gc
8(p+2)ψcrit
, (47)
where m≥1 is constant, and p≥1 is a shape parameter that controls the peak stress and the fracture251
responses.252
Recall that this study restricts the damage evolution to initiate above a threshold energy. In other words,253
below the threshold (i.e., F/Fcrit ≤1), the driving force and the phase field should satisfy H=Fcrit and254
d=0, respectively. In this case, the damage evolution equation [Eq. (45)] becomes:255
g0(0)Fcrit +3
8=0. (48)
Since the degradation function [Eq. (47)] yields g0(0) = −m, we require256
m=3
8Fcrit
, (49)
in order to trivially satisfy Eq. (48). Again, the most common choice for the degradation function would257
be a simple quadratic function, i.e., g(d)=(1−d)2. A phase field model that adopts the quadratic degra-258
dation function requires a particular critical energy ψcrit that depends on lcto satisfy Eq. (48). However,259
by using the quasi-quadratic degradation function in Eq. (47) with Eq. (49), it is noted that the threshold260
energy density ψcrit is no longer dependent on lc, since the degradation function itself is designed to auto-261
matically satisfy Eq. (48). It reveals that the elastic response (i.e., if stored energy is below the threshold) is262
regularization length independent. The regularization length insensitivity of the model, for the case where263
the stored energy exceeds the threshold, will be discussed in Section 3.5.264
10 Hyoung Suk Suh et al.
3.5 One-dimensional analysis on phase field regularization length sensitivity265
In order to gain insights on the regularization length insensitive response, we consider a similiar 1D bound-266
ary value problem previously used in Wu and Nguyen [2018] and Geelen et al. [2019] for length scale267
analysis. Our major departure is that the material is now an analog to the micropolar material where an268
length scale dependent state variable (which replaces the micro-rotation due to the low-dimensional kine-269
matics) is introduced to replicate the size effect of the elasticity response. Consider a one-dimensional270
bar x∈[−L,L]subjected to a tensile loading on both ends. We assume that the length 2Lis sufficiently271
long enough so that the any possible boundary effects can be neglected. We define the strain measures as272
¯
ε=du/dx, and ¯
κ=le(dθ/dx), where leis the length scale. Our goal here is to check whether the size-273
dependent responses in the damaged zone is sensitive to the regularization length scale for the phase field274
lc. Note that this formulation does yield size-dependent responses in both elastic and damage zones, but275
the kinematics in 1D does not permit rotation. Hence, θand ¯
κno longer indicate micro-rotation and micro-276
curvature respectively. Thus, analogous to Eq. (8), we introduce a 1D size-dependent model of which the277
strain energy density takes a quadratic form as:278
ψe=1
2CBdu
dx2
+1
2CCdu
dx−ledθ
dx2
+1
2CRl2
edθ
dx2
, (50)
where CB>0, CC>0 and CR>0 are the material parameters. Notice that (1) this stored energy functional
does not admit non-trivial zero-energy mode provided that CB+CC>0 and CR>0 and (2) if the length
scale levanishes, Eq. (50) reduces to an energy functional for the classical Boltzmann continuum. In this
setting, the stress measures can be obtained as,
¯
σ=∂ψe
∂¯
ε=CB¯
ε+CC(¯
ε−¯
κ), (51)
¯
m=∂ψe
∂¯
κ=CR¯
κ−CC(¯
ε−¯
κ), (52)
where both ¯
σand ¯
mare le-dependent. Assuming all energy density parts can be degraded, the Lagrangian279
for the damaged state where ψe>ψcrit then becomes:280
ψ=g(d)ψe+3Gc
8lc"d+l2
cdd
dx2#, (53)
where g(d)is previously defined in Eq. (47). The first variation of Eq. (53) yields the following set of Euler-
Lagrange equations:
d
dx[g(d)¯
σ]=0, (54)
d
dx[g(d)¯
m]=0, (55)
g0(d)ψe
Gc/lc
+3
81−2l2
c
d2d
dx2=0, (56)
where Eqs. (54) and (55) are the balance equations, and Eq. (56) is the nondimensionalized damage evo-281
lution equation. Following Geelen et al. [2019], we apply a specific amount of ¯
σat both ends while the282
boundaries remain ¯
m-free, such that Eq. (54) and Eq. (55) yields:283
g(d)¯
σ=¯
σ0;g(d)¯
m=0, (57)
where ¯
σ0is the responding stress on the boundary (x=±L). By the constitutive relationships in Eqs. (51)-284
(52), we can now express the strain measures ¯
εand ¯
κas,285
¯
ε=CC−CR
CB(CC−CR)−CCCR
¯
σ0
g(d);¯
κ=CC
CB(CC−CR)−CCCR
¯
σ0
g(d). (58)
Micropolar phase field fracture 11
Thus, the energy density functional in Eq. (50) can be rewritten as:286
ψe=¯
σ2
0
C∗g(d)2;C∗=2[CB(CC−CR)−CCCR]2
CB(CC−CR)2+CCCR(CC+CR). (59)
Substituting Eq. (57) and Eq. (59) into Eq. (56), we get,287
g0(d)"1
Gc/lc
¯
σ2
0
C∗g(d)2#+3
81−2l2
c
d2d
dx2=0. (60)
By multiplying Eq. (60) with dd/dx, we can obtain the following differential equation:288
d
dx(3
8"d−l2
cdd
dx2#−1
Gc/lc
¯
σ2
0
2C∗g(d))=0. (61)
Following Wu and Nguyen [2018] and Geelen et al. [2019], we focus on the damaged zone [−lz,lz]with289
lzL, where the outer edge of the zone is related to the parameter d∗, the maximum value of the damage290
across the bar (i.e., d∗=1 if the bar is fully broken). Then, by symmetry, at x=0 we have:291
d(d∗, 0) = d∗;dd
dx(d∗, 0) = 0, (62)
while the boundary conditions at the outer edge x=lzare given by,292
d(d∗,lz) = 0 ; dd
dx(d∗,lz) = 0. (63)
By introducing the parameter d∗, notice that our goal is to find the expression for the responding stress ¯
σ0
293
as a function of the maximum damage d∗, or vice versa. Integration of Eq. (61), using boundary conditions294
in Eq. (63) admits the following:295
3
8"d−l2
cdd
dx2#=1
Gc/lc
¯
σ2
0
2C∗g(d)−1−1. (64)
Applying the symmetry conditions [Eq. (62)], Eq. (64) becomes:296
¯
σ2
0
2C∗=3Gc
8lc
d∗
g(d∗)−1−1. (65)
Substituting the expression of the degradation function in Eq. (47) and the expression for the degradation297
parameter min Eq. (49), we finally get:298
¯
σ0=s2C∗ψcrit
(1−d∗)2
1+pd∗. (66)
Observe that the resultant stress ¯
σ0can be expressed in terms of d∗but independent of the phase field299
regularization length lc. Eq. (66) highlights that the proposed model is capable of replicating the global300
response insensitive to regularization length lcfor the phase field, while preserving the size effect intro-301
duced by the micropolar elasticity. This result is important, as this insensitivity to lcenables us to simulate302
cohesive fracture in large spatial domain composed of micropolar materials. Extending this analysis for 2D303
and 3D cases is out of the scope of this study but will be considered in the future.304
Remark 1 Previous works on phase field and gradient damage models for cohesive fracture in Cauchy305
continuum, such as Cazes et al. [2010], Lorentz et al. [2012], Wu [2018], have established a connection306
between the cohesive zone models and the phase field and gradient damage models that represent cracks307
via implicit function. In principle, it is possible that similar connection can be established between the308
micropolar phase field model presented in this paper and the established micropolar cohesive zone models309
such as Larsson and Zhang [2007], Zhang et al. [2007], Hirschberger et al. [2008]. Such an endeavor is310
obviously out of the scope of this study due to the extensive length, but will be considered in future studies.311
12 Hyoung Suk Suh et al.
4 Finite element implementation312
In this section, we describe the finite element discretization, followed by the solution strategy to solve the313
system of nonlinear equation incrementally. Starting from the strong form, we follow the standard proce-314
dure to recover the variational form while employing the Taylor-Hood finite element space for the displace-315
ment and micro-rotation fields, and standard linear interpolation for the phase field. This finite element316
space is chosen to match the design of the operator-split algorithm. The displacement and micro-rotation317
are updated in a monolithic manner, where we use Taylor-Hood element such that the displacement field is318
interpolated by quadratic polynomials and the micro-rotation is interpolated by linear polynomials. Mean-319
while, the phase field is also interpolated by linear function to ensure the efficiency of the staggered solver320
that updates the phase field while holding the displacement and micro-rotation fixed. The operator-split321
solution scheme (i.e., staggered scheme) that successively updates the field variables is described in Section322
4.2.323
4.1 Galerkin form324
We derive the weak form and introduce the finite dimensional space to introduce the numerical scheme325
for the boundary value problems described in Eqs. (41)-(42) and Eq. (45). We consider a micropolar elastic326
domain Bwith boundary ∂Bcomposed of Dirichlet boundaries (displacement ∂Buand micro-rotation ∂Bθ)327
and Neumann boundaries (traction ∂Btσand moment ∂Btm) satisfying,328
∂B=∂Bu∪∂Btσ=∂Bθ∪∂Btm;∅=∂Bu∩∂Btσ=∂Bθ∩∂Btm. (67)
The prescribed boundary conditions can be specified as:
u=ˆuon ∂Bu,
θ=ˆ
θon ∂Bθ,
hgB(d)¯
σB+gC(d)¯
σCiT·n=ˆ
tσon ∂Btσ,
hgR(d)¯mRiT·n=ˆ
tmon ∂Btm,
∇d·n=0 on ∂B,
(68)
where nis the outward-oriented unit normal on the boundary surface ∂B; ˆu,ˆ
θ,ˆ
tσ,ˆ
tmare the prescribed329
displacement, micro-rotation, traction and moment, respectively; and the degradation functions gi(d)(i=330
B,C,R) are previously defined in Eq. (25). For the model closure, the initial conditions are imposed as,331
u=u0;θ=θ0, (69)
at t=0.332
We define the trial spaces Vu,Vθ, and Vdfor the solution variables:
Vu=nu:B → R3|u∈[H1(B)]3,u|∂Bu=ˆuo, (70)
Vθ=nθ:B → R3|θ∈[H1(B)]3,θ|∂Bθ=ˆ
θo, (71)
Vd=nd:B → R|d∈H1(B)o, (72)
where H1denotes the Sobolev space of order 1. Notice that this study adopts Taylor-Hood finite ele-
ment (i.e., quadratic interpolation for displacement and linear for micro-rotation) following Verhoosel and
de Borst [2013], which showed that the cohesive fracture model exhibits stress oscillation when equal order
polynomials are used for the solution field, while the discretization with high order interpolation function
Micropolar phase field fracture 13
for the displacement and first order functions for the auxiliary field and the phase field seems to elimi-
nate this oscillation. Similarly, the corresponding admissible spaces for Eqs. (70)-(72) with homogeneous
boundary conditions are defined as,
Vη=nη:B → R3|η∈[H1(B)]3,η|∂Bu=0o, (73)
Vξ=nξ:B → R3|ξ∈[H1(B)]3,ξ|∂Bθ=0o, (74)
Vζ=nζ:B → R|ζ∈H1(B)o. (75)
Applying the standard weighted residual procedure, the weak statements for Eqs. (41)-(42) and Eq. (45) is333
to: find {u,θ,d}∈Vu×Vθ×Vdsuch that for all {η,ξ,ζ}∈Vη×Vξ×Vζ,334
Gu(u,θ,d,η) = Gθ(u,θ,d,ξ) = Gd(u,θ,d,ζ) = 0. (76)
Here, Gu→Ris the weak statement of the balance of linear momentum:335
Gu=ZB∇η:hgB(d)¯
σB+gC(d)¯
σCidV −Z∂Btσ
η·ˆ
tσdA =0, (77)
Gθ→Ris the weak statement of the balance of angular momentum:336
Gθ=ZB∇ξ:gR(d)¯mRdV −ZBξ·3
E:hgC(d)¯
σCidV −Z∂Btm
ξ·ˆ
tmdA =0, (78)
and Gd→Ris the weak statement of the damage evolution equation:337
Gd=ZBζ·g0(d)HdV +3
8ZBζ+2l2
c(∇ζ·∇d)dV=0, (79)
where Hand g(d)are previously defined in Eqs. (46) and (47), respectively.338
4.2 Operator-split solution scheme339
As previous studies on the phase field model showed that the operator splitting (i.e., staggered scheme)340
may potentially be more robust compared to the monolithic approach [Miehe et al.,2010a,Heister et al.,341
2015,Teichtmeister et al.,2017], this study adopts the solution procedure based on the operator-split342
scheme to successively update three field variables {u,θ,d}. In this operator-split setting, the damage field343
is updated first while the displacement and micro-rotation fields are held fixed. A new damage field dn+1
344
is obtained iteratively once the algorithm converges within a predefined tolerance. Then, the linear solver345
holds the damage field fixed and advances the displacement and the micro-rotation fields {un+1,θn+1}. The346
schematic of the solution strategy can be summarized as follows:347
un
θn
dn
R(d)=0
−−−−→
un
θn
dn+1
| {z }
Iterative solver
Linear solver
z }| {
R(u,θ)=0
−−−−−→
un+1
θn+1
dn+1
, (80)
where R(u,θ)and R(d)are the residuals that are consistent with Eqs. (77)-(79):
R(u,θ):
ZB∇η:hgB(dn+1)¯
σB
n+1 +gC(dn+1)¯
σC
n+1idV −Z∂Btσ
η·ˆ
tσn+1 dA,
ZB∇ξ:gR(dn+1)¯mR
n+1 dV −ZBξ·3
E:hgC(dn+1)¯
σC
n+1idV −Z∂Btm
ξ·ˆ
tmn+1 dA
(81)
R(d):ZBζ·g0(dn+1)HndV +3
8ZBζ+2l2
c(∇ζ·∇dn+1)dV. (82)
14 Hyoung Suk Suh et al.
It should be noticed that one may choose other strategies to solve the same system of equations, however,348
the exploration of different schemes are out of the scope of this study.349
The implementation of the numerical models including the finite element discretization and the operator-350
split solution scheme rely on the finite element package FEniCS [Logg and Wells,2010,Logg et al.,2012a,b,351
Alnæs et al.,2015] with PETSc scientific computation toolkit [Abhyankar et al.,2018]. The scripts devel-352
oped for this study are open-sourced (available at https://github.com/hyoungsuksuh/micropolar_353
phasefield), in order to aid third-party verification and validation [Suh and Sun,2019].354
5 Numerical examples355
This section presents numerical examples to showcase the applicability of the proposed phase field model356
for damaged micropolar elastic material. For simplicity, we limit our attention to two-dimensional sim-357
ulations in this section. Based on the 2D setting, the kinematic state of the micropolar elastic body can358
be described by two in-plane displacements u= [u1,u2]Tand one out-of-plane micro-rotation angle θ3.359
Since the material elasticity now only depends on bending characteristic length, we now require only four360
engineering material parameters (e.g., E,ν,N, and lb).361
The first example serves as a verification test that highlights the regularization length insensitive re-362
sponse of the phase field model with quasi-quadratic degradation function in Eq. (47). We then investigate363
the effect of scale-dependent elasticity on the crack patterns, by simulating asymmetric notched three-point364
bending tests with different coupling numbers Nand single edge notched tests with different characteristic365
lengths lb, respectively. Finally, we exhibit the applicability of the proposed energy split scheme by con-366
sidering different degradation functions on the partitioned energy densities. All the numerical simulations367
rely on meshes that are sufficiently refined to properly capture the damage field around crack surfaces. Un-368
less specified, we especially adopt the element size of he≈lc/10 around the potential crack propagation369
trajectory.370
5.1 Verification exercise: the trapezoid problem371
We first examine a problem proposed by Lorentz et al. [2012] that has a trapezoidal-shaped symmetrical372
domain with an initial notch. Since we prescribe the displacement ¯uin order to consider pure Mode I373
loading, as illustrated in Fig. 2, this specific geometry helps us to avoid crack kinking and to facilitate374
straight crack propagation. The aforementioned characteristics of the trapezoid problem makes it suitable375
for verifying the regularization length insensitive response of the cohesive phase field model with quasi-376
quadratic degradation. This example thus performs a parametric study for three different regularization377
lengths (lc=7.5, 15, and 30 mm, as depicted in Fig. 2), with two different shape parameters p=2.5 and378
10.379
The material is assumed to be similar to the concrete studied in Lorentz et al. [2012]. The material380
parameters for this example are chosen as follows: Young’s modulus E=30 GPa, Poisson’s ratio ν=0.2,381
critical energy release rate Gc=0.1 N/mm, and threshold energy density ψcrit =0.1 kJ/m3. We also set382
coupling number N=0 and bending characteristic length lb=0 mm in order to avoid all the micropolar383
effects, and at the same time damage only the pure Boltzmann part, i.e., D={B},U={C,R}. We prescribe384
∆¯
u2=0.5 ×10−3mm on the left boundaries, while all other boundaries are maintained traction-free during385
the simulations.386
Fig. 3shows the force–displacement curves for the trapezoid problem, corroborated by other numerical387
observations [Lorentz et al.,2012,Geelen et al.,2019]. The results indicate that the shape parameter pis able388
to influence the peak force and the overall global force-displacement responses. In fact, the quasi-quadratic389
degradation function enables us to not only tailor the threshold for the elastic region by controlling ψcrit,390
but also tune the peak stress by varying shape parameter p. As pointed out in Geelen et al. [2019], higher391
value of ptend to significantly elongate the length of the fracture process zone, such that the stresses in the392
process zone can effectively be smeared over a large distance. As a result, we can observe that an increasing393
value of pyields the global force-displacement response where the effect of using different length scale394
parameters lcbecomes negligible, as previously reported in Lorentz et al. [2012], Wu and Nguyen [2018],395
Geelen et al. [2019], Wu et al. [2020].396
Micropolar phase field fracture 15
¯
u
<latexit sha1_base64="1ouVcjmht5C5oSIt/Z18CT10vV0=">AAAB83icbZBLSwMxFIXv1Fetr6pLN8EiuCozVdBlQRCXFewDOkPJpJk2NJMZ8hDKMOCvcONCEbf+GXf+GzNtF9p6IPBxzg25OWHKmdKu++2U1tY3NrfK25Wd3b39g+rhUUclRhLaJglPZC/EinImaFszzWkvlRTHIafdcHJT5N1HKhVLxIOepjSI8UiwiBGsreX7IZaZH0aZyfNBtebW3ZnQKngLqMFCrUH1yx8mxMRUaMKxUn3PTXWQYakZ4TSv+EbRFJMJHtG+RYFjqoJstnOOzqwzRFEi7REazdzfNzIcKzWNQzsZYz1Wy1lh/pf1jY6ug4yJ1GgqyPyhyHCkE1QUgIZMUqL51AImktldERljiYm2NVVsCd7yl1eh06h7F/XG/WWtefs0r6MMJ3AK5+DBFTThDlrQBgIpPMMrvDnGeXHenY/5aMlZVHgMf+R8/gDFpJKU</latexit>
¯
u
<latexit sha1_base64="v7ukw/+N0TL+pLJ5nU23m+L/olk=">AAAB9HicbZBLSwMxFIXv+Kz1VXXpJlgEN5aZKuiyIIjLCvYBnaFk0kwbmknGJFMow4D/wo0LRdz6Y9z5b0wfC209EPg454bcnDDhTBvX/XZWVtfWNzYLW8Xtnd29/dLBYVPLVBHaIJJL1Q6xppwJ2jDMcNpOFMVxyGkrHN5M8taIKs2keDDjhAYx7gsWMYKNtYJzP8Qq88MoS/O8Wyq7FXcqtAzeHMowV71b+vJ7kqQxFYZwrHXHcxMTZFgZRjjNi36qaYLJEPdpx6LAMdVBNl06R6fW6aFIKnuEQVP3940Mx1qP49BOxtgM9GI2Mf/LOqmJroOMiSQ1VJDZQ1HKkZFo0gDqMUWJ4WMLmChmd0VkgBUmxvZUtCV4i19ehma14l1UqveX5drt06yOAhzDCZyBB1dQgzuoQwMIPMIzvMKbM3JenHfnYza64swrPII/cj5/ADD9kss=</latexit>
3000 mm
<latexit sha1_base64="kOl8VKNEqsIAl8+5n2sjOJ41X3o=">AAAB+HicbZBLSwMxFIUz9VXro6Mu3QSL4KrMtIIuC4K4rGAf0A4lk2ba0CQzJHfEOhT8H25cKOLWn+LOf2P6WGjrgcDHOTfk5oSJ4AY879vJra1vbG7ltws7u3v7RffgsGniVFPWoLGIdTskhgmuWAM4CNZONCMyFKwVjq6meeueacNjdQfjhAWSDBSPOCVgrZ5brHqeh7vAHiDDUk56bskrezPhVfAXUEIL1XvuV7cf01QyBVQQYzq+l0CQEQ2cCjYpdFPDEkJHZMA6FhWRzATZbPEJPrVOH0extkcBnrm/b2REGjOWoZ2UBIZmOZua/2WdFKLLIOMqSYEpOn8oSgWGGE9bwH2uGQUxtkCo5nZXTIdEEwq2q4ItwV/+8io0K2W/Wq7cnpdq10/zOvLoGJ2gM+SjC1RDN6iOGoiiFD2jV/TmPDovzrvzMR/NOYsKj9AfOZ8/eDySvw==</latexit>
4000 mm
<latexit sha1_base64="b95IjaizoYvEie+z31ruj4twd3I=">AAAB+HicbZBLSwMxFIUz9VXro6Mu3QSL4KrM1IIuC4K4rGAf0A4lk2ba0CQzJHfEOhT8H25cKOLWn+LOf2P6WGjrgcDHOTfk5oSJ4AY879vJra1vbG7ltws7u3v7RffgsGniVFPWoLGIdTskhgmuWAM4CNZONCMyFKwVjq6meeueacNjdQfjhAWSDBSPOCVgrZ5brHqeh7vAHiDDUk56bskrezPhVfAXUEIL1XvuV7cf01QyBVQQYzq+l0CQEQ2cCjYpdFPDEkJHZMA6FhWRzATZbPEJPrVOH0extkcBnrm/b2REGjOWoZ2UBIZmOZua/2WdFKLLIOMqSYEpOn8oSgWGGE9bwH2uGQUxtkCo5nZXTIdEEwq2q4ItwV/+8io0K2X/vFy5rZZq10/zOvLoGJ2gM+SjC1RDN6iOGoiiFD2jV/TmPDovzrvzMR/NOYsKj9AfOZ8/ec6SwA==</latexit>
45
<latexit sha1_base64="AjViA0g8zIzQWbyh2rilnkgPQSw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKezGiB4DgniMYB6YrGF20kmGzM4uM7NCWAJ+hBcPinj1b7z5N04eB00saCiquunuCmLBtXHdbyezsrq2vpHdzG1t7+zu5fcP6jpKFMMai0SkmgHVKLjEmuFGYDNWSMNAYCMYXk38xiMqzSN5Z0Yx+iHtS97jjBor3ZfPH9I244qNO/mCW3SnIMvEm5MCzFHt5L/a3YglIUrDBNW65bmx8VOqDGcCx7l2ojGmbEj72LJU0hC1n04vHpMTq3RJL1K2pCFT9fdESkOtR2FgO0NqBnrRm4j/ea3E9C79lMs4MSjZbFEvEcREZPI+6XKFzIiRJZQpbm8lbEAVZcaGlLMheIsvL5N6qeidFUu35ULl+mkWRxaO4BhOwYMLqMANVKEGDCQ8wyu8Odp5cd6dj1lrxplHeAh/4Hz+AF1KkSI=</latexit>
lc=7.5 mm
<latexit sha1_base64="lY35BAAp4zqI9NsgIOrOd8yBw2g=">AAAB/XicbZBLSwMxFIUzPmt9jY+dm2ARXA0zVakboSCIywr2Ae0wZNK0DU1mhuSOWIeiP8WNC0Xc+j/c+W9MHwttPRD4OOeG3JwwEVyD635bC4tLyyurubX8+sbm1ra9s1vTcaooq9JYxKoREs0Ej1gVOAjWSBQjMhSsHvYvR3n9jinN4+gWBgnzJelGvMMpAWMF9r4IKL7AJecMt4DdQ4alHAZ2wXXcsfA8eFMooKkqgf3Vasc0lSwCKojWTc9NwM+IAk4FG+ZbqWYJoX3SZU2DEZFM+9l4+yE+Mk4bd2JlTgR47P6+kRGp9UCGZlIS6OnZbGT+lzVT6Jz7GY+SFFhEJw91UoEhxqMqcJsrRkEMDBCquNkV0x5RhIIpLG9K8Ga/PA+1ouOdOMWb00L56mlSRw4doEN0jDxUQmV0jSqoiih6QM/oFb1Zj9aL9W59TEYXrGmFe+iPrM8flWiUcw==</latexit>
lc= 15 mm
<latexit sha1_base64="b0vC4CCt4ellGZK9sms66BQlk38=">AAAB/HicbZBLSwMxFIUzPmt9jXbpJlgEV2WmKroRCoK4rGAf0A5DJs20ocnMkNwRh6HiP3HjQhG3/hB3/hvTx0JbDwQ+zrkhNydIBNfgON/W0vLK6tp6YaO4ubW9s2vv7Td1nCrKGjQWsWoHRDPBI9YADoK1E8WIDARrBcOrcd66Z0rzOLqDLGGeJP2Ih5wSMJZvl4RP8SV2z3AX2APkWMqRb5edijMRXgR3BmU0U923v7q9mKaSRUAF0brjOgl4OVHAqWCjYjfVLCF0SPqsYzAikmkvnyw/wkfG6eEwVuZEgCfu7xs5kVpnMjCTksBAz2dj87+sk0J44eU8SlJgEZ0+FKYCQ4zHTeAeV4yCyAwQqrjZFdMBUYSC6atoSnDnv7wIzWrFPalUb0/LteunaR0FdIAO0TFy0TmqoRtURw1EUYae0St6sx6tF+vd+piOLlmzCkvoj6zPHx0flDU=</latexit>
lc= 30 mm
<latexit sha1_base64="wjOoKNzkUSfo0fOR9hyq/MsKmWs=">AAAB/HicbZBLSwMxFIUzPmt9jXbpJlgEV2WmFXQjFARxWcE+oB2GTJppQ5OZIbkjDkPFf+LGhSJu/SHu/Demj4W2Hgh8nHNDbk6QCK7Bcb6tldW19Y3NwlZxe2d3b98+OGzpOFWUNWksYtUJiGaCR6wJHATrJIoRGQjWDkZXk7x9z5TmcXQHWcI8SQYRDzklYCzfLgmf4ktcc3AP2APkWMqxb5edijMVXgZ3DmU0V8O3v3r9mKaSRUAF0brrOgl4OVHAqWDjYi/VLCF0RAasazAikmkvny4/xifG6eMwVuZEgKfu7xs5kVpnMjCTksBQL2YT87+sm0J44eU8SlJgEZ09FKYCQ4wnTeA+V4yCyAwQqrjZFdMhUYSC6atoSnAXv7wMrWrFrVWqt2fl+vXTrI4COkLH6BS56BzV0Q1qoCaiKEPP6BW9WY/Wi/VufcxGV6x5hSX0R9bnDxh0lDI=</latexit>
4700 mm
<latexit sha1_base64="r7h0GPUde7OMsKBVB3PF1HAjVXc=">AAAB+HicbZBLSwMxFIUzPmt9dNSlm2ARXJWZWqjLgiAuK9gHtEPJpJk2NMkMyR2xDgX/hxsXirj1p7jz35g+Ftp6IPBxzg25OWEiuAHP+3bW1jc2t7ZzO/ndvf2Dgnt41DRxqilr0FjEuh0SwwRXrAEcBGsnmhEZCtYKR1fTvHXPtOGxuoNxwgJJBopHnBKwVs8tVKqeh7vAHiDDUk56btEreTPhVfAXUEQL1XvuV7cf01QyBVQQYzq+l0CQEQ2cCjbJd1PDEkJHZMA6FhWRzATZbPEJPrNOH0extkcBnrm/b2REGjOWoZ2UBIZmOZua/2WdFKLLIOMqSYEpOn8oSgWGGE9bwH2uGQUxtkCo5nZXTIdEEwq2q7wtwV/+8io0yyX/olS+rRRr10/zOnLoBJ2ic+SjKqqhG1RHDURRip7RK3pzHp0X5935mI+uOYsKj9EfOZ8/hMWSxw==</latexit>
Fig. 2: Schematic of geometry and boundary conditions for a trapezoidal domain and the observed crack
patterns at ¯
u=0.325 mm with different regularization lengths.
0 0.1 0.2 0.3 0.4 0.5
0
200
400
600
(a) Shape parameter p=2.5.
0 0.1 0.2 0.3 0.4 0.5
0
200
400
600
(b) Shape parameter p=10.
Fig. 3: The force-displacement curves obtained from the trapezoid problem with different regularization
lengths: non-polar case.
We then repeat the same problem with the micropolar material, i.e., the case where D={B,C,R},397
U=∅. Recall Section 3.5 that the regularization length insensitive response is expected for the micropolar398
material as well. For this problem, we set coupling number N=0.5, and bending characteristic length399
lb=50 mm, while we choose the shape parameter as p=10 which produced regularization length400
insensitive results in Fig. 3(b). As illustrated in Fig. 4, the force-displacement curve confirms that our choice401
p=10 yields the regularization length insensitive global response for micropolar material as well. From402
16 Hyoung Suk Suh et al.
0 0.1 0.2 0.3 0.4 0.5
0
200
400
600
Fig. 4: The force-displacement curve obtained from the trapezoid problem with different regularization
lengths: micropolar case, p=10, lb=50 mm, and N=0.5.
this numerical example, we again spotlight the fact that the high value of the shape parameter pyields the403
regularization length insensitive response in both non-polar and micropolar material.404
5.2 Single edge notched tests405
We now consider the classical boundary value problem, which serves as a platform to investigate the size406
effect of elasticity and energy dissipation on the crack nucleation and propagation. The problem domain407
is a square plate that has an initial horizontal edge crack placed at the middle from the left to the center408
(Fig. 5). Similar to the previous studies [Miehe et al.,2010a,Borden et al.,2012], we choose material param-409
eters as: E=210 GPa, ν=0.3, Gc=2.7 N/mm, lc=0.008 mm, and ψcrit =10 MJ/m3. Numerical experi-410
ments are conducted with different bending characteristic lengths: lb=0.0, 0.01, 0.05, and 0.25 mm while411
the coupling number is held fixed as N=0.5. Also, for this problem we damage all the energy density412
parts, i.e., D={B,C,R},U=∅. As illustrated in Fig. 5, two different types of simulations are conducted413
with the same specimen: the pure tensile test with prescribed vertical displacement ∆¯
u2=2.0 ×10−5mm;414
and the pure shear test with prescribed horizontal displacement ∆¯
u1=2.0 ×10−5mm. In both cases, the415
displacements are prescribed along the entire top boundary, while the bottom part of the domain is fixed.416
Fig. 6illustrates the crack trajectories at the completely damaged stages for both tension and shear417
tests with different the bending characteristic lengths. The results clearly show that pure tensile loading418
exhibits the same crack pattern regardless of lb. This result is expected, as introducing the micro-polar effect419
should not break the symmetry of the boundary value problems in pure Mode I loading. Interestingly, the420
higher-order constitutive responses have a profound impact on the crack propagation direction in the421
Mode II simulations. As shown in Fig. 6, the micropolar effect leads to a propagation direction bends422
counterclockwise. As the driving force for the phase field is affected by the micro-rotation induced by the423
coupling between shear and micro-rotation, this affect the energy dissipation mechanism and ultimately424
the energy minimizer of the action functional that provides the deformed configuration and crack patterns.425
As pointed out in Yavari et al. [2002], the particles near crack tip resist micro-rotation and separation426
(i.e., interlocking), and the crack propagation mechanism in micropolar continuum therefore consists of the427
following steps. First, micro-rotational bonding between adjacent particles at the crack tip breaks and the428
particles starts to rotate with respect to each other. Second, the particles then move apart and the adjacent429
set of particles become the next crack-tip particles. Based on the mechanism, the crack path that minimizes430
the effort on breaking the micro-rotational bond (i.e., the path that maximizes the dissipation) is equivalent431
to the shortest path towards the boundary if the material is isotropic and homogeneous (e.g., a horizontal432
crack growth from the notch tip for the pure tensile loading case). The observed crack patterns shown433
in Fig. 6is consistent with this interpretation. Furthermore, Fig. 6also provides evidence to support that434
Micropolar phase field fracture 17
0.5 mm
<latexit sha1_base64="IbNfZmiPAVuDmrljx6qWfDKZRkM=">AAAB9XicbZBLSwMxFIUz9VXrq+rSTbAIroaZquiyIIjLCvYB7VgyaaYNTTJDckctQ8Gf4caFIm79L+78N6aPhbYeCHycc0NuTpgIbsDzvp3c0vLK6lp+vbCxubW9U9zdq5s41ZTVaCxi3QyJYYIrVgMOgjUTzYgMBWuEg8tx3rhn2vBY3cIwYYEkPcUjTglY685zz3Ab2CNkWMpRp1jyXG8ivAj+DEpopmqn+NXuxjSVTAEVxJiW7yUQZEQDp4KNCu3UsITQAemxlkVFJDNBNtl6hI+s08VRrO1RgCfu7xsZkcYMZWgnJYG+mc/G5n9ZK4XoIsi4SlJgik4filKBIcbjCnCXa0ZBDC0QqrndFdM+0YSCLapgS/Dnv7wI9bLrn7jlm9NS5eppWkceHaBDdIx8dI4q6BpVUQ1RpNEzekVvzoPz4rw7H9PRnDOrcB/9kfP5A5APklQ=</latexit>
0.5 mm
<latexit sha1_base64="IbNfZmiPAVuDmrljx6qWfDKZRkM=">AAAB9XicbZBLSwMxFIUz9VXrq+rSTbAIroaZquiyIIjLCvYB7VgyaaYNTTJDckctQ8Gf4caFIm79L+78N6aPhbYeCHycc0NuTpgIbsDzvp3c0vLK6lp+vbCxubW9U9zdq5s41ZTVaCxi3QyJYYIrVgMOgjUTzYgMBWuEg8tx3rhn2vBY3cIwYYEkPcUjTglY685zz3Ab2CNkWMpRp1jyXG8ivAj+DEpopmqn+NXuxjSVTAEVxJiW7yUQZEQDp4KNCu3UsITQAemxlkVFJDNBNtl6hI+s08VRrO1RgCfu7xsZkcYMZWgnJYG+mc/G5n9ZK4XoIsi4SlJgik4filKBIcbjCnCXa0ZBDC0QqrndFdM+0YSCLapgS/Dnv7wI9bLrn7jlm9NS5eppWkceHaBDdIx8dI4q6BpVUQ1RpNEzekVvzoPz4rw7H9PRnDOrcB/9kfP5A5APklQ=</latexit>
0.5 mm
<latexit sha1_base64="IbNfZmiPAVuDmrljx6qWfDKZRkM=">AAAB9XicbZBLSwMxFIUz9VXrq+rSTbAIroaZquiyIIjLCvYB7VgyaaYNTTJDckctQ8Gf4caFIm79L+78N6aPhbYeCHycc0NuTpgIbsDzvp3c0vLK6lp+vbCxubW9U9zdq5s41ZTVaCxi3QyJYYIrVgMOgjUTzYgMBWuEg8tx3rhn2vBY3cIwYYEkPcUjTglY685zz3Ab2CNkWMpRp1jyXG8ivAj+DEpopmqn+NXuxjSVTAEVxJiW7yUQZEQDp4KNCu3UsITQAemxlkVFJDNBNtl6hI+s08VRrO1RgCfu7xsZkcYMZWgnJYG+mc/G5n9ZK4XoIsi4SlJgik4filKBIcbjCnCXa0ZBDC0QqrndFdM+0YSCLapgS/Dnv7wI9bLrn7jlm9NS5eppWkceHaBDdIx8dI4q6BpVUQ1RpNEzekVvzoPz4rw7H9PRnDOrcB/9kfP5A5APklQ=</latexit>
0.5 mm
<latexit sha1_base64="IbNfZmiPAVuDmrljx6qWfDKZRkM=">AAAB9XicbZBLSwMxFIUz9VXrq+rSTbAIroaZquiyIIjLCvYB7VgyaaYNTTJDckctQ8Gf4caFIm79L+78N6aPhbYeCHycc0NuTpgIbsDzvp3c0vLK6lp+vbCxubW9U9zdq5s41ZTVaCxi3QyJYYIrVgMOgjUTzYgMBWuEg8tx3rhn2vBY3cIwYYEkPcUjTglY685zz3Ab2CNkWMpRp1jyXG8ivAj+DEpopmqn+NXuxjSVTAEVxJiW7yUQZEQDp4KNCu3UsITQAemxlkVFJDNBNtl6hI+s08VRrO1RgCfu7xsZkcYMZWgnJYG+mc/G5n9ZK4XoIsi4SlJgik4filKBIcbjCnCXa0ZBDC0QqrndFdM+0YSCLapgS/Dnv7wI9bLrn7jlm9NS5eppWkceHaBDdIx8dI4q6BpVUQ1RpNEzekVvzoPz4rw7H9PRnDOrcB/9kfP5A5APklQ=</latexit>
¯
u
<latexit sha1_base64="1ouVcjmht5C5oSIt/Z18CT10vV0=">AAAB83icbZBLSwMxFIXv1Fetr6pLN8EiuCozVdBlQRCXFewDOkPJpJk2NJMZ8hDKMOCvcONCEbf+GXf+GzNtF9p6IPBxzg25OWHKmdKu++2U1tY3NrfK25Wd3b39g+rhUUclRhLaJglPZC/EinImaFszzWkvlRTHIafdcHJT5N1HKhVLxIOepjSI8UiwiBGsreX7IZaZH0aZyfNBtebW3ZnQKngLqMFCrUH1yx8mxMRUaMKxUn3PTXWQYakZ4TSv+EbRFJMJHtG+RYFjqoJstnOOzqwzRFEi7REazdzfNzIcKzWNQzsZYz1Wy1lh/pf1jY6ug4yJ1GgqyPyhyHCkE1QUgIZMUqL51AImktldERljiYm2NVVsCd7yl1eh06h7F/XG/WWtefs0r6MMJ3AK5+DBFTThDlrQBgIpPMMrvDnGeXHenY/5aMlZVHgMf+R8/gDFpJKU</latexit>
¯
u
<latexit sha1_base64="1ouVcjmht5C5oSIt/Z18CT10vV0=">AAAB83icbZBLSwMxFIXv1Fetr6pLN8EiuCozVdBlQRCXFewDOkPJpJk2NJMZ8hDKMOCvcONCEbf+GXf+GzNtF9p6IPBxzg25OWHKmdKu++2U1tY3NrfK25Wd3b39g+rhUUclRhLaJglPZC/EinImaFszzWkvlRTHIafdcHJT5N1HKhVLxIOepjSI8UiwiBGsreX7IZaZH0aZyfNBtebW3ZnQKngLqMFCrUH1yx8mxMRUaMKxUn3PTXWQYakZ4TSv+EbRFJMJHtG+RYFjqoJstnOOzqwzRFEi7REazdzfNzIcKzWNQzsZYz1Wy1lh/pf1jY6ug4yJ1GgqyPyhyHCkE1QUgIZMUqL51AImktldERljiYm2NVVsCd7yl1eh06h7F/XG/WWtefs0r6MMJ3AK5+DBFTThDlrQBgIpPMMrvDnGeXHenY/5aMlZVHgMf+R8/gDFpJKU</latexit>
Shear
<latexit sha1_base64="cT340I4kfzNyC4hsLmvcK1AQxzc=">AAAB83icbZBLSwMxFIUz9VXrq+rSTbAIrspMFXRZEMRlRfuAzlAy6W0bmskMyR2xDAV/hRsXirj1z7jz35g+Ftp6IPBxzg25OWEihUHX/XZyK6tr6xv5zcLW9s7uXnH/oGHiVHOo81jGuhUyA1IoqKNACa1EA4tCCc1weDXJmw+gjYjVPY4SCCLWV6InOENr+T7CI2Z3A2B63CmW3LI7FV0Gbw4lMletU/zyuzFPI1DIJTOm7bkJBhnTKLiEccFPDSSMD1kf2hYVi8AE2XTnMT2xTpf2Ym2PQjp1f9/IWGTMKArtZMRwYBaziflf1k6xdxlkQiUpguKzh3qppBjTSQG0KzRwlCMLjGthd6V8wDTjaGsq2BK8xS8vQ6NS9s7KldvzUvX6aVZHnhyRY3JKPHJBquSG1EidcJKQZ/JK3pzUeXHenY/ZaM6ZV3hI/sj5/AGxRZKG</latexit>
Tension
<latexit sha1_base64="/cnOmz5ghbo9yQjUTHCIRl6mm+I=">AAAB9XicbVDLSsNAFJ3UV62vqks3wSK4KkkVdFkQxGWFvqCNZTK9aYdOJmHmRi2h4Ge4caGIW//FnX/jpO1CWw9cOJxzLnPn+LHgGh3n28qtrK6tb+Q3C1vbO7t7xf2Dpo4SxaDBIhGptk81CC6hgRwFtGMFNPQFtPzRVea37kFpHsk6jmPwQjqQPOCMopHuugiPmNZBZoFJr1hyys4U9jJx56RE5qj1il/dfsSSECQyQbXuuE6MXkoVciZgUugmGmLKRnQAHUMlDUF76fTqiX1ilL4dRMqMRHuq/t5Iaaj1OPRNMqQ41IteJv7ndRIMLr2UyzhBkGz2UJAIGyM7q8DucwUMxdgQyhQ3t9psSBVlaIoqmBLcxS8vk2al7J6VK7fnper106yOPDkix+SUuOSCVMkNqZEGYUSRZ/JK3qwH68V6tz5m0Zw1r/CQ/IH1+QNtRpOH</latexit>
Fig. 5: Schematic of geometry and boundary conditions for the single edge notched tests.
the non-polar model is a special case of the micropolar model in which lb≈0. With a sufficiently small435
bending characteristic length lb, the difference in crack patterns for the non-polar and micropolar cases436
are negligible. The coupling and the micro-rotational parts (ψC
eand ψR
e) then become significant enough to437
play a bigger role for crack growth as the bending characteristic length lbincreases.438
non-polar
<latexit sha1_base64="oexn6wDRMc0y5AUWIq0AmO5ViJY=">AAAB+XicbZBLSwMxFIUzPmt9jbp0M1gEN5aZKuiy4MZlBacttEPJpLdtaCYZkjvFMvSfuHGhiFv/iTv/jeljoa0HAh/n3JCbE6eCG/T9b2dtfWNza7uwU9zd2z84dI+O60ZlmkHIlFC6GVMDgksIkaOAZqqBJrGARjy8m+aNEWjDlXzEcQpRQvuS9zijaK2O67YRnjCXSl6mSlA96bglv+zP5K1CsIASWajWcb/aXcWyBCQyQY1pBX6KUU41ciZgUmxnBlLKhrQPLYuSJmCifLb5xDu3TtfrKW2PRG/m/r6R08SYcRLbyYTiwCxnU/O/rJVh7zbKuUwzBMnmD/Uy4aHypjV4Xa6BoRhboExzu6vHBlRThrasoi0hWP7yKtQr5eCqXHm4LlXD6ryOAjklZ+SCBOSGVMk9qZGQMDIiz+SVvDm58+K8Ox/z0TVnUeEJ+SPn8wdAcJRR</latexit>
lb=0.0 mm
<latexit sha1_base64="MwpnYLMYuuEWEncQ/RPiV2YKafY=">AAAB/XicbZBLSwMxFIUzPmt9jY+dm2ARXJWZKuhGKLhxWcU+oB2GTJq2oUlmSO6IdSj+FTcuFHHr1t/gzn9j+lho64HA4ZwbcvNFieAGPO/bWVhcWl5Zza3l1zc2t7bdnd2aiVNNWZXGItaNiBgmuGJV4CBYI9GMyEiwetS/HPX1O6YNj9UtDBIWSNJVvMMpARuF7r4II3yBvaKHW8DuIcNSDkO3YIOx8Lzxp6aApqqE7lerHdNUMgVUEGOavpdAkBENnAo2zLdSwxJC+6TLmtYqIpkJsvH2Q3xkkzbuxNoeBXic/r6REWnMQEZ2UhLomdluFP7XNVPonAcZV0kKTNHJQ51UYIjxCAVuc80oiIE1hGpud8W0RzShYIHlLQR/9svzplYq+ifF0vVpoXzzOcGRQwfoEB0jH52hMrpCFVRFFD2gJ/SCXp1H59l5c94nowvOFOEe+iPn4weXrZSy</latexit>
lb=0.01 mm
<latexit sha1_base64="u/h8N1LIBodIkeyWR0y+cHwTY60=">AAAB/nicbZBLSwMxFIUz9VXra1RcuQkWwVWZqYJuhIIbl1XsA9phyKRpG5pkhuSOWIaCf8WNC0XcuvQ3uPPfmD4W2nogcDjnhtx8USK4Ac/7dnJLyyura/n1wsbm1vaOu7tXN3GqKavRWMS6GRHDBFesBhwEayaaERkJ1ogGV+O+cc+04bG6g2HCAkl6inc5JWCj0D0QYYQvsVfyfNwG9gAZlnIUukWbTIQXjT8zRTRTNXS/2p2YppIpoIIY0/K9BIKMaOBUsFGhnRqWEDogPdayVhHJTJBN1h/hY5t0cDfW9ijAk/T3jYxIY4YyspOSQN/Md+Pwv66VQvciyLhKUmCKTh/qpgJDjMcscIdrRkEMrSFUc7srpn2iCQVLrGAh+PNfXjT1csk/LZVvzoqV288pjjw6REfoBPnoHFXQNaqiGqIoQ0/oBb06j86z8+a8T0dzzgzhPvoj5+MHC3yU7Q==</latexit>
lb=0.25 mm
<latexit sha1_base64="+IvcASxsLKpT+jdWPQxD63S7fXo=">AAAB/nicbZBLSwMxFIUzPmt9jYorN8EiuBpmqqIboeDGZRX7gHYYMmmmDU1mhuSOWIaCf8WNC0XcuvQ3uPPfmD4W2nog8HHODbk5YSq4Btf9thYWl5ZXVgtrxfWNza1te2e3rpNMUVajiUhUMySaCR6zGnAQrJkqRmQoWCPsX43yxj1TmifxHQxS5kvSjXnEKQFjBfa+CEJ8iV2nfIbbwB4gx1IOA7vkOu5YeB68KZTQVNXA/mp3EppJFgMVROuW56bg50QBp4INi+1Ms5TQPumylsGYSKb9fLz+EB8Zp4OjRJkTAx67v2/kRGo9kKGZlAR6ejYbmf9lrQyiCz/ncZoBi+nkoSgTGBI86gJ3uGIUxMAAoYqbXTHtEUUomMaKpgRv9svzUC873olTvjktVW4/J3UU0AE6RMfIQ+eogq5RFdUQRTl6Qi/o1Xq0nq03630yumBNK9xDf2R9/AAU2JTz</latexit>
lb=0.05 mm
<latexit sha1_base64="eytw1d0OwY7CIUxVXF1XNkLuSPA=">AAAB/nicbZBLSwMxFIUzPmt9jYorN8EiuCozVdGNUHDjsop9QDsMmTRtQ5PMkNwRy1Dwr7hxoYhbl/4Gd/4b08dCWw8EDufckJsvSgQ34HnfzsLi0vLKam4tv76xubXt7uzWTJxqyqo0FrFuRMQwwRWrAgfBGolmREaC1aP+1aiv3zNteKzuYJCwQJKu4h1OCdgodPdFGOFL7BW9M9wC9gAZlnIYugWbjIXnjT81BTRVJXS/Wu2YppIpoIIY0/S9BIKMaOBUsGG+lRqWENonXda0VhHJTJCN1x/iI5u0cSfW9ijA4/T3jYxIYwYyspOSQM/MdqPwv66ZQuciyLhKUmCKTh7qpAJDjEcscJtrRkEMrCFUc7srpj2iCQVLLG8h+LNfnje1UtE/KZZuTgvl288Jjhw6QIfoGPnoHJXRNaqgKqIoQ0/oBb06j86z8+a8T0YXnCnCPfRHzscPEbiU8Q==</latexit>
micropolar (lb>0.0)
<latexit sha1_base64="bpsZKsSbrgRkKKdtPWi9LXQqq/Q=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBHqpiRV0JUU3LisYNpCG8JkOmmHTjJh5kYsoTs3/oobF4q49Rfc+TdOHwttPXC5h3PuZeaeMBVcg+N8W0vLK6tr64WN4ubW9s6uvbff0DJTlHlUCqlaIdFM8IR5wEGwVqoYiUPBmuHgeuw375nSXCZ3MEyZH5NewiNOCRgpsI86wB4gjzlVMpWCKDzCZRGE+Ao7Fec0sEumTYAXiTsjJTRDPbC/Ol1Js5glQAXRuu06Kfg5UcCpYKNiJ9MsJXRAeqxtaEJipv18cscInxiliyOpTCWAJ+rvjZzEWg/j0EzGBPp63huL/3ntDKJLP+dJmgFL6PShKBMYJB6HgrtcMQpiaAihipu/YtonilAw0RVNCO78yYukUa24Z5Xq7Xmp5tWmcRTQITpGZeSiC1RDN6iOPETRI3pGr+jNerJerHfrYzq6ZM0iPEB/YH3+APE6mEk=</latexit>
Shear
<latexit sha1_base64="e5Y6ghc+druqQo3kinneRFruI9s=">AAAB83icbZBLSwMxFIUz9VXrq+rSTbAIrspMFXRZcOOyotMWOkPJpLdtaCYzJHfEMvRvuHGhiFv/jDv/jeljoa0HAh/n3JCbE6VSGHTdb6ewtr6xuVXcLu3s7u0flA+PmibJNAefJzLR7YgZkEKBjwIltFMNLI4ktKLRzTRvPYI2IlEPOE4hjNlAib7gDK0VBAhPmN8PgelJt1xxq+5MdBW8BVTIQo1u+SvoJTyLQSGXzJiO56YY5kyj4BImpSAzkDI+YgPoWFQsBhPms50n9Mw6PdpPtD0K6cz9fSNnsTHjOLKTMcOhWc6m5n9ZJ8P+dZgLlWYIis8f6meSYkKnBdCe0MBRji0wroXdlfIh04yjralkS/CWv7wKzVrVu6jW7i4rdb8+r6NITsgpOSceuSJ1cksaxCecpOSZvJI3J3NenHfnYz5acBYVHpM/cj5/AKLIklU=</latexit>
Tension
<latexit sha1_base64="cr9/Sy07ZGlvpCdDDJMhXN/Jryo=">AAAB9XicbVBNT8JAFNziF+IX6tFLIzHxRFo00SOJF4+YUCCBSrbLK2zYbpvdV5U0/A8vHjTGq//Fm//GLXBQcJKXTGbmZd9OkAiu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ThVDDwWi1h1AqpBcAkechTQSRTQKBDQDsY3ud9+AKV5LJs4ScCP6FDykDOKRrrvITxh1gSZB6b9csWpOjPYq8RdkApZoNEvf/UGMUsjkMgE1brrOgn6GVXImYBpqZdqSCgb0yF0DZU0Au1ns6un9plRBnYYKzMS7Zn6eyOjkdaTKDDJiOJIL3u5+J/XTTG89jMukxRBsvlDYSpsjO28AnvAFTAUE0MoU9zcarMRVZShKapkSnCXv7xKWrWqe1Gt3V1W6l59XkeRnJBTck5cckXq5JY0iEcYUeSZvJI369F6sd6tj3m0YC0qPCZ/YH3+AF7Jk1Y=</latexit>
Fig. 6: Fracture patterns for single edge notched tests under different micropolar characteristic length lb.
As illustrated in Fig. 7, separated particles tend to rotate in opposite directions since they are no longer439
interlocked after crack formation. By revisiting Eq. (7) and Eq. (13), notice that the material constant γthat440
relates the fictitious undamaged couple stress ¯mRto the micro-curvature ¯κis proportional to the square of441
the characteristic lengths. The relationship implies that larger characteristic length leads to higher rigidity442
of the micropolar material, so that the separated particles tend to experience greater micro-rotation with443
smaller bending characteristic length.444
18 Hyoung Suk Suh et al.
¯u1=0.0072 mm
<latexit sha1_base64="Yojerm6okacBjZ9H8aTUTuiW+xQ=">AAACBnicbVBNS8NAEN34WetX1aMIi0XwVJIq1ItQ8OJJKtgPaELYbDft0t0k7E7EEnry4l/x4kERr/4Gb/4bN20P2vpg4PHeDDPzgkRwDbb9bS0tr6yurRc2iptb2zu7pb39lo5TRVmTxiJWnYBoJnjEmsBBsE6iGJGBYO1geJX77XumNI+jOxglzJOkH/GQUwJG8ktHbkBUlo59B19iu2LbtSp2gT1AhqUc+6VyruXAi8SZkTKaoeGXvtxeTFPJIqCCaN117AS8jCjgVLBx0U01Swgdkj7rGhoRybSXTd4Y4xOj9HAYK1MR4In6eyIjUuuRDEynJDDQ814u/ud1UwgvvIxHSQosotNFYSowxDjPBPe4YhTEyBBCFTe3YjogilAwyRVNCM78y4ukVa04Z5Xq7Xm5fjOLo4AO0TE6RQ6qoTq6Rg3URBQ9omf0it6sJ+vFerc+pq1L1mzmAP2B9fkDelWXQg==</latexit>
Notch
<latexit sha1_base64="REh3aLhKTAFKisRQN8Gb+2Be35g=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4qlUsB/QhLLZbtulm03YnYgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dtbWNza3tgs7xd29/YPD0tFxy8SpZrzJYhnrTkgNl0LxJgqUvJNoTqNQ8nY4vp357UeujYjVA04SHkR0qMRAMIpW8n3kT5jVY2Sjaa9UdivuHGSVeDkpQ45Gr/Tl92OWRlwhk9SYrucmGGRUo2CST4t+anhC2ZgOeddSRSNugmx+85ScW6VPBrG2pZDM1d8TGY2MmUSh7YwojsyyNxP/87opDm6CTKgkRa7YYtEglQRjMguA9IXmDOXEEsq0sLcSNqKaMrQxFW0I3vLLq6RVrXiXler9VblWz+MowCmcwQV4cA01uIMGNIFBAs/wCm9O6rw4787HonXNyWdO4A+czx+be5IX</latexit>
lb=0.01 mm
<latexit sha1_base64="b0TC8wPQCZtaEP/RnRnQiGr3z0U=">AAAB/nicbVBNSwMxEM36WevXqnjyEiyCp7JbBb0IBS/erGA/oF2WbJq2oUl2SWbFshT8K148KOLV3+HNf2Pa7kFbHww83pthZl6UCG7A876dpeWV1bX1wkZxc2t7Z9fd22+YONWU1WksYt2KiGGCK1YHDoK1Es2IjARrRsPrid98YNrwWN3DKGGBJH3Fe5wSsFLoHoowwlfYK3s+7gB7hAxLOQ7dklWmwIvEz0kJ5aiF7lenG9NUMgVUEGPavpdAkBENnAo2LnZSwxJCh6TP2pYqIpkJsun5Y3xilS7uxdqWAjxVf09kRBozkpHtlAQGZt6biP957RR6l0HGVZICU3S2qJcKDDGeZIG7XDMKYmQJoZrbWzEdEE0o2MSKNgR//uVF0qiU/bNy5e68VL3N4yigI3SMTpGPLlAV3aAaqiOKMvSMXtGb8+S8OO/Ox6x1yclnDtAfOJ8/0YaUKg==</latexit>
lb=0.05 mm
<latexit sha1_base64="fLZCqK83teowC7Rnv2Pq5HxNoU0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJWkKnoRCl68WcF+QBvCZrtpl+4mYXcillDwr3jxoIhXf4c3/43bNgdtfTDweG+GmXlBIrgGx/m2CkvLK6trxfXSxubW9o69u9fUcaooa9BYxKodEM0Ej1gDOAjWThQjMhCsFQyvJ37rgSnN4+geRgnzJOlHPOSUgJF8+0D4Ab7CTsU5x11gj5BhKce+XTbKFHiRuDkpoxx13/7q9mKaShYBFUTrjusk4GVEAaeCjUvdVLOE0CHps46hEZFMe9n0/DE+NkoPh7EyFQGeqr8nMiK1HsnAdEoCAz3vTcT/vE4K4aWX8ShJgUV0tihMBYYYT7LAPa4YBTEyhFDFza2YDogiFExiJROCO//yImlWK+5ppXp3Vq7d5nEU0SE6QifIRReohm5QHTUQRRl6Rq/ozXqyXqx362PWWrDymX30B9bnD9fClC4=</latexit>
lb=0.25 mm
<latexit sha1_base64="hPk7pTCWvZMHJdWPNawW+toCCH0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPIWkKnoRCl68WcF+QBvCZrttl+4mYXcillDwr3jxoIhXf4c3/43bNgdtfTDweG+GmXlhIrgG1/22CkvLK6trxfXSxubW9o69u9fQcaooq9NYxKoVEs0Ej1gdOAjWShQjMhSsGQ6vJ37zgSnN4+geRgnzJelHvMcpASMF9oEIQnyFXadyjjvAHiHDUo4Du+w67hR4kXg5KaMctcD+6nRjmkoWARVE67bnJuBnRAGngo1LnVSzhNAh6bO2oRGRTPvZ9PwxPjZKF/diZSoCPFV/T2REaj2SoemUBAZ63puI/3ntFHqXfsajJAUW0dmiXiowxHiSBe5yxSiIkSGEKm5uxXRAFKFgEiuZELz5lxdJo+J4p07l7qxcvc3jKKJDdIROkIcuUBXdoBqqI4oy9Ixe0Zv1ZL1Y79bHrLVg5TP76A+szx/a4pQw</latexit>
+
-
Fig. 7: Resultant micro-rotation field for single edge notched shear tests where ¯
u1=0.0072 mm.
Fig. 8shows the load-deflection curves obtained from both tension and shear tests. The colored curves445
indicate the results with nonzero lb, whereas the transparent gray curves denote the non-polar case. Since446
the force stress can be decomposed into two parts, e.g., ¯
σ=¯
σB+¯
σC, micropolar material that possesses447
a large characteristic length tend to exhibit stiffer response compared to those with smaller characteristic448
lengths, due to the micro-continuum coupling effect. Unlike the tension test results in Fig. 8(a), the reaction449
forces reach their peak values under different strain level from the shearing tests [Fig. 8(b)]. This again450
highlights that the micropolar bending characteristic length affects the crack pattern, which in turn reflects451
different global response for the same boundary value problem.452
012345
10-3
0
0.2
0.4
0.6
(a) Global response from the tension test.
0 0.002 0.004 0.006 0.008 0.01
0
0.1
0.2
0.3
(b) Global response from the shear test.
Fig. 8: The force-displacement curves from the single edge notched tests with regularization length lc=
0.008 mm.
5.3 Asymmetric notched three-point bending tests453
This section examines a problem originally designed by Ingraffea and Grigoriu [1990], which involves a454
three-point bending of a specimen with three holes. The domain of the problem is illustrated in Fig. 9.455
Since previous studies [Ingraffea and Grigoriu,1990,Miehe et al.,2010a,Patil et al.,2018,Qinami et al.,456
Micropolar phase field fracture 19
2019] have shown that different crack patterns can be observed depending on the notch depth and its457
position, we only focus on the case where the notch depth is set to be 25.4 mm.458
32 mm
<latexit sha1_base64="TWHpcVWrruBj5jbexlEotLXIXq4=">AAAEcXicjVPdbtMwFPbWAqP8bXCFuAnrDRJS1YxK7HISk8YNMBDdKs1lcpzTzqt/MtvpmCxLvAW38Fg8By+A03RSlhKEpRwdfec7n53zk2ScGdvv/1pbb7Vv3b6zcbdz7/6Dh482tx4fGZVrCkOquNKjhBjgTMLQMsthlGkgIuFwnMzeFPHjOWjDlPxsrzIYCzKVbMIosQEav9qJsIWv1kVC+NPNbr/XX5xo1YmXThctz+HpVus9ThXNBUhLOTHGEW0Z5eCjDs4NZITOyBROcjvZHTsms9yCpL4ac0QYQezZCjhR0poV1FyJ5CZY1IjJaY1aSFql+F9gbSY11DIBNWjCFbEBknBJlRBEpi7USRql/Uk8dji4uYZCzuFE8bR4l+KuG3tfyzrPRVbm8EQHdfx86UTdOML6GiudWi7hoG2ZXDRp0W2nIfWLizp4H0LVNbwLz/iQgSY2hPFUk0DAkiScNHHCc6u0L6W+M75RNWVhiq75mKbKNjEP6sJF1aJRo/J+Vbma8M9bwh94V5im+OwyxINpiNtwZfia/hbm3hWmSX0qg3owi37ZM1BhGJwWM+8+hanQRSM1VFs5B/ofkxM2MK7v26pztNOLB73Bx0F37+BbuYsb6BnaRi9QjF6jPfQWHaIhougCfUc/0M/W7/bTdtTeLqnra8v9fYJunPbLP1bOkDw=</latexit>
51 mm
<latexit sha1_base64="Ow8y5p3p0r6BKrRVBkENks6V2N0=">AAAEcXicjVPdahNBFJ42UWv8a/VKvFmbG0EIWYnoZcFCvVGrmDbQjWV29iQdMz/rzGxqGQZ8C2/1sXwOX8Cz2RTSjSsO7OHwne98M3t+0lxw6/r9Xxubrfa16ze2bnZu3b5z9972zv0jqwvDYMi00GaUUguCKxg67gSMcgNUpgKO09mrMn48B2O5Vh/dRQ5jSaeKTzijDqHx8zhKHHx1PpIynG53+73+4kTrTrx0umR5Dk93Wm+TTLNCgnJMUGs9NY4zASHqJIWFnLIZncJJ4SYvx56rvHCgWFiNeSqtpO5sDZxo5ewaai9kehUsa8TVtEYtJZ3W4i+wsZMa6riEGjQRmjqEFJwzLSVVmcc6KatNOInHPkG3MFDK+STVIivfpYXvxiHUsj4XMq9yRGpQPXm8dKIu1t5cYpVTy6UCjKuSyyYtuu0NZGFxUSfZB6y6gTf4jHc5GOownEwNRUKiaCpoEwefu0r7VOl7GxpVM45TdMlPWKZdE/OgLlxWLRo1Ku+vKq8m/PMW/IPgS9MUn51jHE1D3OGV+DX9LcyDL02T+lShOppFv9wZaBwGb+Qs+A84FaZspIHVVs6B/cfk4AbG9X1bd46e9eJBb/B+0N07+Fbt4hZ5RHbJExKTF2SPvCaHZEgY+UK+kx/kZ+t3+2E7au9W1M2N5f4+IFdO++kfWtyQPQ==</latexit>
51 mm
<latexit sha1_base64="Ow8y5p3p0r6BKrRVBkENks6V2N0=">AAAEcXicjVPdahNBFJ42UWv8a/VKvFmbG0EIWYnoZcFCvVGrmDbQjWV29iQdMz/rzGxqGQZ8C2/1sXwOX8Cz2RTSjSsO7OHwne98M3t+0lxw6/r9Xxubrfa16ze2bnZu3b5z9972zv0jqwvDYMi00GaUUguCKxg67gSMcgNUpgKO09mrMn48B2O5Vh/dRQ5jSaeKTzijDqHx8zhKHHx1PpIynG53+73+4kTrTrx0umR5Dk93Wm+TTLNCgnJMUGs9NY4zASHqJIWFnLIZncJJ4SYvx56rvHCgWFiNeSqtpO5sDZxo5ewaai9kehUsa8TVtEYtJZ3W4i+wsZMa6riEGjQRmjqEFJwzLSVVmcc6KatNOInHPkG3MFDK+STVIivfpYXvxiHUsj4XMq9yRGpQPXm8dKIu1t5cYpVTy6UCjKuSyyYtuu0NZGFxUSfZB6y6gTf4jHc5GOownEwNRUKiaCpoEwefu0r7VOl7GxpVM45TdMlPWKZdE/OgLlxWLRo1Ku+vKq8m/PMW/IPgS9MUn51jHE1D3OGV+DX9LcyDL02T+lShOppFv9wZaBwGb+Qs+A84FaZspIHVVs6B/cfk4AbG9X1bd46e9eJBb/B+0N07+Fbt4hZ5RHbJExKTF2SPvCaHZEgY+UK+kx/kZ+t3+2E7au9W1M2N5f4+IFdO++kfWtyQPQ==</latexit>
13 mm
<latexit sha1_base64="hHwMujH4yMHccW6A4lVvkAGW/jE=">AAAEcXicjVPdbtMwFPbWAKP8bXCFuAnLDRJS1UAluJzEpHEDDES3SnOZHOe0M/VPsJ2OybLEW3ALj8Vz8AI4TSd1KUFYytHRd77z2Tk/WcGZsf3+r43NTnTt+o2tm91bt+/cvbe9c//IqFJTGFLFlR5lxABnEoaWWQ6jQgMRGYfjbPaqih/PQRum5Ed7UcBYkKlkE0aJDdA4fR5jC1+ti4Xwp9tJv9dfnHjdSZdOgpbn8HSn8xbnipYCpKWcGOOItoxy8HEXlwYKQmdkCielnbwcOyaL0oKkfjXmiDCC2LM1cKKkNWuouRDZVbCqEZPTBrWStErxv8DaTBqoZQIa0IQrYgMk4ZwqIYjMXaiTNEr7k3TscHBLDZWcw5niefUuxV2Set/I+lyKos7hmQ7q+PHSiZM0xvoSq51GLuGgbZ1cNWnRbach94uLungfQtU1vAnPeFeAJjaE8VSTQMCSZJy0ccJzV2mfan1nfKtqzsIUXfIxzZVtYx40hauqxaNW5f1V5dWEf94S/sC7yrTFZ+chHkxL3IYrw9f2tzD3rjJt6lMZ1INZ9MuegQrD4LSYefchTIWuGqlhtZVzoP8xOWED0+a+rTtHz3rpoDd4P0j2Dr7Vu7iFHqFd9ASl6AXaQ6/RIRoiir6g7+gH+tn5HT2M4mi3pm5uLPf3Abpyoqd/AFLAkDs=</latexit>
102 mm
<latexit sha1_base64="qaOG1Fzjc0T6v2o8G2jY9XvSG3c=">AAAEcnicjVPNbhMxEHabBUr4a+EGly25cEBRtooEx0pUKhegINJGqtPK652kJv5Z2d6UyrLEY3CFt+I9eAC8yVbabliEJY9G38x8Y89PmnNm7GDwa2OzE926fWfrbvfe/QcPH23vPD42qtAURlRxpccpMcCZhJFllsM410BEyuEknb8p7ScL0IYp+dle5TARZCbZlFFiA3SWDPZibOGrdbEQ/ny7N+gPlideV5JK6aHqHJ3vdN7jTNFCgLSUE2Mc0ZZRDj7u4sJATuiczOC0sNPXE8dkXliQ1NdtjggjiL1YA6dKWrOGmiuR3gTLIjE5a7iWlFYp/hdYm2kDtUxAA5pyRWyAJFxSJQSRmQt1kkZpf5pMHA5qoaGkczhVPCvfpbjrJd43or4UIl/F8FQHdrxbKXEvibG+xlZKI5Zw0HYVXDZp2W6nIfPLRF18AKHqGt6FZ3zIQRMbzHimSXDAkqSctPmE59bdzlb8zvhW1oyFMbr2xzRTts3zsElcVi0etzIf1JnrAf/MEn7gXSna7PPLYA+ixW5DynDbfgsL70rRxj6TgT2IZb/sBagwDE6LuXefwlTospEa6q1cAP2PyQkbmDT3bV053usnw/7w47C3f/httYtb6Bl6jl6gBL1C++gtOkIjRJFG39EP9LPzO3oa7UbV4m5uVPv7BN040cs/ON2QdA==</latexit>
152 mm
<latexit sha1_base64="XC4zfaXEE9DVrSCrYoPACZ4cxvk=">AAAEcnicjVPNbhMxEHabBUr4a+EGly25cEBRtgqCYyUqlQu0INJGqtPK651s3fhnZXtTKssSj8EV3or34AHqTVIp3bAISx6Nvpn5xp6ftODM2F7v99p6K7pz997G/faDh48eP9ncenpkVKkpDKjiSg9TYoAzCQPLLIdhoYGIlMNxOnlf2Y+noA1T8qu9KmAkSC7ZmFFiA3SavNmJsYVv1sVC+LPNTq/bm514VUkWSgctzuHZVusTzhQtBUhLOTHGEW0Z5eDjNi4NFIROSA4npR2/Gzkmi9KCpH7Z5ogwgtjzFXCspDUrqLkS6W2wKhKTec21orRK8b/A2oxrqGUCatCYK2IDJOGSKiGIzFyokzRK+5Nk5HBQSw0VncOp4ln1LsVdJ/G+FnVRimIew1Md2PH2Qok7SYz1DTZXarGEg7bz4KpJs3Y7DZmfJWrjPQhV1/AxPOOgAE1sMONck+CAJUk5afIJz112O53zO+MbWTMWxujGH9NM2SbP/TpxVbV42Mi8t8y8HPDPLOEH3lWiyT65DPYgGuw2pAy36bcw9a4STey5DOxBzPplz0GFYXBaTLz7EqZCV43UsNzKKdD/mJywgUl931aVo51u0u/2P/c7u/vf57u4gV6gl+gVStBbtIs+oEM0QBRp9AP9RL9af6Ln0Xa0WNz1tcX+PkO3TvT6Gk0ekHk=</latexit>
25.4mm
<latexit sha1_base64="53xbneY4DyH2SGcMlxAoaD1vH/Y=">AAAEdXicjVPLbhMxFHWbACU8mpYlQhoIQqxCpgqiy0pUKhugINJGqkPk8dykJn6MbE9KZVniP9jCR/ElbPFkUimdMAhLc3V17rnHnvtIMs6M7fV+bWw2mjdu3tq63bpz99797fbO7olRuaYwoIorPUyIAc4kDCyzHIaZBiISDqfJ7HURP52DNkzJT/Yyg5EgU8kmjBIboHF7e+9ltx9hC1+ti4Tw43an1+0tTrTuxEung5bneLzTeIdTRXMB0lJOjHFEW0Y5+KiFcwMZoTMyhbPcTvZHjskstyCpX405Iowg9nwNnChpzRpqLkVyHSzqxOS0Qi0krVL8L7A2kwpqmYAKNOGK2ABJuKBKCCJTF+okjdL+LB45HNxcQyHncKJ4WrxLcdeJva9kfclFVubwRAd1/HjpRJ04wvoKK51KLuGgbZlcNGnRcach9YuLWvgQQtU1vA3PeJ+BJjaE8VSTQMCSJJzUccJzV2mfS31nfK1qysIkXfExTZWtYx5VhYuqRcNa5cNV5dWEf94S/sC7wtTFZxchHkxN3IYrw1f3tzD3rjB16lMZ1INZ9MuegwrD4LSYefcxTIUuGqlhtZVzoP8xOWED4+q+rTsne9243+1/6HcOjr6Vu7iFHqIn6DmK0St0gN6gYzRAFOXoO/qBfjZ+Nx81nzafldTNjeX+PkDXTvPFHwBykOU=</latexit>
457 mm
<latexit sha1_base64="HBsZAAf+b4LSnUnARRB0Qbtw8sA=">AAAEcnicjVPNbhMxEHabBUr4a+EGly25cEBRtgpqj5VaqVyAgkgbqU4rr3eyNfHPyvamVJYlHoMrvBXvwQPgTVIp3bAISx6Nvpn5xp6ftODM2F7v19p6K7pz997G/faDh48eP9ncenpiVKkpDKjiSg9TYoAzCQPLLIdhoYGIlMNpOjmo7KdT0IYp+dleFzASJJdszCixATrvv9mNsYWv1sVC+IvNTq/bm514VUkWSgctzvHFVus9zhQtBUhLOTHGEW0Z5eDjNi4NFIROSA5npR3vjRyTRWlBUr9sc0QYQezlCjhW0poV1FyL9DZYFYnJvOZaUVql+F9gbcY11DIBNWjMFbEBknBFlRBEZi7USRql/VkycjiopYaKzuFU8ax6l+Kuk3hfi/pSimIew1Md2PH2Qok7SYz1DTZXarGEg7bz4KpJs3Y7DZmfJWrjQwhV1/AuPONDAZrYYMa5JsEBS5Jy0uQTnrvsdj7nd8Y3smYsjNGNP6aZsk2eR3XiqmrxsJH5cJl5OeCfWcIPvKtEk31yFexBNNhtSBlu029h6l0lmthzGdiDmPXLXoIKw+C0mHj3KUyFrhqpYbmVU6D/MTlhA5P6vq0qJzvdpN/tf+x39o++zXdxA71AL9ErlKBdtI/eomM0QBRp9B39QD9bv6Pn0Xa0WNz1tcX+PkO3TvT6D22EkIE=</latexit>
508 mm
<latexit sha1_base64="6uwxzsKOMBPoSIbNbh1btsJdQqg=">AAAEcnicjVPNbhMxEHabhZbw18INLlty4YCibBVEj5VaqVyAgkgbqU4rr3eyNfHPyvamVJYlHoMrvBXvwQPgTVIp3bAISx6Nvpn5xp6ftODM2F7v19p6K7pzd2PzXvv+g4ePHm9tPzkxqtQUBlRxpYcpMcCZhIFllsOw0EBEyuE0nRxU9tMpaMOU/GyvCxgJkks2ZpTYAJ2/7u3F2MJX62Ih/MVWp9ftzU68qiQLpYMW5/hiu/UeZ4qWAqSlnBjjiLaMcvBxG5cGCkInJIez0o73Ro7JorQgqV+2OSKMIPZyBRwrac0Kaq5FehusisRkXnOtKK1S/C+wNuMaapmAGjTmitgASbiiSggiMxfqJI3S/iwZORzUUkNF53CqeFa9S3HXSbyvRX0pRTGP4akO7HhnocSdJMb6BpsrtVjCQdt5cNWkWbudhszPErXxIYSqa3gXnvGhAE1sMONck+CAJUk5afIJz112O5/zO+MbWTMWxujGH9NM2SbPozpxVbV42Mh8uMy8HPDPLOEH3lWiyT65CvYgGuw2pAy36bcw9a4STey5DOxBzPplL0GFYXBaTLz7FKZCV43UsNzKKdD/mJywgUl931aVk91u0u/2P/Y7+0ff5ru4iZ6jF+glStAbtI/eomM0QBRp9B39QD9bv6Nn0U60WNz1tcX+PkW3TvTqD2FdkH4=</latexit>
203 mm
<latexit sha1_base64="8ZSaCUcRGdf6HoII7mY5iMyzrs8=">AAAEcnicjVPNbhMxEHabBUr4a+EGly25cEBRtkSCYyUqlQu0INJGqtPK651s3fhnZXtTKssSj8EV3or34AHqTVIp3bAISx6Nvpn5xp6ftODM2F7v99p6K7pz997G/faDh48eP9ncenpkVKkpDKjiSg9TYoAzCQPLLIdhoYGIlMNxOnlf2Y+noA1T8qu9KmAkSC7ZmFFiA3S603sTYwvfrIuF8GebnV63NzvxqpIslA5anMOzrdYnnClaCpCWcmKMI9oyysHHbVwaKAidkBxOSjt+N3JMFqUFSf2yzRFhBLHnK+BYSWtWUHMl0ttgVSQm85prRWmV4n+BtRnXUMsE1KAxV8QGSMIlVUIQmblQJ2mU9ifJyOGglhoqOodTxbPqXYq7TuJ9LeqiFMU8hqc6sOPthRJ3khjrG2yu1GIJB23nwVWTZu12GjI/S9TGexCqruFjeMZBAZrYYMa5JsEBS5Jy0uQTnrvsdjrnd8Y3smYsjNGNP6aZsk2e+3XiqmrxsJF5b5l5OeCfWcIPvKtEk31yGexBNNhtSBlu029h6l0lmthzGdiDmPXLnoMKw+C0mHj3JUyFrhqpYbmVU6D/MTlhA5P6vq0qRzvdpN/tf+53dve/z3dxA71AL9ErlKC3aBd9QIdogCjS6Af6iX61/kTPo+1osbjra4v9fYZunej1NUD3kHY=</latexit>
¯
u
<latexit sha1_base64="ZZCWsiRu0pgt5O9epAZtvNr/dkU=">AAAEdnicjVNbaxNBFJ42UWu8pfooSDSIPpWsBPSxYKG+qFVMG+jEMDt7Nh0zl2VmNrUMA/4QX/U/+U98dCabQrpxxYE9HL7znW9mzyUtODN2MPi1td1qX7t+Y+dm59btO3fvdXfvHxtVagojqrjS45QY4EzCyDLLYVxoICLlcJLOX8f4yQK0YUp+shcFTASZSZYzSmyApt0uTol22MJXm+au9H7a7Q/2BsvT23SSldNHq3M03W29w5mipQBpKSfGOKItoxx8r4NLAwWhczKD09LmryaOyaK0IKlfjzkijCD2bAPMlbRmAzUXIr0KxkIxOatRo6RViv8F1iavoZYJqEE5V8QGSMI5VUIQmcVCSaO0P00mDge31BDlHE4Vz+K7FHf9xPta1pdSFFUOT3VQx49XTq+f9LC+xCqnlks4aFslxy4tW+40ZH55UQcfQKi6hrfhGe8L0MSGMJ5pEghYkpSTJk547jrtc6XvjG9UzVgYpUs+ppmyTczDunCsWm/cqHywrrye8M9bwh94F01TfH4e4sE0xG24MnxNfwsL76JpUp/JoB7Msl/2DFQYBqfF3LuPYSp0bKSG9VYugP7H5IQNTOr7tukcv9hLhnvDD8P+/uG3ahd30EP0BD1HCXqJ9tEbdIRGiKIF+o5+oJ+t3+1H7aftZxV1e2u1vw/QldMe/AHKf5LS</latexit>
102 mm
<latexit sha1_base64="qaOG1Fzjc0T6v2o8G2jY9XvSG3c=">AAAEcnicjVPNbhMxEHabBUr4a+EGly25cEBRtooEx0pUKhegINJGqtPK652kJv5Z2d6UyrLEY3CFt+I9eAC8yVbabliEJY9G38x8Y89PmnNm7GDwa2OzE926fWfrbvfe/QcPH23vPD42qtAURlRxpccpMcCZhJFllsM410BEyuEknb8p7ScL0IYp+dle5TARZCbZlFFiA3SWDPZibOGrdbEQ/ny7N+gPlideV5JK6aHqHJ3vdN7jTNFCgLSUE2Mc0ZZRDj7u4sJATuiczOC0sNPXE8dkXliQ1NdtjggjiL1YA6dKWrOGmiuR3gTLIjE5a7iWlFYp/hdYm2kDtUxAA5pyRWyAJFxSJQSRmQt1kkZpf5pMHA5qoaGkczhVPCvfpbjrJd43or4UIl/F8FQHdrxbKXEvibG+xlZKI5Zw0HYVXDZp2W6nIfPLRF18AKHqGt6FZ3zIQRMbzHimSXDAkqSctPmE59bdzlb8zvhW1oyFMbr2xzRTts3zsElcVi0etzIf1JnrAf/MEn7gXSna7PPLYA+ixW5DynDbfgsL70rRxj6TgT2IZb/sBagwDE6LuXefwlTospEa6q1cAP2PyQkbmDT3bV053usnw/7w47C3f/httYtb6Bl6jl6gBL1C++gtOkIjRJFG39EP9LPzO3oa7UbV4m5uVPv7BN040cs/ON2QdA==</latexit>
Fig. 9: Schematic of geometry and boundary conditions for the three-point bending tests.
We consider a specimen composed of a micropolar material and choose Boltzmann material parameters459
close to the properties of Plexiglas specimen tested by Ingraffea and Grigoriu [1990]: E=3.2 GPa, ν=0.3,460
Gc=0.31 N/mm, lc=1.0 mm, and ψcrit =7.5 kJ/m3. For this problem, we assume that all the energy461
density parts can be degraded, i.e., D={B,C,R},U=∅.462
Within the problem domain (Fig. 9), we first attempt to investigate the effect of coupling number on the463
crack trajectory by conducting multiple numerical tests with different values: N=0.1, N=0.5, and N=464
0.9, while bending characteristic length is held fixed as lb=10.0 mm. The numerical simulation conducted465
under a displacement-controlled regime where we keep the load increment as ∆¯
u2=−2.0 ×10−4mm.466
Fig. 10 illustrates the crack trajectories obtained by numerical experiments with different coupling num-467
ber Nin comparison to the experimental result [Ingraffea and Grigoriu,1990], while Fig. 11 shows the mea-468
sured reaction forces as a function of crack-mouth-opening-displacement (CMOD). Similar to the experi-469
mental results in Fig. 10(a), numerical results [Fig. 10(b)-(d)] show that the cracks tend to deflect towards470
the holes, eventually coalescing with the intermediate one. However, taking a closer look at Fig. 10(b)-(d),471
one can observe the slight differences on the concavity of the crack topologies especially when the crack472
passes close to the bottom hole. As we highlighted in Section 5.2, the crack tends to propagate through the473
path where the energy that takes to break the micro-rotational bond is minimized. At the same time, based474
on Saint-Venant’s principle, the crack trajectory can also be affected by the bottom hole due to an increase475
of the singularity [Qinami et al.,2019]. In this specific platform, it can thus be interpreted that the crack476
propagation may result from the competition between the two, based on the obtained results. Since the477
material that possesses higher degree of micropolarity requires more energy to break the micro-rotational478
bond, the bottom hole effect on the crack trajectory becomes negligible as coupling number Nincreases479
[Fig. 10(b)-(d)]. In addition, Fig. 11 implies that if more energy is required to break the micro-rotational480
bond, it results in higher material stiffness in the elastic regime, supporting our interpretation.481
We then conduct a brief sensitivity analysis with respect to the time discretization (i.e., prescribed dis-482
placement increment ∆¯
u2) within the same problem domain, while we set the coupling number to be483
N=0.9 during the analysis. Fig. 12 illustrates the simulated crack patterns for asymmetrically notched484
beam with three holes, with different prescribed displacement rates, varying from ∆¯
u2=−4.0 ×10−4mm485
to −16.0 ×10−4mm. Since meaningful differences in the crack trajectories are not observed, the result con-486
firms the practical applicability of the explicit operator-splitting solution scheme, if the load increment is487
small enough.488
20 Hyoung Suk Suh et al.
(b) N=0.1
<latexit sha1_base64="ev5+FSlu7VfhjrMNEUAIMgilFaE=">AAAEeXicjVPLbtNAFJ02AUp4pXTJxiWbwCKKSyTYIBVRCTaUgkgbqROi8fg6HTIPa2acEo0s8Sds4ZP4FjaM41RKHYwYyVdX5557ZnwfUcqZsf3+r63tRvPGzVs7t1t37t67/6C9+/DUqExTGFLFlR5FxABnEoaWWQ6jVAMREYezaPa6iJ/NQRum5Ce7SGEsyFSyhFFiPTRp72ELX63rRk+CPDgOXgb9Xjhpd/q9/vIEm064cjpodU4mu41jHCuaCZCWcmKMI9oyyiEPWjgzkBI6I1M4z2zyYuyYTDMLkubrMUeEEcRebICJktZsoGYhoutgUSsmpxVqIWmV4n+BtUkqqGUCKlDCFbEeknBJlRBExs4XTBql8/Nw7LB3Mw2FnMOR4nHxLsVdJ8zzStaXTKRlDo+0V8f7KyfohAHWV1jpVHIJB23L5KJby647DXG+vKiFj8BXXcM7/4z3KWhifRhPNfEELEnESR3HP3ed9rnUdyavVY2Zn6YrPqaxsnXMN1XhomrBqFb5aF15PeGft/g/yF1h6uKzSx/3piZu/ZX+q/tbmOeuMHXqU+nVvVn2y16A8sPgtJjl7qOfCl00UsN6K+dA/2Ny/AaG1X3bdE4PeuGgN/gw6By++lbu4g56hB6jLgrRc3SI3qITNEQULdB39AP9bPxu7je7zacldXtrtb976NppPvsDYlqRcQ==</latexit>
(c) N=0.5
<latexit sha1_base64="5olRcktIuZGF/llud13lrU9TIcc=">AAAEeXicjVPLbtNAFJ02Bkp4pXTJxiWbwCKKIQg2SEVUgg2lINJG6oRoPL5JTeZhzYxTotFI/Alb+CS+hQ3jOJVSByNG8tXVueeeGd9HnLFUm17v19Z2I7h2/cbOzeat23fu3mvt3j/RMlcUBlQyqYYx0cBSAQOTGgbDTAHhMYPTePa6iJ/OQelUik9mkcGIk6lIJyklxkPj1h428NXYDn0UuvAofBn2us/GrXav21uecNOJVk4brc7xeLdxhBNJcw7CUEa0tkSZlDJwYRPnGjJCZ2QKZ7mZvBjZVGS5AUHdeswSrjkx5xvgRAqjN1C94PFVsKhVKqYVaiFppGR/gZWeVFCTcqhAEyaJ8ZCACyo5JyKxvmBCS+XOopHF3s0VFHIWx5Ilxbsks+3IuUrWl5xnZQ6LlVfH+ysnbEchVpdY6VRyCQNlyuSiW8uuWwWJW17UxIfgq67gnX/G+wwUMT6Mp4p4AhYkZqSO45+7Tvtc6lvtalWT1E/TJR/TRJo65puqcFG1cFirfLiuvJ7wz1v8HzhbmLr47MLHvamJG3+l/+r+FubOFqZOfSq8ujfLfplzkH4YrOIzZz/6qVBFIxWst3IO9D8mx29gVN23TefkSTfqd/sf+u2DV9/KXdxBD9BD1EEReo4O0Ft0jAaIogX6jn6gn43fwX7QCR6X1O2t1f7uoSsnePoHdmqRdg==</latexit>
(d) N=0.9
<latexit sha1_base64="ESqkQoOaLPdNs7KdKR31qUDB/pI=">AAAEeXicjVNNbxMxEHWbBUr4SumRy5ZcAocoC5GAA1IRleBCKYi0keoQeb2T1MRrr2xvSmRZ4p9whZ/Eb+GCN5tK6YZFWNrR6M2bZ+98xBln2vR6v7a2G8G16zd2bjZv3b5z915r9/6JlrmiMKCSSzWMiQbOBAwMMxyGmQKSxhxO49nrIn46B6WZFJ/MIoNRSqaCTRglxkPj1h428NXYTvIodOFR+DLsdV+MW+1et7c84aYTrZw2Wp3j8W7jCCeS5ikIQznR2hJlGOXgwibONWSEzsgUznIzeT6yTGS5AUHdesySVKfEnG+AEymM3kD1Io2vgkWtmJhWqIWkkZL/BVZ6UkENS6ECTbgkxkMCLqhMUyIS6wsmtFTuLBpZ7N1cQSFncSx5UrxLctuOnKtkfcnTrMzhsfLqeH/lhO0oxOoSK51KLuGgTJlcdGvZdasgccuLmvgQfNUVvPPPeJ+BIsaH8VQRT8CCxJzUcfxz12mfS32rXa1qwvw0XfIxTaSpY76pChdVC4e1yofryusJ/7zF/4GzhamLzy583JuauPFX+q/ub2HubGHq1KfCq3uz7Jc5B+mHwap05uxHPxWqaKSC9VbOgf7H5PgNjKr7tumcPOlG/W7/Q7998OpbuYs76AF6iDooQs/QAXqLjtEAUbRA39EP9LPxO9gPOsHjkrq9tdrfPXTlBE//AIp6kXs=</latexit>
(a)
<latexit sha1_base64="Kf4ZWPYPu1RcvYZ5AcjFTl2uJEA=">AAAEbnicjVPdbtMwFPbWAKP8bAOJG4QI9KbcVA2qBJdDTIIbYCC6VcxlcpzTztQ/ke10TJYlHoJbeC/egkfAaTqpSwnCUo6OvvOdz875SXPOjO33f21stqIrV69tXW/fuHnr9vbO7p1DowpNYUgVV3qUEgOcSRhaZjmMcg1EpByO0tnLMn40B22Ykh/teQ5jQaaSTRglNkCfsIWv1nXJE3+y0+n3+osTrzvJ0umg5Tk42W29xZmihQBpKSfGOKItoxx83MaFgZzQGZnCcWEnz8eOybywIKlfjTkijCD2dA2cKGnNGmrORXoZLAvE5LRGLSWtUvwvsDaTGmqZgBo04YrYAEk4o0oIIjMX6iSN0v44GTsc3EJDKedwqnhWvktx10m8r2V9KURe5fBUB3X8aOnEnSTG+gKrnFou4aBtlVw2adFqpyHzi4vaeB9C1TW8Cc94l4MmNoTxVJNAwJKknDRxwnNXaZ8rfWd8o2rGwghd8DHNlG1ivqoLl1WLR43K+6vKqwn/vCX8gXelaYrPzkI8mIa4DVeGr+lvYe5daZrUpzKoB7Polz0FFYbBaTHz7kOYCl02UsNqK+dA/2NywgYm9X1bdw6f9pJBb/B+0Nl78a3axS10Hz1GXZSgZ2gPvUYHaIgokug7+oF+tn5H96IH0cOKurmx3N+76NKJun8Ao4qPSw==</latexit>
Fig. 10: Crack topologies for asymmetric notched three-point bending test: (a) experimentally obtained
pattern by Ingraffea and Grigoriu [1990]; (b)-(d) numerically obtained parttern with different coupling
number N.
0123
0
0.1
0.2
0.3
0.4
Fig. 11: Load-CMOD curves from the three-point bending test.
5.4 Double edge notched tests489
This numerical example investigates the effect of partial degradation of the strain energy density on the490
crack patterns. As illustrated in Fig. 13, the problem domain is a 100 mm wide and 100 mm long square491
plate with two 25 mm long symmetric initial horizontal edge notches at the middle. We assign the following492
material properties for this problem: E=30 GPa, ν=0.2, Gc=0.1 N/mm, lc=0.75 mm, and ψcrit =1.0493
kJ/m3. Numerical experiments are simulated with bending characteristic length lb=30.0 mm and the494
coupling number is set to be N=0.5. While the bottom part of the domain is held fixed, we prescribe the495
displacement along the entire top boundary at an angle of 45 degrees to the horizontal direction: ∆¯
u1=496
∆¯
u2=5.0 ×10−4mm, such that the domain is subjected to combined tensile and shear loads.497
Regarding partial degradation, recall Eq. (25) that energy density parts that corresponds to the set U498
remains completely undamaged, such that gi(d) = 1 for i∈U, where D∪U={B,C,R}and D∩U=∅.499
Within this platform, we first explore the effects of each individual energy density part by considering500
Micropolar phase field fracture 21
(a)
<latexit sha1_base64="Kf4ZWPYPu1RcvYZ5AcjFTl2uJEA=">AAAEbnicjVPdbtMwFPbWAKP8bAOJG4QI9KbcVA2qBJdDTIIbYCC6VcxlcpzTztQ/ke10TJYlHoJbeC/egkfAaTqpSwnCUo6OvvOdz875SXPOjO33f21stqIrV69tXW/fuHnr9vbO7p1DowpNYUgVV3qUEgOcSRhaZjmMcg1EpByO0tnLMn40B22Ykh/teQ5jQaaSTRglNkCfsIWv1nXJE3+y0+n3+osTrzvJ0umg5Tk42W29xZmihQBpKSfGOKItoxx83MaFgZzQGZnCcWEnz8eOybywIKlfjTkijCD2dA2cKGnNGmrORXoZLAvE5LRGLSWtUvwvsDaTGmqZgBo04YrYAEk4o0oIIjMX6iSN0v44GTsc3EJDKedwqnhWvktx10m8r2V9KURe5fBUB3X8aOnEnSTG+gKrnFou4aBtlVw2adFqpyHzi4vaeB9C1TW8Cc94l4MmNoTxVJNAwJKknDRxwnNXaZ8rfWd8o2rGwghd8DHNlG1ivqoLl1WLR43K+6vKqwn/vCX8gXelaYrPzkI8mIa4DVeGr+lvYe5daZrUpzKoB7Polz0FFYbBaTHz7kOYCl02UsNqK+dA/2NywgYm9X1bdw6f9pJBb/B+0Nl78a3axS10Hz1GXZSgZ2gPvUYHaIgokug7+oF+tn5H96IH0cOKurmx3N+76NKJun8Ao4qPSw==</latexit>
(b)
<latexit sha1_base64="oF5R3DDGiloRLmNVK9ayt+oCgC4=">AAAEbnicjVPdbtMwFPbWAKP8bAOJG4QI9KbcVA2qBJcTTIIbYCC6VcxlcpzTztQ/ke10TJYlHoJbeC/egkfAaTqpSwnCUo6OvvOdz875SXPOjO33f21stqIrV69tXW/fuHnr9vbO7p1DowpNYUgVV3qUEgOcSRhaZjmMcg1EpByO0tnLMn40B22Ykh/teQ5jQaaSTRglNkCfsIWv1nXTJ/5kp9Pv9RcnXneSpdNBy3Nwstt6izNFCwHSUk6McURbRjn4uI0LAzmhMzKF48JOno8dk3lhQVK/GnNEGEHs6Ro4UdKaNdSci/QyWBaIyWmNWkpapfhfYG0mNdQyATVowhWxAZJwRpUQRGYu1Ekapf1xMnY4uIWGUs7hVPGsfJfirpN4X8v6Uoi8yuGpDur40dKJO0mM9QVWObVcwkHbKrls0qLVTkPmFxe18T6Eqmt4E57xLgdNbAjjqSaBgCVJOWnihOeu0j5X+s74RtWMhRG64GOaKdvEfFUXLqsWjxqV91eVVxP+eUv4A+9K0xSfnYV4MA1xG64MX9Pfwty70jSpT2VQD2bRL3sKKgyD02Lm3YcwFbpspIbVVs6B/sfkhA1M6vu27hw+7SWD3uD9oLP34lu1i1voPnqMuihBz9Aeeo0O0BBRJNF39AP9bP2O7kUPoocVdXNjub930aUTdf8Ap9qPTQ==</latexit>
(c)
<latexit sha1_base64="qlq0tFj8kMnuWQp51Gt4x+cItWc=">AAAEbnicjVPdbtMwFPbWAKP8bAOJG4QI9KbcVA2qBJcTTIIbYCC6VcxlcpzTztQ/ke10TJYlHoJbeC/egkfAaTqpSwnCUo6OvvOdz875SXPOjO33f21stqIrV69tXW/fuHnr9vbO7p1DowpNYUgVV3qUEgOcSRhaZjmMcg1EpByO0tnLMn40B22Ykh/teQ5jQaaSTRglNkCfsIWv1nXpE3+y0+n3+osTrzvJ0umg5Tk42W29xZmihQBpKSfGOKItoxx83MaFgZzQGZnCcWEnz8eOybywIKlfjTkijCD2dA2cKGnNGmrORXoZLAvE5LRGLSWtUvwvsDaTGmqZgBo04YrYAEk4o0oIIjMX6iSN0v44GTsc3EJDKedwqnhWvktx10m8r2V9KURe5fBUB3X8aOnEnSTG+gKrnFou4aBtlVw2adFqpyHzi4vaeB9C1TW8Cc94l4MmNoTxVJNAwJKknDRxwnNXaZ8rfWd8o2rGwghd8DHNlG1ivqoLl1WLR43K+6vKqwn/vCX8gXelaYrPzkI8mIa4DVeGr+lvYe5daZrUpzKoB7Polz0FFYbBaTHz7kOYCl02UsNqK+dA/2NywgYm9X1bdw6f9pJBb/B+0Nl78a3axS10Hz1GXZSgZ2gPvUYHaIgokug7+oF+tn5H96IH0cOKurmx3N+76NKJun8Aq92PTg==</latexit>
(d)
<latexit sha1_base64="s+ILh8goAt2n9H6wE19HIbklKyk=">AAAEbnicjVPdbtMwFPbWAKP8bAOJG4QI9KbcVA2qBJcTTIIbYCC6VcxlcpzTztQ/ke10TJYlHoJbeC/egkfAaTqpSwnCUo6OvvOdz875SXPOjO33f21stqIrV69tXW/fuHnr9vbO7p1DowpNYUgVV3qUEgOcSRhaZjmMcg1EpByO0tnLMn40B22Ykh/teQ5jQaaSTRglNkCfsIWv1nWzJ/5kp9Pv9RcnXneSpdNBy3Nwstt6izNFCwHSUk6McURbRjn4uI0LAzmhMzKF48JOno8dk3lhQVK/GnNEGEHs6Ro4UdKaNdSci/QyWBaIyWmNWkpapfhfYG0mNdQyATVowhWxAZJwRpUQRGYu1Ekapf1xMnY4uIWGUs7hVPGsfJfirpN4X8v6Uoi8yuGpDur40dKJO0mM9QVWObVcwkHbKrls0qLVTkPmFxe18T6Eqmt4E57xLgdNbAjjqSaBgCVJOWnihOeu0j5X+s74RtWMhRG64GOaKdvEfFUXLqsWjxqV91eVVxP+eUv4A+9K0xSfnYV4MA1xG64MX9Pfwty70jSpT2VQD2bRL3sKKgyD02Lm3YcwFbpspIbVVs6B/sfkhA1M6vu27hw+7SWD3uD9oLP34lu1i1voPnqMuihBz9Aeeo0O0BBRJNF39AP9bP2O7kUPoocVdXNjub930aUTdf8Ar+CPTw==</latexit>
Fig. 12: Observed crack patterns for asymmetric notched three-point bending tests: (a) ∆¯
u2=−2.0 ×10−4
mm; (b) ∆¯
u2=−4.0 ×10−4mm; (c) ∆¯
u2=−8.0 ×10−4mm; (d) ∆¯
u2=−16.0 ×10−4mm.
¯
u
<latexit sha1_base64="1ouVcjmht5C5oSIt/Z18CT10vV0=">AAAB83icbZBLSwMxFIXv1Fetr6pLN8EiuCozVdBlQRCXFewDOkPJpJk2NJMZ8hDKMOCvcONCEbf+GXf+GzNtF9p6IPBxzg25OWHKmdKu++2U1tY3NrfK25Wd3b39g+rhUUclRhLaJglPZC/EinImaFszzWkvlRTHIafdcHJT5N1HKhVLxIOepjSI8UiwiBGsreX7IZaZH0aZyfNBtebW3ZnQKngLqMFCrUH1yx8mxMRUaMKxUn3PTXWQYakZ4TSv+EbRFJMJHtG+RYFjqoJstnOOzqwzRFEi7REazdzfNzIcKzWNQzsZYz1Wy1lh/pf1jY6ug4yJ1GgqyPyhyHCkE1QUgIZMUqL51AImktldERljiYm2NVVsCd7yl1eh06h7F/XG/WWtefs0r6MMJ3AK5+DBFTThDlrQBgIpPMMrvDnGeXHenY/5aMlZVHgMf+R8/gDFpJKU</latexit>
100 mm
<latexit sha1_base64="4odvApqtH7vRUBGGUVkVT+RyZbA=">AAAB9XicbZBLSwMxFIXv+Kz1VXXpJlgEV2WmCrosCOKygn1AO5ZMmmlDk5khuaOWoeDPcONCEbf+F3f+G9PHQlsPBD7OuSE3J0ikMOi6387S8srq2npuI7+5tb2zW9jbr5s41YzXWCxj3Qyo4VJEvIYCJW8mmlMVSN4IBpfjvHHPtRFxdIvDhPuK9iIRCkbRWnee65I28kfMiFKjTqHoltyJyCJ4MyjCTNVO4avdjVmqeIRMUmNanpugn1GNgkk+yrdTwxPKBrTHWxYjqrjxs8nWI3JsnS4JY21PhGTi/r6RUWXMUAV2UlHsm/lsbP6XtVIML/xMREmKPGLTh8JUEozJuALSFZozlEMLlGlhdyWsTzVlaIvK2xK8+S8vQr1c8k5L5ZuzYuXqaVpHDg7hCE7Ag3OowDVUoQYMNDzDK7w5D86L8+58TEeXnFmFB/BHzucPjPWSUg==</latexit>
25 mm
<latexit sha1_base64="gIdtPmS3mbop8kEGbWy7COgjf+M=">AAAB9HicbZBLSwMxFIXv1Fetr6pLN8EiuCozVdFlQRCXFewD2qFk0rQNTWbG5E6xDAX/hRsXirj1x7jz35g+Ftp6IPBxzg25OUEshUHX/XYyK6tr6xvZzdzW9s7uXn7/oGaiRDNeZZGMdCOghksR8ioKlLwRa05VIHk9GFxP8vqQayOi8B5HMfcV7YWiKxhFa/mlC9JC/ogpUWrczhfcojsVWQZvDgWYq9LOf7U6EUsUD5FJakzTc2P0U6pRMMnHuVZieEzZgPZ402JIFTd+Ol16TE6s0yHdSNsTIpm6v2+kVBkzUoGdVBT7ZjGbmP9lzQS7V34qwjhBHrLZQ91EEozIpAHSEZozlCMLlGlhdyWsTzVlaHvK2RK8xS8vQ61U9M6KpbvzQvnmaVZHFo7gGE7Bg0sowy1UoAoMHuAZXuHNGTovzrvzMRvNOPMKD+GPnM8fJiOSHg==</latexit>
45
<latexit sha1_base64="AjViA0g8zIzQWbyh2rilnkgPQSw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKezGiB4DgniMYB6YrGF20kmGzM4uM7NCWAJ+hBcPinj1b7z5N04eB00saCiquunuCmLBtXHdbyezsrq2vpHdzG1t7+zu5fcP6jpKFMMai0SkmgHVKLjEmuFGYDNWSMNAYCMYXk38xiMqzSN5Z0Yx+iHtS97jjBor3ZfPH9I244qNO/mCW3SnIMvEm5MCzFHt5L/a3YglIUrDBNW65bmx8VOqDGcCx7l2ojGmbEj72LJU0hC1n04vHpMTq3RJL1K2pCFT9fdESkOtR2FgO0NqBnrRm4j/ea3E9C79lMs4MSjZbFEvEcREZPI+6XKFzIiRJZQpbm8lbEAVZcaGlLMheIsvL5N6qeidFUu35ULl+mkWRxaO4BhOwYMLqMANVKEGDCQ8wyu8Odp5cd6dj1lrxplHeAh/4Hz+AF1KkSI=</latexit>
50 mm
<latexit sha1_base64="WKAfSdtSmxeLPDsXutJZZV6FXLI=">AAAB9HicbZBLSwMxFIXv1Fetr6pLN8EiuCozVdFlQRCXFewD2qFk0rQNTWbG5E6xDAX/hRsXirj1x7jz35g+Ftp6IPBxzg25OUEshUHX/XYyK6tr6xvZzdzW9s7uXn7/oGaiRDNeZZGMdCOghksR8ioKlLwRa05VIHk9GFxP8vqQayOi8B5HMfcV7YWiKxhFa/kXLmkhf8SUKDVu5wtu0Z2KLIM3hwLMVWnnv1qdiCWKh8gkNabpuTH6KdUomOTjXCsxPKZsQHu8aTGkihs/nS49JifW6ZBupO0JkUzd3zdSqowZqcBOKop9s5hNzP+yZoLdKz8VYZwgD9nsoW4iCUZk0gDpCM0ZypEFyrSwuxLWp5oytD3lbAne4peXoVYqemfF0t15oXzzNKsjC0dwDKfgwSWU4RYqUAUGD/AMr/DmDJ0X5935mI1mnHmFh/BHzucPIwiSHA==</latexit>
50 mm
<latexit sha1_base64="WKAfSdtSmxeLPDsXutJZZV6FXLI=">AAAB9HicbZBLSwMxFIXv1Fetr6pLN8EiuCozVdFlQRCXFewD2qFk0rQNTWbG5E6xDAX/hRsXirj1x7jz35g+Ftp6IPBxzg25OUEshUHX/XYyK6tr6xvZzdzW9s7uXn7/oGaiRDNeZZGMdCOghksR8ioKlLwRa05VIHk9GFxP8vqQayOi8B5HMfcV7YWiKxhFa/kXLmkhf8SUKDVu5wtu0Z2KLIM3hwLMVWnnv1qdiCWKh8gkNabpuTH6KdUomOTjXCsxPKZsQHu8aTGkihs/nS49JifW6ZBupO0JkUzd3zdSqowZqcBOKop9s5hNzP+yZoLdKz8VYZwgD9nsoW4iCUZk0gDpCM0ZypEFyrSwuxLWp5oytD3lbAne4peXoVYqemfF0t15oXzzNKsjC0dwDKfgwSWU4RYqUAUGD/AMr/DmDJ0X5935mI1mnHmFh/BHzucPIwiSHA==</latexit>
Fig. 13: Schematic of geometry and boundary conditions for the double edge notched tests.
three different settings: (a) D={B}; (b) D={C}; and (c) D={R}. Fig. 14 shows the fracture patterns501
for double edge notched tests for three aforementioned cases where ¯
u1=¯
u2=0.05 mm. Under the502
same threshold energy density ψcrit, partial Boltzmann degradation case shown in Fig. 14(a) undergoes503
crack propagation, whereas degrading ψC
e[Fig. 14(b)] or ψR
e[Fig. 14(c)] exhibit small amount of damage504
accumulation at the crack tip, without complete rupturing. It reveals that in either force or displacement-505
driven setup, most of the elastic energy is stored in non-polar constituent; the amount of stored energy506
density parts: ψB
e>ψC
e>ψR
e. As illustrated in Fig. 15, only the fictitious undegraded Boltzmann energy507
density part locally exceeds the prescribed threshold ψcrit =1.0 kJ/m3through the cracks when D={B}.508
Even though ψC
eand ψR
edo not exceed the threshold energy except the flaw tip region, the results also509
indirectly evidence that the coupling and pure micro-rotational energy density parts affect crack kinking,510
while the pure Boltzmann part mainly drives the crack to grow.511
Since the pure Boltzmann part mainly drives the crack propagation, we now focus on the combined512
partial degradation with B∈D, also by considering three different settings within the same platform: (a)513
22 Hyoung Suk Suh et al.
D={B}
<latexit sha1_base64="i0C/iJy33SKy3AjYuBxRPF7wTTA=">AAACFHicbVDLSgMxFM3UV62vqks3wSIIQpmpgm6EoiIuK9gHdErJpHfa0MyD5I5QhoK/4MZfceNCEbcu3Pk3po+Fth4InJxzL8k5XiyFRtv+tjILi0vLK9nV3Nr6xuZWfnunpqNEcajySEaq4TENUoRQRYESGrECFngS6l7/cuTX70FpEYV3OIihFbBuKHzBGRqpnT9yA4Y9X7F+ejWk59SV4KMrPcU40AvqKtHtoavG93a+YBftMeg8caakQKaotPNfbifiSQAhcsm0bjp2jK2UKRRcwjDnJhpixvusC01DQxaAbqXjUEN6YJQO9SNlToh0rP7eSFmg9SDwzOQogp71RuJ/XjNB/6yVijBOEEI+echPJMWIjhqiHaGAoxwYwrgS5q+U95gpAE2POVOCMxt5ntRKRee4WLo9KZSvHyZ1ZMke2SeHxCGnpExuSIVUCSeP5Jm8kjfryXqx3q2PyWjGmla4S/7A+vwBaX2e1w==</latexit>
(a)
D={C}
<latexit sha1_base64="Lo2d0A/lnJ5K/drliSIHO1Jm30Q=">AAACFHicbVDLSgMxFM3UV62vqks3wSIIQpmpgm6EQkVcVrAP6JSSSe+0oZkHyR2hDAV/wY2/4saFIm5duPNvTB8LbT0QODnnXpJzvFgKjbb9bWWWlldW17LruY3Nre2d/O5eXUeJ4lDjkYxU02MapAihhgIlNGMFLPAkNLxBZew37kFpEYV3OIyhHbBeKHzBGRqpkz9xA4Z9X7FBejWil9SV4KMrPcU40Ap1lej10VWTeydfsIv2BHSRODNSIDNUO/kvtxvxJIAQuWRatxw7xnbKFAouYZRzEw0x4wPWg5ahIQtAt9NJqBE9MkqX+pEyJ0Q6UX9vpCzQehh4ZnIcQc97Y/E/r5Wgf9FORRgnCCGfPuQnkmJExw3RrlDAUQ4NYVwJ81fK+8wUgKbHnCnBmY+8SOqlonNaLN2eFcrXD9M6suSAHJJj4pBzUiY3pEpqhJNH8kxeyZv1ZL1Y79bHdDRjzSrcJ39gff4Aaw+e2A==</latexit>
(b)
D={R}
<latexit sha1_base64="kImzKFzgXLH8ZKiqp/318UfA3U8=">AAACFHicbVDLSgMxFM3UV62vqks3wSIIQpmpgm6EgiIuq9gHdErJpHfa0MyD5I5QhoK/4MZfceNCEbcu3Pk3po+Fth4InJxzL8k5XiyFRtv+tjILi0vLK9nV3Nr6xuZWfnunpqNEcajySEaq4TENUoRQRYESGrECFngS6l7/YuTX70FpEYV3OIihFbBuKHzBGRqpnT9yA4Y9X7F+ejmk59SV4KMrPcU40FvqKtHtoavG93a+YBftMeg8caakQKaotPNfbifiSQAhcsm0bjp2jK2UKRRcwjDnJhpixvusC01DQxaAbqXjUEN6YJQO9SNlToh0rP7eSFmg9SDwzOQogp71RuJ/XjNB/6yVijBOEEI+echPJMWIjhqiHaGAoxwYwrgS5q+U95gpAE2POVOCMxt5ntRKRee4WLo5KZSvHiZ1ZMke2SeHxCGnpEyuSYVUCSeP5Jm8kjfryXqx3q2PyWjGmla4S/7A+vwBgp2e5w==</latexit>
(c)
Fig. 14: Crack patterns for double edge notched tests obtained by considering different degradation func-
tions [i.e., gi(d) = g(d)if i∈D;gi(d) = 1 otherwise] on each energy density part, where ¯
u1=¯
u2=0.05
mm.
D={B}
<latexit sha1_base64="i0C/iJy33SKy3AjYuBxRPF7wTTA=">AAACFHicbVDLSgMxFM3UV62vqks3wSIIQpmpgm6EoiIuK9gHdErJpHfa0MyD5I5QhoK/4MZfceNCEbcu3Pk3po+Fth4InJxzL8k5XiyFRtv+tjILi0vLK9nV3Nr6xuZWfnunpqNEcajySEaq4TENUoRQRYESGrECFngS6l7/cuTX70FpEYV3OIihFbBuKHzBGRqpnT9yA4Y9X7F+ejWk59SV4KMrPcU40AvqKtHtoavG93a+YBftMeg8caakQKaotPNfbifiSQAhcsm0bjp2jK2UKRRcwjDnJhpixvusC01DQxaAbqXjUEN6YJQO9SNlToh0rP7eSFmg9SDwzOQogp71RuJ/XjNB/6yVijBOEEI+echPJMWIjhqiHaGAoxwYwrgS5q+U95gpAE2POVOCMxt5ntRKRee4WLo9KZSvHyZ1ZMke2SeHxCGnpExuSIVUCSeP5Jm8kjfryXqx3q2PyWjGmla4S/7A+vwBaX2e1w==</latexit>
(a) ψB
ein kJ/m3
D={C}
<latexit sha1_base64="Lo2d0A/lnJ5K/drliSIHO1Jm30Q=">AAACFHicbVDLSgMxFM3UV62vqks3wSIIQpmpgm6EQkVcVrAP6JSSSe+0oZkHyR2hDAV/wY2/4saFIm5duPNvTB8LbT0QODnnXpJzvFgKjbb9bWWWlldW17LruY3Nre2d/O5eXUeJ4lDjkYxU02MapAihhgIlNGMFLPAkNLxBZew37kFpEYV3OIyhHbBeKHzBGRqpkz9xA4Z9X7FBejWil9SV4KMrPcU40Ap1lej10VWTeydfsIv2BHSRODNSIDNUO/kvtxvxJIAQuWRatxw7xnbKFAouYZRzEw0x4wPWg5ahIQtAt9NJqBE9MkqX+pEyJ0Q6UX9vpCzQehh4ZnIcQc97Y/E/r5Wgf9FORRgnCCGfPuQnkmJExw3RrlDAUQ4NYVwJ81fK+8wUgKbHnCnBmY+8SOqlonNaLN2eFcrXD9M6suSAHJJj4pBzUiY3pEpqhJNH8kxeyZv1ZL1Y79bHdDRjzSrcJ39gff4Aaw+e2A==</latexit>
(b) ψC
ein kJ/m3
D={R}
<latexit sha1_base64="kImzKFzgXLH8ZKiqp/318UfA3U8=">AAACFHicbVDLSgMxFM3UV62vqks3wSIIQpmpgm6EgiIuq9gHdErJpHfa0MyD5I5QhoK/4MZfceNCEbcu3Pk3po+Fth4InJxzL8k5XiyFRtv+tjILi0vLK9nV3Nr6xuZWfnunpqNEcajySEaq4TENUoRQRYESGrECFngS6l7/YuTX70FpEYV3OIihFbBuKHzBGRqpnT9yA4Y9X7F+ejmk59SV4KMrPcU40FvqKtHtoavG93a+YBftMeg8caakQKaotPNfbifiSQAhcsm0bjp2jK2UKRRcwjDnJhpixvusC01DQxaAbqXjUEN6YJQO9SNlToh0rP7eSFmg9SDwzOQogp71RuJ/XjNB/6yVijBOEEI+echPJMWIjhqiHaGAoxwYwrgS5q+U95gpAE2POVOCMxt5ntRKRee4WLo5KZSvHiZ1ZMke2SeHxCGnpEyuSYVUCSeP5Jm8kjfryXqx3q2PyWjGmla4S/7A+vwBgp2e5w==</latexit>
(c) ψR
ein kJ/m3
Fig. 15: Fictitious undegraded energy density part ψi
e(i∈D), where ¯
u1=¯
u2=0.05 mm.
D={B,R}; (b) D={B,C}; and (c) D={B,C,R}. Fig. 16 shows the crack patterns for double edge514
notched tests for three different combinations of partial degradation compared with the case where D=515
{B}, while Fig. 17 illustrates the obtained load-deflection curves. The results confirms that degradation of516
the energy density parts ψC
eand ψR
eaffects the crack kinking and curving.517
The combined degradation with D={B,R}tend to stimulate similar fracture patterns compared to518
the partial Boltzmann degradation case until ¯
u1=¯
u2=0.04 mm, and then the cracks start to propagate519
towards the notches. Revisiting Fig. 15, this again indicates that the crack trajectories tend to follow the520
path that maximizes the energy dissipation (i.e., crack growth towards the adjacent flaw when the stored521
ψR
eat the tip becomes high enough). Similarly, the combined degradation with D={B,C}leads the cracks522
to grow towards the adjacent tip. In this case, however, the cracks tend to kink towards the adjacent notch523
from the beginning, and then two cracks coalescence toward each other after sufficient loading. Since the524
amount of stored coupling energy ψC
eis greater than the pure micro-rotational part ψR
e, we speculate that525
the coupling energy part influences the crack pattern more significantly compared to the micro-rotational526
energy part, so that we thus observe similar fracture pattern when D={B,C,R}. In summary, this nu-527
Micropolar phase field fracture 23
¯u1=¯u2
=0.0125 mm
<latexit sha1_base64="Ux6R9oa3Uouaon3gs0luaaT/qt0=">AAACF3icbZBLSwMxFIUzPmt9VV26CRaLqzJTFd0UCm5cVrEP6AxDJk3b0GRmSO6IZei/cONfcaOgiFvd+W9MH4K2Hgh8nHNDck8QC67Btr+shcWl5ZXVzFp2fWNzazu3s1vXUaIoq9FIRKoZEM0ED1kNOAjWjBUjMhCsEfQvRnnjlinNo/AGBjHzJOmGvMMpAWP5uWLBDYhKk6Hv4DL+4RJ23WyhjO2i7ZROsQvsDlIs5dDP5Y03Fp4HZwp5NFXVz3267YgmkoVABdG65dgxeClRwKlgw6ybaBYT2idd1jIYEsm0l473GuJD47RxJ1LmhIDH7u8bKZFaD2RgJiWBnp7NRuZ/WSuBzrmX8jBOgIV08lAnERgiPCoJt7liFMTAAKGKm79i2iOKUDBVZk0JzuzK81AvFZ3jYunqJF+5fp7UkUH76AAdIQedoQq6RFVUQxTdo0f0gl6tB+vJerPeJ6ML1rTCPfRH1sc3sM+dyQ==</latexit>
¯u1=¯u2
=0.025 mm
<latexit sha1_base64="Gg730hbC7blqJ78xcRl1C5Y8nv4=">AAACFnicbZBLSwMxFIUz9VXrq+rSTbBY3FhmRkU3hYIbl1XsAzqlZNK0DU1mhuSOWIb+Cjf+FTciirgVd/4b04egrQcCH+fckNzjR4JrsO0vK7WwuLS8kl7NrK1vbG5lt3eqOowVZRUailDVfaKZ4AGrAAfB6pFiRPqC1fz+xSiv3TKleRjcwCBiTUm6Ae9wSsBYrexR3vOJSuJhy8FF/MMu9rxMvojtgu2eYg/YHSRYymErmzPWWHgenCnk0FTlVvbTa4c0liwAKojWDceOoJkQBZwKNsx4sWYRoX3SZQ2DAZFMN5PxWkN8YJw27oTKnADw2P19IyFS64H0zaQk0NOz2cj8L2vE0DlvJjyIYmABnTzUiQWGEI86wm2uGAUxMECo4uavmPaIIhRMkxlTgjO78jxU3YJzXHCvTnKl6+dJHWm0h/bRIXLQGSqhS1RGFUTRPXpEL+jVerCerDfrfTKasqYV7qI/sj6+ATUAnY4=</latexit>
¯u1=¯u2
=0.05 mm
<latexit sha1_base64="rPlYNB5As5cuS7uPwlh1ObCN2aQ=">AAACFXicbZBLSwMxFIUz9VXra9Slm2CxuJAyUxXdFApuXFaxD+iUkknTNjSZGZI7Yhn6J9z4V9wIKuJWcOe/MX0I2nog8HHODck9fiS4Bsf5slILi0vLK+nVzNr6xuaWvb1T1WGsKKvQUISq7hPNBA9YBTgIVo8UI9IXrOb3L0Z57ZYpzcPgBgYRa0rSDXiHUwLGatlHOc8nKomHLRcX8Q8XsOdlckXs5J1T7AG7gwRLOWzZWeOMhefBnUIWTVVu2Z9eO6SxZAFQQbRuuE4EzYQo4FSwYcaLNYsI7ZMuaxgMiGS6mYy3GuID47RxJ1TmBIDH7u8bCZFaD6RvJiWBnp7NRuZ/WSOGznkz4UEUAwvo5KFOLDCEeFQRbnPFKIiBAUIVN3/FtEcUoWCKzJgS3NmV56FayLvH+cLVSbZ0/TypI4320D46RC46QyV0icqogii6R4/oBb1aD9aT9Wa9T0ZT1rTCXfRH1sc3t8WdUg==</latexit>
D={B}
<latexit sha1_base64="nJk68jbpHPramtoJAM6fR89kydY=">AAACFHicbVDLSgMxFM34dnyNunQTLIIglBkVdCMUdeFSwarQKSWT3mlDMw+SO0IZCv6CG3/FjQtF3Lpw59+YmXahrQcCJ+fcS3JOkEqh0XW/ranpmdm5+YVFe2l5ZXXNWd+40UmmONR5IhN1FzANUsRQR4ES7lIFLAok3Aa9s8K/vQelRRJfYz+FZsQ6sQgFZ2iklrPnRwy7oWK9/Hxgn9i+hBB9GSjGgZ5SX4lOF31V3ltOxa26Jegk8UakQka4bDlffjvhWQQxcsm0bnhuis2cKRRcwsD2Mw0p4z3WgYahMYtAN/My1IDuGKVNw0SZEyMt1d8bOYu07keBmSwi6HGvEP/zGhmGx81cxGmGEPPhQ2EmKSa0aIi2hQKOsm8I40qYv1LeZaYAND3apgRvPPIkudmvegfV/avDSu36YVjHAtki22SXeOSI1MgFuSR1wskjeSav5M16sl6sd+tjODpljSrcJH9gff4AJgeeuQ==</latexit>
D={B,C,R}
<latexit sha1_base64="sxth43kokL9+CDTSGKw5BN68rmw=">AAACGHicbZBLSwMxFIUzPuv4qrp0EyyCC6kzVdCNUKwLl1WsCp1SMumdNjTzILkjlKHgn3DjX3HjQhG33flvTB8Lbb0QOJxzQ3I+P5FCo+N8W3PzC4tLy7kVe3VtfWMzv7V9p+NUcajxWMbqwWcapIighgIlPCQKWOhLuPe7lWF+/whKizi6xV4CjZC1IxEIztBYzfyRFzLsBIp1s8u+fW57EgL0pK8YB3pxWDm8oZ4S7Q56auQ18wWn6IyGzgp3IgpkMtVmfuC1Yp6GECGXTOu66yTYyJhCwSX0bS/VkDDeZW2oGxmxEHQjGxXr033jtGgQK3MipCP3942MhVr3Qt9sDmvo6Wxo/pfVUwzOGpmIkhQh4uOHglRSjOmQEm0JBRxlzwjGlTB/pbzDDAA0LG0DwZ2uPCvuSkX3uFi6PimUb5/GOHJkl+yRA+KSU1ImV6RKaoSTZ/JK3smH9WK9WZ/W13h1zpog3CF/xhr8AFqBn84=</latexit>
D={B,R}
<latexit sha1_base64="tL9A5tsF7T/vleGGZ2AlluQ8GDI=">AAACFnicbZBLSwMxFIUzPuv4qrp0EyyCCy0zVdCNUNSFyyp9CJ1SMumdNjTzILkjlKHgf3DjX3HjQhG34s5/Y/pY+LoQOJxzQ3I+P5FCo+N8WjOzc/MLi7kle3lldW09v7FZ13GqONR4LGN14zMNUkRQQ4ESbhIFLPQlNPz++Shv3ILSIo6qOEigFbJuJALBGRqrnT/wQoa9QLF+djG0T21PQoCe9BXjQM/2r6mnRLeHnho77XzBKTrjoX+FOxUFMp1KO//hdWKehhAhl0zrpusk2MqYQsElDG0v1ZAw3mddaBoZsRB0KxvXGtJd43RoECtzIqRj9/uNjIVaD0LfbI5K6N/ZyPwva6YYnLQyESUpQsQnDwWppBjTESPaEQo4yoERjCth/kp5jxkAaEjaBoL7u/JfUS8V3cNi6eqoUK7eTXDkyDbZIXvEJcekTC5JhdQIJ/fkkTyTF+vBerJerbfJ6ow1RbhFfoz1/gVLmJ9L</latexit>
D={B,C}
<latexit sha1_base64="3no5Ph8QTyl1W30kPuaowg0qSwY=">AAACFnicbZBLSwMxFIUzPuv4qrp0EyyCCy0zKuhGEOvCZYVWhc5QMumdNjTzILkjlKHgf3DjX3HjQhG34s5/YzrtwteFwOGcG5LzBakUGh3n05qanpmdmy8t2ItLyyur5bX1K51kikOTJzJRNwHTIEUMTRQo4SZVwKJAwnXQr43y61tQWiRxAwcp+BHrxiIUnKGx2uU9L2LYCxXr5+dD+8T2JIToyUAxDvRst0Y9Jbo99FThtMsVp+oUQ/8KdyIqZDL1dvnD6yQ8iyBGLpnWLddJ0c+ZQsElDG0v05Ay3mddaBkZswi0nxe1hnTbOB0aJsqcGGnhfr+Rs0jrQRSYzVEJ/Tsbmf9lrQzDYz8XcZohxHz8UJhJigkdMaIdoYCjHBjBuBLmr5T3mAGAhqRtILi/K/8VV/tV96C6f3lYOW3cjXGUyCbZIjvEJUfklFyQOmkSTu7JI3kmL9aD9WS9Wm/j1SlrgnCD/Bjr/Qs0Cp88</latexit>
Fig. 16: Crack patterns for double edge notched tests with different combination of degrading energy den-
sity parts at several load increments.
merical experiment highlight that the pure Boltzmann energy density drives the crack growth, while the528
micro-continuum coupling energy density mainly influences the kinking direction.529
6 Conclusion530
This study presents a phase field fracture framework to model cohesive fracture in micropolar continua.531
To the best of the authors’ knowledge, this is the first ever mathematics model that employs the phase532
field fracture framework to simulate crack growth in materials that exhibit size effect in both elastic and533
damaged regimes. To replicate a consistent size effect for both the elastic deformation and crack growth534
mechanisms, we introduce a method to incorporate distinctive degradation mechanisms via an energy-535
split approach for the non-polar, coupling and micropolar energies, while adopting the pair of degradation536
and regularization profiles that enables us to suppress the sensitivity of the length scale parameter that reg-537
ularizes the phase field. One-dimensional analysis and numerical experiments demonstrate that the quasi-538
quadratic degradation function combined with linear local dissipation function successfully suppress the539
sensitivity of the length scale parameter for phase field while successfully incorporate the size effect with540
a length scale parameter that can be measured via standard inverse problems for micropolar materials.541
This result is significant, as the insensitivity of the length scale parameter will allow one to use coarser542
mesh to run simulations for a scale relevant to field applications (e.g. geological formations, structural543
components), while still able to replicating the size effect exhibited by materials of internal structures.544
24 Hyoung Suk Suh et al.
0 0.02 0.04 0.06
0
0.05
0.1
0.15
D={C}
<latexit sha1_base64="Lo2d0A/lnJ5K/drliSIHO1Jm30Q=">AAACFHicbVDLSgMxFM3UV62vqks3wSIIQpmpgm6EQkVcVrAP6JSSSe+0oZkHyR2hDAV/wY2/4saFIm5duPNvTB8LbT0QODnnXpJzvFgKjbb9bWWWlldW17LruY3Nre2d/O5eXUeJ4lDjkYxU02MapAihhgIlNGMFLPAkNLxBZew37kFpEYV3OIyhHbBeKHzBGRqpkz9xA4Z9X7FBejWil9SV4KMrPcU40Ap1lej10VWTeydfsIv2BHSRODNSIDNUO/kvtxvxJIAQuWRatxw7xnbKFAouYZRzEw0x4wPWg5ahIQtAt9NJqBE9MkqX+pEyJ0Q6UX9vpCzQehh4ZnIcQc97Y/E/r5Wgf9FORRgnCCGfPuQnkmJExw3RrlDAUQ4NYVwJ81fK+8wUgKbHnCnBmY+8SOqlonNaLN2eFcrXD9M6suSAHJJj4pBzUiY3pEpqhJNH8kxeyZv1ZL1Y79bHdDRjzSrcJ39gff4Aaw+e2A==</latexit>
Fig. 17: The force-displacement curves from the double edge notched tests with different combination of
degrading energy density parts.
7 Acknowledgments545
The authors would like to thank two anonymous reviewers who have provided helpful suggestions and546
feedback that improved the manuscript. The first and corresponding authors are supported by the Earth547
Materials and Processes program from the US Army Research Office under grant contract W911NF-18-2-548
0306. The corresponding author is supported by the NSF CAREER grant from Mechanics of Materials and549
Structures program at National Science Foundation under grant contract CMMI-1846875, the Dynamic550
Materials and Interactions Program from the Air Force Office of Scientific Research under grant contracts551
FA9550-17-1-0169 and FA9550-19-1-0318. These supports are gratefully acknowledged. The views and con-552
clusions contained in this document are those of the authors, and should not be interpreted as representing553
the official policies, either expressed or implied, of the sponsors, including the Army Research Laboratory554
or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Gov-555
ernment purposes notwithstanding any copyright notation herein.556
References557
Shrirang Abhyankar, Jed Brown, Emil M Constantinescu, Debojyoti Ghosh, Barry F Smith, and Hong558
Zhang. Petsc/ts: A modern scalable ode/dae solver library. arXiv preprint arXiv:1806.01437, 2018.559
Fadi Aldakheel. A microscale model for concrete failure in poro-elasto-plastic media. Theoretical and Applied560
Fracture Mechanics, 107:102517, 2020.561
Fadi Aldakheel, Blaˇ
z Hudobivnik, Ali Hussein, and Peter Wriggers. Phase-field modeling of brittle fracture562
using an efficient virtual element scheme. Computer Methods in Applied Mechanics and Engineering, 341:563
443–466, 2018.564
Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris Richard-565
son, Johannes Ring, Marie E Rognes, and Garth N Wells. The fenics project version 1.5. Archive of566
Numerical Software, 3(100), 2015.567
Francisco Armero and Christian Linder. New finite elements with embedded strong discontinuities in the568
finite deformation range. Computer Methods in Applied Mechanics and Engineering, 197(33-40):3138–3170,569
2008.570
Elena Atroshchenko and St´
ephane P A Bordas. Fundamental solutions and dual boundary element meth-571
ods for fracture in plane Cosserat elasticity. Proceedings of the Royal Society A: Mathematical, Physical and572
Engineering Sciences, 471(2179):20150216, 2015.573
Zdenek P Bazant and Jaime Planas. Fracture and size effect in concrete and other quasibrittle materials, vol-574
ume 16. CRC press, 1997.575
Micropolar phase field fracture 25
D Bigoni and WJ Drugan. Analytical derivation of cosserat moduli via homogenization of heterogeneous576
elastic materials. Journal of Applied Mechanics, 74(4):741–753, 2007.577
Carola Bilgen and Kerstin Weinberg. On the crack-driving force of phase-field models in linearized and578
finite elasticity. Computer Methods in Applied Mechanics and Engineering, 2019. ISSN 00457825. doi: 10.579
1016/j.cma.2019.05.009.580
Jeremy Bleyer and Roberto Alessi. Phase-field modeling of anisotropic brittle fracture including several581
damage mechanisms. Computer Methods in Applied Mechanics and Engineering, 336:213–236, 2018.582
Michael J. Borden, Clemens V. Verhoosel, Michael A. Scott, Thomas J.R. Hughes, and Chad M. Landis. A583
phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineer-584
ing, 2012. ISSN 00457825. doi: 10.1016/j.cma.2012.01.008.585
Blaise Bourdin, Gilles A. Francfort, and Jean Jacques Marigo. The variational approach to fracture. 2008. ISBN586
9781402063947. doi: 10.1007/978-1-4020- 6395-4.587
Blaise Bourdin, Christopher J Larsen, and Casey L Richardson. A time-discrete model for dynamic fracture588
based on crack regularization. International journal of fracture, 168(2):133–143, 2011.589
Eric C. Bryant and Wai Ching Sun. A mixed-mode phase field fracture model in anisotropic rocks with590
consistent kinematics. Computer Methods in Applied Mechanics and Engineering, 2018. ISSN 00457825. doi:591
10.1016/j.cma.2018.08.008.592
Fabien Cazes, Anita Simatos, Michel Coret, and Alain Combescure. A cohesive zone model which is593
energetically equivalent to a gradient-enhanced coupled damage-plasticity model. European Journal of594
Mechanics-A/Solids, 29(6):976–989, 2010.595
Jinhyun Choo and WaiChing Sun. Coupled phase-field and plasticity modeling of geological materials:596
From brittle fracture to ductile flow. Computer Methods in Applied Mechanics and Engineering, 330:1–32,597
2018a.598
Jinhyun Choo and WaiChing Sun. Cracking and damage from crystallization in pores: Coupled chemo-599
hydro-mechanics and phase-field modeling. Computer Methods in Applied Mechanics and Engineering, 335:600
347–379, 2018b.601
Chukwudi Chukwudozie, Blaise Bourdin, and Keita Yoshioka. A variational phase-field model for hy-602
draulic fracturing in porous media. Computer Methods in Applied Mechanics and Engineering, 347:957–982,603
2019.604
JD Clayton and J Knap. Phase field modeling of twinning in indentation of transparent crystals. Modelling605
and Simulation in Materials Science and Engineering, 19(8):085005, 2011.606
JD Clayton and J Knap. Phase field modeling of directional fracture in anisotropic polycrystals. Computa-607
tional Materials Science, 98:158–169, 2015.608
Ren´
e de Borst and Clemens V Verhoosel. Gradient damage vs phase-field approaches for fracture: Similar-609
ities and differences. Computer Methods in Applied Mechanics and Engineering, 312:78–94, 2016.610
Eberhard Diegele, Rainer Els ¨
Aßer, and Charalampos Tsakmakis. Linear micropolar elastic crack-tip fields611
under mixed mode loading conditions. International journal of fracture, 129(4):309–339, 2004.612
Andreas Dietsche, Paul Steinmann, and Kaspar Willam. Micropolar elastoplasticity and its role in localiza-613
tion. International Journal of Plasticity, 9(7):813–831, 1993.614
W Ehlers and W Volk. On theoretical and numerical methods in the theory of porous media based on615
polar and non-polar elasto-plastic solid materials. International Journal of Solids and Structures, 35(34-35):616
4597–4617, 1998.617
A Cemal Eringen. Linear theory of micropolar elasticity. Journal of Mathematics and Mechanics, pages 909–618
923, 1966.619
A Cemal Eringen. Microcontinuum field theories: I. Foundations and solids. Springer Science & Business Media,620
2012.621
Gilles A Francfort and J-J Marigo. Revisiting brittle fracture as an energy minimization problem. Journal of622
the Mechanics and Physics of Solids, 46(8):1319–1342, 1998.623
Rudy JM Geelen, Yingjie Liu, John E Dolbow, and Antonio Rodr´
ıguez-Ferran. An optimization-based624
phase-field method for continuous-discontinuous crack propagation. International Journal for Numerical625
Methods in Engineering, 116(1):1–20, 2018.626
Rudy J.M. Geelen, Yingjie Liu, Tianchen Hu, Michael R. Tupek, and John E. Dolbow. A phase-field formu-627
lation for dynamic cohesive fracture. Computer Methods in Applied Mechanics and Engineering, 2019. ISSN628
00457825. doi: 10.1016/j.cma.2019.01.026.629
26 Hyoung Suk Suh et al.
Sara Grbˇ
ci´
c, Adnan Ibrahimbegovi´
c, and Gordan Jeleni´
c. Variational formulation of micropolar elasticity630
using 3d hexahedral finite-element interpolation with incompatible modes. Computers & Structures, 205:631
1–14, 2018.632
Timo Heister, Mary F Wheeler, and Thomas Wick. A primal-dual active set method and predictor-corrector633
mesh adaptivity for computing fracture propagation using a phase-field approach. Computer Methods in634
Applied Mechanics and Engineering, 290:466–495, 2015.635
Claudia Britta Hirschberger, Natarajan Sukumar, and Paul Steinmann. Computational homogenization of636
material layers with micromorphic mesostructure. Philosophical Magazine, 88(30-32):3603–3631, 2008.637
Anthony R Ingraffea and Mircea Grigoriu. Probabilistic fracture mechanics: a validation of predictive638
capability. Technical report, CORNELL UNIV ITHACA NY DEPT OF STRUCTURAL ENGINEERING,639
1990.640
Roderic Lakes and WJ Drugan. Bending of a cosserat elastic bar of square cross section: theory and exper-641
iment. Journal of Applied Mechanics, 82(9):091002, 2015.642
Ragnar Larsson and Yan Zhang. Homogenization of microsystem interconnects based on micropolar the-643
ory and discontinuous kinematics. Journal of the Mechanics and Physics of Solids, 55(4):819–841, 2007.644
Yong-Dong Li and Kang Yong Lee. Fracture analysis in micropolar elasticity: mode-i crack. International645
journal of fracture, 156(2):179–184, 2009.646
Anders Logg and Garth N Wells. Dolfin: Automated finite element computing. ACM Transactions on647
Mathematical Software (TOMS), 37(2):20, 2010.648
Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the finite649
element method: The FEniCS book, volume 84. Springer Science & Business Media, 2012a.650
Anders Logg, Garth N Wells, and Johan Hake. Dolfin: A c++/python finite element library. In Automated651
solution of differential equations by the finite element method, pages 173–225. Springer, 2012b.652
Eric Lorentz. A nonlocal damage model for plain concrete consistent with cohesive fracture. International653
Journal of Fracture, 207(2):123–159, 2017.654
Eric Lorentz, Sam Cuvilliez, and Kyrylo Kazymyrenko. Convergence of a gradient damage model toward655
a cohesive zone model. Comptes Rendus M´ecanique, 339(1):20–26, 2011.656
Eric Lorentz, Sam Cuvilliez, and Kyrylo Kazymyrenko. Modelling large crack propagation: From gra-657
dient damage to cohesive zone models. In International Journal of Fracture, 2012. doi: 10.1007/658
s10704-012-9746-7.659
Stefan May, Julien Vignollet, and Rene De Borst. A numerical assessment of phase-field models for brittle660
and cohesive fracture: γ-convergence and stress oscillations. European Journal of Mechanics-A/Solids, 52:661
72–84, 2015.662
M McGregor and MA Wheel. On the coupling number and characteristic length of micropolar media of663
differing topology. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470664
(2169):20140150, 2014.665
A. Mesgarnejad, B. Bourdin, and M. M. Khonsari. Validation simulations for the variational approach to666
fracture. Computer Methods in Applied Mechanics and Engineering, 2015. ISSN 00457825. doi: 10.1016/j.667
cma.2014.10.052.668
Christian Miehe, Martina Hofacker, and Fabian Welschinger. A phase field model for rate-independent669
crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in670
Applied Mechanics and Engineering, 2010a. ISSN 00457825. doi: 10.1016/j.cma.2010.04.011.671
Christian Miehe, Fabian Welschinger, and Martina Hofacker. Thermodynamically consistent phase-field672
models of fracture: Variational principles and multi-field fe implementations. International Journal for673
Numerical Methods in Engineering, 83(10):1273–1311, 2010b.674
Christian Miehe, M Hofacker, L-M Sch¨
anzel, and Fadi Aldakheel. Phase field modeling of fracture in multi-675
physics problems. part ii. coupled brittle-to-ductile failure criteria and crack propagation in thermo-676
elastic–plastic solids. Computer Methods in Applied Mechanics and Engineering, 294:486–522, 2015a.677
Christian Miehe, Steffen Mauthe, and Stephan Teichtmeister. Minimization principles for the coupled678
problem of darcy–biot-type fluid transport in porous media linked to phase field modeling of fracture.679
Journal of the Mechanics and Physics of Solids, 82:186–217, 2015b.680
Christian Miehe, Lisa-Marie Schaenzel, and Heike Ulmer. Phase field modeling of fracture in multi-physics681
problems. part i. balance of crack surface and failure criteria for brittle crack propagation in thermo-682
elastic solids. Computer Methods in Applied Mechanics and Engineering, 294:449–485, 2015c.683
Micropolar phase field fracture 27
RD Mindlin. Influence of couple-stresses on stress concentrations. Experimental mechanics, 3(1):1–7, 1963.684
RD Mindlin and HF Tiersten. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics685
and analysis, 11(1):415–448, 1962.686
Nicolas Mo¨
es, John Dolbow, and Ted Belytschko. A finite element method for crack growth without687
remeshing. International journal for numerical methods in engineering, 46(1):131–150, 1999.688
David Mumford and Jayant Shah. Optimal approximations by piecewise smooth functions and associated689
variational problems. Communications on pure and applied mathematics, 42(5):577–685, 1989.690
Patrizio Neff, Jena Jeong, and Andreas Fischle. Stable identification of linear isotropic cosserat parameters:691
bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mechanica, 211692
(3-4):237–249, 2010.693
T. T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab, R. Romani, and R. Le Roy. On the choice of694
parameters in the phase field method for simulating crack initiation with experimental validation. In-695
ternational Journal of Fracture, 197(2):213–226, Feb 2016. ISSN 1573-2673. doi: 10.1007/s10704-016-0082-1.696
URL https://doi.org/10.1007/s10704-016-0082-1.697
Nima Noii, Fadi Aldakheel, Thomas Wick, and Peter Wriggers. An adaptive global–local approach for698
phase-field modeling of anisotropic brittle fracture. Computer Methods in Applied Mechanics and Engineer-699
ing, 361:112744, 2020.700
RU Patil, BK Mishra, and IV Singh. An adaptive multiscale phase field method for brittle fracture. Computer701
Methods in Applied Mechanics and Engineering, 329:254–288, 2018.702
KH Pham, K Ravi-Chandar, and CM Landis. Experimental validation of a phase-field model for fracture.703
International Journal of Fracture, 205(1):83–101, 2017.704
Kim Pham and Jean-Jacques Marigo. From the onset of damage to rupture: construction of responses with705
damage localization for a general class of gradient damage models. Continuum Mechanics and Thermody-706
namics, 25(2-4):147–171, 2013.707
Aurel Qinami, Eric Cushman Bryant, WaiChing Sun, and Michael Kaliske. Circumventing mesh bias by708
r-and h-adaptive techniques for variational eigenfracture. International Journal of Fracture, 220(2):129–142,709
2019.710
Nakamura Sachio, Robert Benedict, and Roderic Lakes. Finite element method for orthotropic micropolar711
elasticity. International Journal of Engineering Science, 22(3):319–330, 1984.712
Hyoung Suk Suh and WaiChing Sun. An open-source fenics implementation of a phase field fracture713
model for micropolar continua. International Journal for Multiscale Computational Engineering, 17(6), 2019.714
S Teichtmeister, D Kienle, F Aldakheel, and M-A Keip. Phase field modeling of fracture in anisotropic715
brittle solids. International Journal of Non-Linear Mechanics, 97:1–21, 2017.716
Patrizia Trovalusci, Maria Laura De Bellis, Martin Ostoja-Starzewski, and Agnese Murrali. Particulate717
random composites homogenized as micropolar materials. Meccanica, 49(11):2719–2727, 2014.718
Clemens V Verhoosel and Ren´
e de Borst. A phase-field model for cohesive fracture. International Journal719
for numerical methods in Engineering, 96(1):43–62, 2013.720
Kun Wang and WaiChing Sun. A unified variational eigen-erosion framework for interacting brittle frac-721
tures and compaction bands in fluid-infiltrating porous media. Computer Methods in Applied Mechanics722
and Engineering, 318:1–32, 2017.723
Kun Wang and WaiChing Sun. A multiscale multi-permeability poroplasticity model linked by recursive724
homogenizations and deep learning. Computer Methods in Applied Mechanics and Engineering, 334:337–725
380, 2018.726
Kun Wang and WaiChing Sun. Meta-modeling game for deriving theory-consistent, microstructure-based727
traction–separation laws via deep reinforcement learning. Computer Methods in Applied Mechanics and728
Engineering, 346:216–241, 2019a.729
Kun Wang and WaiChing Sun. An updated lagrangian lbm–dem–fem coupling model for dual-730
permeability fissured porous media with embedded discontinuities. Computer Methods in Applied Me-731
chanics and Engineering, 344:276–305, 2019b.732
Kun Wang, WaiChing Sun, Simon Salager, SeonHong Na, and Ghonwa Khaddour. Identifying material pa-733
rameters for a micro-polar plasticity model via x-ray micro-computed tomographic (ct) images: lessons734
learned from the curve-fitting exercises. International Journal for Multiscale Computational Engineering, 14735
(4), 2016.736
28 Hyoung Suk Suh et al.
Jian-Ying Wu. A geometrically regularized gradient-damage model with energetic equivalence. Computer737
Methods in Applied Mechanics and Engineering, 328:612–637, 2018.738
Jian-Ying Wu and Vinh Phu Nguyen. A length scale insensitive phase-field damage model for brittle739
fracture. Journal of the Mechanics and Physics of Solids, 119:20–42, 2018.740
Jian-Ying Wu, Tushar Kanti Mandal, and Vinh Phu Nguyen. A phase-field regularized cohesive zone model741
for hydrogen assisted cracking. Computer Methods in Applied Mechanics and Engineering, 358:112614, 2020.742
A Yavari, S Sarkani, and ET Moyer. On fractal cracks in micropolar elastic solids. Journal of Applied Mechan-743
ics, 69(1):45–54, 2002.744
Yan Zhang, Ragnar Larsson, Jing-yu Fan, and Johan Liu. Interface modelling of microsystem intercon-745
nections using micropolar theory and discontinuous approximation. Computers & structures, 85(19-20):746
1500–1513, 2007.747