ArticlePDF Available

Smart Farming Technology Trends: Economic and Environmental Effects, Labor Impact, and Adoption Readiness

Authors:

Abstract and Figures

Farming faces challenges that increase the adverse effects on farms’ economics, labor, and the environment. Smart farming technologies (SFTs) are expected to assist in reverting this situation. In this work, 1064 SFTs were derived from scientific papers, research projects, and industrial products. They were classified by technology readiness level (TRL), typology, and field operation, and they were assessed for their economic, environmental, and labor impact, as well as their adoption readiness from end-users. It was shown that scientific articles dealt with SFTs of lower TRL than research projects. In scientific articles, researchers investigated mostly recording technologies, while, in research projects, they focused primarily on farm management information systems and robotic/automation systems. Scouting technologies were the main SFT type in scientific papers and research projects, but variable rate application technologies were mostly located in commercial products. In scientific papers, there was limited analysis of economic, environmental, and labor impact of the SFTs under investigation, while, in research projects, these impacts were studied thoroughly. Further, in commercial SFTs, the focus was on economic impact and less on labor and environmental issues. With respect to adoption readiness, it was found that all of the factors to facilitate SFT adoption became more positive moving from SFTs in scientific papers to fully functional commercial SFTs, indicating that SFTs reach the market when most of these factors are addressed for the benefit of the farmers. This SFT analysis is expected to inform researchers on adapting their research, as well as help policy-makers adjust their strategy toward digitized agriculture adoption and farmers with the current situation and future trends of SFTs.
Content may be subject to copyright.
Agronomy2020,10,743;doi:10.3390/agronomy10050743www.mdpi.com/journal/agronomy
Article
SmartFarmingTechnologyTrends:Economic
andEnvironmentalEffects,LaborImpact,
andAdoptionReadiness
AthanasiosT.Balafoutis
1,
*,FritsK.VanEvert
2
andSpyrosFountas
3
1
InstituteofBioEconomy&AgroTechnology,CentreofResearch&TechnologyHellas,
DimarchouGeorgiadou118,38333Volos,Greece
2
AgrosystemsResearch,WageningenUniversity&Research,P.O.Box16,
6700AAWageningen,TheNetherlands;frits.vanevert@wur.nl
3
DepartmentofNaturalResourcesManagementandAgriculturalEngineering,AgriculturalUniversityof
Athens,11855Athens,Greece;sfountas@aua.gr
*Correspondence:a.balafoutis@certh.gr;Tel.:+302311257651
Received:18February2020;Accepted:18May2020;Published:21May2020
Abstract:Farmingfaceschallengesthatincreasetheadverseeffectsonfarms’economics,labor,and
theenvironment.Smartfarmingtechnologies(SFTs)areexpectedtoassistinrevertingthissituation.
Inthiswork,1064SFTswerederivedfromscientificpapers,researchprojects,andindustrial
products.Theywereclassifiedbytechnologyreadinesslevel(TRL),typology,andfieldoperation,
andtheywereassessedfortheireconomic,environmental,andlaborimpact,aswellastheir
adoptionreadinessfromendusers.ItwasshownthatscientificarticlesdealtwithSFTsoflower
TRLthanresearchprojects.Inscientificarticles,researchersinvestigatedmostlyrecording
technologies,while,inresearchprojects,theyfocusedprimarilyonfarmmanagementinformation
systemsandrobotic/automationsystems.ScoutingtechnologieswerethemainSFTtypeinscientific
papersandresearchprojects,butvariablerateapplicationtechnologiesweremostlylocatedin
commercialproducts.Inscientificpapers,therewaslimitedanalysisofeconomic,environmental,
andlaborimpactoftheSFTsunderinvestigation,while,inresearchprojects,theseimpactswere
studiedthoroughly.Further,incommercialSFTs,thefocuswasoneconomicimpactandlesson
laborandenvironmentalissues.Withrespecttoadoptionreadiness,itwasfoundthatallofthe
factorstofacilitateSFTadoptionbecamemorepositivemovingfromSFTsinscientificpapersto
fullyfunctionalcommercialSFTs,indicatingthatSFTsreachthemarketwhenmostofthesefactors
areaddressedforthebenefitofthefarmers.ThisSFTanalysisisexpectedtoinformresearcherson
adaptingtheirresearch,aswellashelppolicymakersadjusttheirstrategytowarddigitized
agricultureadoptionandfarmerswiththecurrentsituationandfuturetrendsofSFTs.
Keywords:smartfarmingtechnologies;recording;reacting;guiding;farmmanagement
informationsystem;agriculturalrobots;automatedsystems
1.Introduction
AgriculturalperformanceintermsofproductivityledfarmingpracticesaftertheGreen
Revolutionofthe1950s,withlimitedattentionpaidtotherespectiveimpactonsustainability.
However,conventionalfarmingpracticesareatapointwhereagriculturalinputsareoverused,labor
isnolongerinabundance,andtheenergydemandiscontinuouslyincreasing[1].Newopportunities
areemerginginfarming,asaresultoftherapiddevelopmentofcommunicationnetworksandthe
availabilityofawiderangeofnewremote,proximal,andcontactsensors[2–6].Intheagricultural
Agronomy2020,10,7432of25
context,thesetechnologieshelpcaptureandtransmitgeolocalizedrealtimeinformationatlowcost
[7–10].Oncegathered,processed,andanalyzed,thesedatacanassistindeterminingthestateofthe
agroenvironment(e.g.,soil,crop,andclimate)and,whencombinedwithagroclimaticand
economicmodels,technicalinterventionscanbeappliedatthefieldlevelbyeitherconventional
meansorautomated/robotizedsolutions[11].
Alltheseaspectsareundertheconceptnamed“smartfarming”thatrepresentstheapplication
ofmoderninformationandcommunicationtechnologies(ICT)intoagriculture[12–14].Theseinclude
variablerateapplicators[15–17],Internetofthings(IoT)[18,19],geopositioningsystems[20,21],big
data[22–24],unmannedaerialvehicles(UAVs,drones)[18,25],automatedsystems,androbotics
[26,27].Smartfarmingisbasedonapreciseandresourceefficientapproachandattemptstoachieve
higherefficiencyonagriculturalgoodsproductionwithincreasedqualityinasustainablebasis[28].
However,fromthefarmer’spointofview,smartfarmingshouldprovideaddedvalueintheformof
moreaccurateandtimelydecisionmakingand/ormoreefficientexploitationoperationsand
management[29].
Smartfarmingtechnologies(SFTs)canbedividedintothreemaincategories:farmmanagement
informationsystems(FMIS),precisionagriculture(PA)systems,andagriculturalautomationand
robotics.FMISsrepresentmainlysoftwaresystemsforcollecting,processing,storing,and
disseminatingdataintheformrequiredtocarryoutafarm’soperationsandfunctions.Significant
researchworkwascarriedoutinthisareainthelast20years[30–33]andthisdevelopmentassisted
inhavingmanycommercialproductsalreadyonthemarketthat,inmanycases,showsignificant
economic,environmental,andsocialbenefits[28].
PAreferstothefarmingmanagementconceptaimedatoptimizinginputusebasedonrecording
technologiestoobserveandmeasureinter‐andintrafieldspatialandtemporalvariabilityincrops,
aimingtoimproveeconomicreturnsandreduceenvironmentalimpact[34].PAisabletoincrease
inputefficiencyformaintainingorevenincreasingproductionrate[35–37],usingremotesensing
technologiesfordatagatheringwitheithersatelliteplatformsforspaceimagery[38–40]or
aircrafts/UAVsforaerialapplications[41–43],combineduseofsensorsforgrounddataacquisition
[44],wirelessnetworksforinterconnectingthem[4,10,45,46],geospatialdataanalyticscomingfrom
differentsources[47],decisionsupportsystems(DSSs)foroptimizedfarmingdecisionmaking
[48,49],andothers.
Reactingtechnologiesarebasedonagriculturalautomationandroboticsthatareseparate,but
closelyrelatedICTsectors.Inthecaseofopenfieldagriculture,theyareinterconnectedtocoverthe
processofapplyingautomaticcontrol,artificialintelligencetechniques,androboticplatformsatall
levelsofagriculturalproduction.Automationtechnologiesinagriculturefoundhighresearch
interestwithmachinelearningbeingthoroughlyusedforagriculturalpurposes[50–52],aswellas
computervisionandartificialintelligence[53,54],threedimensional(3D)imagery[55],and
navigationsystemsforoffroadagriculturalvehicles[56].Basedonthesedevelopmentsandonthe
industrialroboticstateoftheart,agriculturalrobotsofalltypeswereappliedinrecentyears[26,57–
59]withspecifictasks,suchasweedcontrol[60],harvesting[61],etc.
Attentiontowardsmartfarmingisgrowingrapidly,andseveralstudiesofthecurrentstatusof
SFTdevelopmentandadoptionrateamongfarmersworldwidewerereleased.Themostknown,due
toitscontinuousbiannualreleasefrom1997untiltoday,istheCropLife/PurduePrecisionAgSurvey
thatdealswithadoptionratesofcertainSFTsintheUnitedStates(US)andCanada,basedonretail
cropinputdealersregardingtheirsmartfarmingservices.Thelastversion(2019)[62]showedthe
increasinguseofdataforcropmanagementdecisions,withsensingtechnologyservices(soil
sampling,satellite/UAVimaging,yieldmapping)andvariablerateservicesbeingsignificantly
increasedincomparisontothepreviousedition(2017),presentingthecontinuousSFTadoption
incrementintheUS.
InEurope,wheresmartfarmingislessdiffusedthanNorthAmerica,SFTuptakeislessexplored,
whilemoststudiesarecountryspecific[63].However,recentSFTadoptionresearchwasconducted
indifferentEuropeancountriestoalsoobservegeographicalandculturalcausesofreducedadoption
rates[29,63,64].Particularly,Barnesetal.(2019a)[63]consideredmachineguidanceandvariablerate
Agronomy2020,10,7433of25
nitrogentechnologiesasthemostsignificantSFTsforarablefarmingandconductedanempirical
examinationofuptakeinfiveEuropeancountries.Theyshowedthatfarmsizeandincomereflectthe
mostimportantbarrierstoadoptionforallcountriesunderinvestigation;furthermore,incountries
withsmallfarmsoflowincome,subsidyandtaxationwereconsideredthemainpositivedriversof
SFTuptake.Barnesetal.(2019b)[64]alsoidentifiedincentivesforSFTstobeadoptedinEuropeusing
datafromthesamefivecountriesasinReference[63],anditwasfoundthatcurrentSFTadoptersare
divergentfromnonadopters,whilethefirstadoptersareinfluencedbyeconomicandinformational
interventions.Increasingadoptionisconstrainedbyskepticismtowardeconomicreturnsandthat
EuropeanUnion(EU)policydoesnotrecognizecomplexityacrossdomainstoenableuptake.
Kerneckeretal.(2020)[29]alsoworkedontheadoptionoftechnologicalinnovationsinagriculture
byconductingasurveyinsevenEuropeancountriesandinfourcroppingsystems,andtheyshowed
thatadoptionincreaseswithfarmsizeinarablefarms.FarmersperceiveSFTasuseful,buttheyare
stillnotconvincedofSFTpotential.Ontheotherhand,expertsseemtobemoreconvincedofSFT
assetsandexpectalotfromSFTfuturedevelopment.Countryspecificitiesshouldbeconsideredto
improveSFTdiffusion.
EvenifadoptionratescanbeincreasedthroughoptimizationofSFTresultsandrelatedpolicies
andincentives,SFTscomeswiththeriskofreboundeffectsoftheiruseinagriculturalpractices.This
isbecause,evenifsmartfarmingisexpectedtoconsiderablycontributetoenvironmentaland
resourceprotection(asstatedaboveusingPAtechniques),theoccurrenceofpotentialreboundeffects
foragriculturalland,water,fertilizers,andplantprotectionproductsishighlyprobable[65–67].
Itisevidentthatsmartfarmingevolvestechnologicallyatafastpaceinbothresearchandmarket
domains,butitsadoptionfromendusersdoesnotfollowthesamefootsteps.Ifanevaluationofthe
promisingpositiveimpactofSFTsaccompaniedbyanadoptionreadinessanalysiswouldbe
available,thentheuptakeofsuchtechnologieswouldpossiblyincrease.Hence,athorough
assessmentandcomparisonofSFTsfromresearch(scientificpapers),innovation(researchprojects),
andmarket(commercialproducts)couldassistinbetterunderstandingtheevolutionofSFTsand
howthisevolutionaffectsfactorsofadoptionreadinessandrelatedeconomic,environmental,and
laboraspectswithinafarm.Basedonthisneed,theobjectiveofthisstudywas(i)tomaptheexisting
researchandcommercialSFTswithregardtotheirtechnologicalreadinesslevel,type,andthefield
operationtheyareusedfor;(ii)toidentifytheeaseofSFTadoption;and(iii)toprovidethemain
impactsofSFTsonfarmeconomics,environment,andlabor.Thisworkisexpectedtocontributeto
theliteraturewithaglobalperspectiveofvariousSFTsdevelopedfromresearchtoinnovationand
thentothemarket,aswellasshowthedifferencesintheirimpactandadoptionreadiness.
2.MaterialsandMethods
Thisworkfocusesonopenfieldproduction;hence,weconsideredSFTsusedinarable
(includingfodderproduction)andhorticultural(fruitandvegetableproduction)farming.Areview
ofsuchSFTswasconductedbasedonscientificliterature,currentandpastEUresearchprojects,and
commerciallyavailableproducts.TheeconomicandenvironmentalchallengesthatSFTsfacewere
determinedbyasetofkeyperformanceindicators(KPIs)(Section2.1).FortheselectionoftheSFTs,
asystematicsearchprocedurewasdevelopedforscientificpapers,researchprojects,andcommercial
products(Section2.2).Finally,informationabouttheidentifiedSFTswascollectedbydevelopinga
questionnairetorecorddataforeachSFT’sadoptionreadinessanditsperformanceregardingthe
selectedKPIs(Section2.3).
2.1.KeyPerformanceIndicatorsforOpenFieldProduction
Severalauthorsproposedgroupingindicatorstomeasuretheperformanceofagricultural
systems.InastudyintheUnitedKingdom(UK),indicatorclusters(e.g.,biodiversity,energy,value
chain)weredefined,withmeasurableparametersforeachcluster(e.g.,numberofspeciesonthe
farm,energybalance,totalvalueofproduction)[68].Inanotherstudy,theliteratureonagricultural
sustainabilitywassurveyed,andindicatorswereidentifiedandgroupedinathreelevelhierarchy
[69].Anindepthreviewofindicatorconstructionisalsoavailable[70].Indicatorsetswerealso
Agronomy2020,10,7434of25
proposedbypublicorganizations,suchastheEuropeanEnvironmentalAgency(EEA)[71]andthe
OrganizationforEconomicCooperationandDevelopment(OECD)[72],aswellasprivate
organizations,suchasTheSustainabilityConsortium(TSC)[73]andGlobalReportingInitiative
(GRI)[74].Alltheseindicatorsetsaredifferentandhaveslightlydifferentpurposes.Thereisnotone
singlesetofindicatorsthatsuitsourcurrentpurposebetterthanalltheothers.Weusedthepublished
indicatorsetsforourstudy.
Weexaminedthepublishedindicatorsandderivedchallengesinagriculturethatcouldbe
possiblyaddressedbySFTs.InTable1,thesechallengesarelistedalongwithSFTsthatcanbeused
toaddressthem.
Table1.Challengesidentifiedinopenfieldfarmingaccompaniedbyrelevantsmartfarming
technologies(SFTs)thatcouldaddressthem.DSS—decisionsupportsystem;FMIS—farm
managementinformationsystem;VRA—variablerateapplication;RFID—radiofrequency
identification;QRQuickResponse..
Challeng
e
RelevantSmartFarmingTechnologies
Resourceefficiency(e.g.,water,nutrients,
pesticides,labor)
sensorsandnetworks
bigdataanalytictools
DSS
FMIS
intelligentwaterapplicationsystems
VRAfertilization/pesticidessystems
RFIDtags
Management/preventionofdiseases,
weeds,etc.
earlywarningsensorsandnetworks
specificfarmmachines
FMIS
DSSforinfestationmanagement
VRAsprayingsystem
Riskmanagement(e.g.,foodsafety,
pesticideresidueeliminationand
emissionofagrochemicals,etc.)
sensors(e.g.,weatherstation,multispectral
cameras,thermalcameras,etc.)
traceabilitytechnology
barcodes,QRcodes,RFID
realtimerecordingsystems
Compliancewithlegislationand
standards(greeningofCAP;regulations
onsoilmanagement,pesticide,fertilizer,
andwateruse)
recordingtechnologies
webbased,open,andinteroperablestandardsfor
endtoendtrackingsystems
Collaborationacrossthesupplychain
(supplychainofcompaniesand
processors)
smarttraceabilitysystem
smartlogisticssystem
variousanalyticaltools
WeexaminedthepublishedindicatorstocreatealistofKPIstobeusedforassessingtheimpact
ofSFTsintermsofthreemainissuesassociatedwithagriculturalsystemsthatareofhighimportance
forendusersandthegeneralpublic:farmeconomics,theenvironment,andlaborwithinthefarm
(Table2).ThedefinitionofeachKPIandthereasoningforincludingthemaregiveninTable2.These
KPIsare,inmanycases,interconnectedandmightalsohaveanimpactoneachother.
Agronomy2020,10,7435of25
Table2.Keyperformanceindicators(KPIs)combinedwiththeirdescriptionandthereasoningfor
theirinclusiontoassesstheimpactofsmartfarmingtechnologies(SFTs)inopen–fieldfarming,
regardingfarmeconomics,environment,andlaborwithinthefarm.
A/A
Key
Performance
Indicator
DescriptionoftheKPIinRelationtothe
SpecificImpactCategory
ReasoningtobeSelectedasSignificant
KPIintheSpecificImpactCategory
FarmEconomics
1Productivity
Ratioofavolumemeasureofoutputto
avolumemeasureofinputuseinfarm
production[75]
Itisanindextoexpressthe
optimizationoftheagricultural
practicesofafarmthroughSFTuse,
whichreflectsfarmeconomics
2Qualityof
product
Qualitativefeaturesofagricultural
products(e.g.,intact,sound,clean,free
ofpests,freshappearance,normaland
sufficientphysiologicaland
morphologicaldevelopment,maturity,
firmness,freeofdecayaffecting
edibility,absenceofdefects)[76]
TheinfluenceofSFTsonthe
productqualitycouldincrease
productvalue
3Revenue
Incomeofafarmfromitsnormal
businessactivities,usuallyfromthe
salesofagriculturalgoodstocustomers
[77]
Revenueiscrucialfortheviability
offarms,andSFTscouldassistinits
increasebyoptimizingproduction
andquality
4InputcostsCostofinputs(e.g.,seeds,fertilizers,
pesticides,fuel,irrigationwater)[78]
ThemainroleofSFTsisthe
optimizationofinputsthatreflect
costreductionforafarm
5Variablecosts
Expensesthatvaryindirectproportion
tothequantityofoutput(e.g.,raw
materials,packaging,labor)[79]
Reductionofallfarmexpenses
employingdifferentkindsofSFTs
canpositivelyimpactthefinal
income
6Cropwastage
Cropthatgetsspilledorspoiltbeforeit
reachesthemarket(e.g.,fruitswith
blotsorblemishfrompests,orof
irregularshapefromabnormal
development)[80]
SFTscouldassistinbettercrop
protectionschemesandselective
harvestingreducingcropwastage
7EnergyuseAmountofenergythatisusedforall
needsofafarm[81]
Optimizedprocessesinthefarm
(e.g.,tractororrobotrooting,
selectiveharvestingthatreduces
storageneeds,etc.)canreduce
energyuseandtherespectivecost
Environment
8Soil
biodiversity
Thevariationinsoillife,fromgenesto
communities,andtheecological
complexesofwhichtheyarepart,i.e.,
fromsoilmicrohabitatstolandscapes
[82]
Optimizedcropproductionusing
SFTs(i.e.,minimizingfieldpasses
usingautoguidance)could
preservesoilbiodiversityand
sustainability,allowingsoillife
conservation
9Biodiversity
Thenumberandtypesofplantsand
animalsthatexistinaparticularareaor
intheworldgenerally[83]
Reducedbiodiversityimpact
throughoptimizationofinputs
(variableratefertilizationor
pesticideapplication)andspray
driftreductionusingSFTs
10FertilizeruseExtentoffertilizeruseinagricultural
production[84]
Decreasingthefertilizeruse
applyingSFTsmeansthatleaching
togroundwaterorhighsoilGHG
emissionscanbereduced
11Pesticideuse Extentofpesticideuseinagricultural
production[85]
Pesticideusereductionemploying
SFTscanprovidelesspointand
Agronomy2020,10,7436of25
diffusecontaminationofnoncrop
areas
12Irrigation
wateruse
Waterappliedbyanirrigationsystem
tosustainplantgrowthinagricultural
andhorticulturalpractices[86]
OptimizingwaterusewithSFT
applicationwouldassistin
maintainingwaterreservesand
reduceoverpumping
13CH4emissions
Allreleasesofthemaingreenhouse
gasesrelatedtoagriculturalactivity
(CH4,CO2,N2O)derivedduringcrop
productiononafarm[87]
Improvingallaspectsofinput
application(seeds,fertilizers,
pesticides,fuel,irrigationwater)
canresultinlessGHGemissions
withapositiveimpactonglobal
warmingpotential
14CO2emissions
15N2Oemissions
16NH3emissionsNH3releasesmainlyfromfertilizeruse
forcropproductiononafarm[88]
Acidificationeffectsattributedto
drydepositionofNH3couldbe
reducedbynitrogenapplication
throughSFTs
17NO3leaching
MovementofNO3tothegroundwater
increasingnitrogenlossesfrom
nitrogenfertilizerinputstoagricultural
land[89]
Controllingnitrogenfertilizationto
optimizeitsusefromthecrops
wouldreduceNO3leachingwitha
positiveimpactonsoilandwater
resources
18Pesticide
residues
Anysubstanceormixtureofsubstances
infoodresultingfromtheuseofa
pesticideontherespectivecrop
includinganyspecifiedderivatives
consideredtobeoftoxicological
significance[90]
VariableratesprayingthroughSFTs
canlessenpesticidedosage
reducingtheresiduesonproducts
intherespectivefieldanddiminish
spraydriftforlessresiduesin
neighboringfields
19Weedpressure
Effectsofweed,pest,anddisease
growthinafield[91]
Controllingweed,pest,anddisease
populationanddensitymainlywith
timelyandprecisepesticide
applicationwouldreducetheir
impactonthefinalyieldandquality
20Pestpressure
21Disease
pressure
Labor 
22Labortime
Timedevotedtolaborandconsidered
asacommodityorasameasureof
effort[92]
SFTscouldreducethelabortime,
throughroboticapplications,auto
guidance,teleoperation
23Farmer’sstress
Adversereactionpeoplehaveto
excessivepressureorothertypesof
demandplacedonthem[93]
SFTscouldreducefarmers’stress
throughbetteroptimizationofthe
resourcesandschedulingofthe
operations
24HeavylaborHeavypracticalwork,especiallywhen
itinvolveshardphysicaleffort[94]
SFTscouldreduceheavylabor
usingautomationandrobotic
technologiesfordemandingfield
operations
25Workers’
injury
Injuryorillnesscaused,contributedor
significantlyaggravatedbyeventsor
exposuresintheworkenvironment[95]
Automationandroboticscould
reducefarmers’injuries,i.e.,
automatichitchcouplingor
automaticsprayerfilling
26Accidents
Discreteoccurrenceinthecourseof
workleadingtophysicalormental
occupationalinjury[96]
SFTsprovideadvancedsensorsfor
activeandpassiveoperations,such
asautoguidanceforautomatic
turningsinheadlandsthatreduce
accidents
2.2.Search
WesearchedforSFTsderivedfromscientificpapers,researchprojects,andindustrialproducts.
Themethodologyusedisgivenbelow.
Agronomy2020,10,7437of25
2.2.1.PeerReviewedScientificPapers
WeemployedScopus(www.scopus.com)asithasabroadcoverageincludingmanydisciplines
(notjustagriculture)andscientificjournalsofdifferentranking(notonlytopjournals).
Aquerywasdevelopedinconsultationwithaprofessionallibrariantosearcharticlesthatmight
describeSFTs.Thequeryconsistedoftwoparts:afirstpartthataimedtoselectallarticlesrelatedto
technology,andasecondpartthataimedtoselectallarticlesrelatedtoopenfieldfarming.Thetwo
partsofthequerywerejoinedwithan“AND”clause.Theselectionofkeywordswassupplemented
byconsiderationsonthescopeofrelevanttimeandsubjectrelatedsettings.Thefollowingquerywas
usedtoselectarticles:
(TITLEABSKEY(sensorordecisionsupportorDSSordatabaseorICTorautomat*or
autonom*orrobot*orGPSorGNSSor“informationsystem”or“imageanalysis”or“image
processing”or“precisionagriculture”or“smartfarming”or“precisionfarming”))
AND
(TITLEABSKEY(agricult*orcrop*orarabl*orfarm*orvineyardororchardorhorticult*or
vegetabl*))
AND
(LIMITTO(DOCTYPE,”ar”)ORLIMITTO(DOCTYPE,”re”))AND(LIMITTO(SUBJAREA,
”AGRI”)ORLIMITTO(SUBJAREA,”ENGI”)),
wherekeywordsendingwith“*”couldhavedifferentendings(e.g.,automat*willretrieve
“automatic”,aswellas“automated”);GPS—globalpositioningsystem,GNSS—globalnavigation
satellitesystem.
Resultswerelimitedbyyear,documenttype(article),subjecttype(agriculture),andlanguage
(English).Forourpurpose,wecollectedpapersonlyfrom2012andlater,inordertofocusonrecent
SFTsthatarelikelyofinteresttoallrelatedstakeholdersandespeciallyendusers.Thequerywas
optimizedandverifiedbyusingarandomsampleof10keypapersthatwereconsideredrelevantto
thedevelopmentofSFTspracticalforfarmers.Thequerywasconsideredcompletedwhenthese10
paperswereincludedinthequeryresult.
TheScopusqueryresultedinalargenumberofarticlesthatareexpectedtoholdinformationon
SFTs.Fromthesepapers,thereweremanythatwerenotrelevanttotheopenfieldagriculture.
Therefore,amanualselectionprocedurewasusedtoselectonlythearticlesthatarerelevant,namely,
articlesdescribingatechnologythatcan(orcouldbe)usedbyafarmerintheirdailyfarmingpractice.
Throughout,wefocusedonthequestion,“isthisarelevantSFT?”.Weusedanexclusionapproach
andremovedpapersrelatedto(i)postharvest,processing,distributing,ormarketing,(ii)
evapotranspirationcalculations,(iii)landsuitability(selectingonlyDSSsrelatedtocropssuitability),
(iv)watermanagement,likedroughts(butincludinganythingrelatedtoirrigation),(v)tractor
engines,and(vi)greenhousecultivation.
Havingavailableonlythescientificpapersrelevanttooursearch,themanualselectionofarticles
continuedinthreerounds.Firstly,weusedthetitletoremovepapersthatwerenotrelevant.For
example,apaperwiththetitle“ANewAssessmentofSoilLossDuetoWindErosioninEuropean
AgriculturalSoilsUsingaQuantitativeSpatiallyDistributedModelingApproach”wasselectedby
ourquerybecauseitsabstractcontainedtheterms“geographicinformationsystem”and“arable
land”.However,thetitleclearlydoesnotdescribeatoolusefultofarmers.Therefore,weremovedit
fromourlist.Secondly,forthosepaperswithrelevanttitles,wealsoreadtheabstractandexcluded
thosenotpracticallyusefulforfarmers.Asanexample,apaperwiththetitle“WirelessSensor
NetworkandInternetofThings(IoT)SolutioninAgriculture”seemedofinterest.Theabstractmade
itclearthatthispaperdescribednetworkinfrastructurethatcouldcertainlybeusedinafarm.
However,thiswouldnotbeuseddirectlybyfarmers.Ratheritwouldbeacomponentinthe
developmentandoperationalizationofasensornetworkthatinturnwouldsupporttoolsfor
decisionmakingbyfarmers.Inshort,thispaperdidnotdescribeanSFTdirectlyusefulforafarmer
inopenfieldagriculture,anditwasexcluded.Asathirdstep,weattemptedtolocatethefulltextof
thepaper.Ifthatprovedimpossible,orifthepaperturnedouttobewritteninalanguageotherthan
English,thenweremovedfromthelist.Ifthefulltextindicatedthatthepaperwasnotrelevantto
Agronomy2020,10,7438of25
openfieldagriculture,itwasalsoremovedfromthelist.Forpapersleftattheendofstepthree,the
authorsansweredthequestionsofthesurveyofSection2.3usingthefulltextofthepaper.
2.2.2.ResearchProjects
Fortheretrievalofresearchprojects,anactivesearchwascarriedoutforEUfundedprojects.
Horizon2020andFP7programswerecollectedfromtheCORDIS[97]websiteoftheEUand
importedintoarelationaldatabase.TheScopusquerywastranslatedtoanSQLquerywhich
searchedcolumns“title”and“objective”forEUresearchprojects,usingthesamelistofkeywordsas
intheScopusquery.Inthisprocess,theauthorsansweredthequestionsofthesurveyofSection2.3
usingtheinformationoftheproject’swebsiteanddeliverablesand,inmanycases,viapersonal
communicationwiththeprojects’coordinators.
2.2.3.IndustrialProducts(CommerciallyAvailableProductsandServices)
Forthecollectionofindustryresults,acallwasannouncedthroughtheSmartAKISproject
newsletter(www.smartakis.com),aswellthroughtheEuropeanAssociationofAgricultural
Machinery(CEMA)tobecomeknownbythenetworkofSFTcompaniesunderitsumbrellaorrelated
totheassociation.Awebsearchgaveinsightintothecompaniesthatarepossiblyinvolvedinthe
developmentofSFTs.Wesearchedforcompanieswithrelevantcredentialsforsmartfarming,such
asinvolvementintheproductionoffarmingequipmentandmachineryorstakeholdersinvolvedin
thedevelopmentofagronomicsoftware.TherelevantnetworksofFIWAREFRACTALSandSmart
AgrifoodIIwereconsulted.Furthermore,weusedallSmartAKISpartnersnetworkofadvisersto
contactrelevantstakeholders,andthelaststepwasfortheauthorsofthisworktoconductadesk
searchthoughinternettolocatemorecommercialSFTs.ThequestionnairewasansweredbytheSFT
providerswiththeassistanceoftheauthorsofthiswork.Inthecasethatthequestionnairewas
inadequatelyfilledin,theSFTproviderswerecontactedagain(thequestionnaireaskedfortheir
consenttodoso)toprovidethemissingorinconsistentinformation.Ifthequestionnairewasstillnot
totallyfilledin,thentheSFTwasexcludedfromthesearch.
2.3.QuestionnaireDevelopment
AquestionnairewasconstructedforrecordingdataabouteachSFTfoundinthethreecategories
(scientificpapers,researchprojects,commercialproducts).Thequestionnairewasdevelopedbased
ontheassessmentofthefulllistofchallengesandrespectiveKPIs,andthreeversionswereproduced
(oneforeachcategory).Thequestionnaireconsistedoftwomainparts:(1)descriptiveinformation
fortheSFT,includingbasicinformation,technologyreadinesslevel,type,andfieldoperationthatit
isusedfor;(2)assessmentinformationabouteaseofadoptionandpossibleeffectsonfarmeconomics,
environment,andlabor.TheassessmentsectionwasevaluatedusingaLikertscaleoffivelevels.The
responseswereanalyzedusingdescriptivestatisticsforLikertdatainRsoftware(freesoftwareby
theRFoundationfromStatisticalComputing,Vienna,Austria).Thequestionnairewasalsobasedon
theEIPAGRIcommonformat[98]asmuchaspossible,anditwasdistributedonlineviaalinktothe
identifiedstakeholders.Thespecificcontentofeachpartinthequestionnaireisdescribedbelow.
2.3.1.BasicInformationaboutSFT
Afterquestionsthatwerespecifictothetypeofentry(scientificpaper,researchproject,or
industrialproduct),somebasicinformationquestionswereaskedabouttheSFT.Indicatively,for
papers,theauthorship,scientificjournal,yearofpublication,andDOIwereasked,while,forprojects,
durationandstatus(ongoingorterminated),typeofEUfunding,budget,andthecoordinatorwere
given.Finally,forproducts,thedetailsofthecompanyandthepersoninchargeweredefined.
2.3.2.TechnologyReadinessLevel(TRL)
TheTRLofatechnologyindicatesitsmaturitylevelandrangesfromTRL1(basicprinciples
observed)toTRL9(actualsystemproveninoperationalenvironment)[99].Basedonthis
Agronomy2020,10,7439of25
classification,TRLwasspecifiedfortheSFTspresentedinscientificpapersandtheresearchprojects,
while,forcommercialproducts,itwasconsideredasTRL9becausetheyarealreadyoperationalon
themarket.TRLwasdefinedbytheauthorsusingtheAFRLTRLCalculator(version2.2.)[100]for
eachoftheincludedSFTsinthesearch.Theprocesswasasfollows:threeequalbatchesofSFTsfrom
bothscientificpapers(177papersineachbatch)andresearchprojects(twobatchesof31projectsand
onebatchof32projects)wererespectivelydefined.Then,eachauthorwasassignedwithtwobatches
ofeachcategory,inordertoremainneutralinallpapers,andprojectsofthethirdbatch.Incaseof
disagreementabouttheTRLlevelofacertainSFTbetweenthetwoauthorsthatassessedthesame
batch,thethirdauthorwouldbeaskedtoevaluate,andhisassessmentwouldbetakenintoaccount.
Itshouldbementionedthatthelevelofdisagreementwasverylow(in17outof531scientificpapers
(3%)andinsixoutof94researchprojects(6%)),anditremainedbetweentwoneighboringTRLlevels
duetotheaccuratedefinitionsgivenbyReferences[77,78]andtheexperienceoftheauthors.
2.3.3.TypologyofSFTs
ForabetterunderstandingoftheSFTlandscape,theclassificationofSchwarzandHerold[101]
wasused.TheseauthorsclassifiedSFTsasrecording,reacting,orguidingtechnologies.Inaddition
totheseclasses,inthiswork,“FMIS”and“robotic/automationsystem”wereused,becauseresearch,
innovation,andmarketapplicationoftheseSFTcategoriesfoundhighinterestinrecentyears
[28,52,59].Itshouldbenotedthatthesefiveclassesarenotmutuallyexclusive,meaningthata
particularSFTmayberecordingandreactingatthesametime.AroboticSFTwilltypicallyusesome
kindofguidingtechnologyandeitherrecordorreact,orpossiblydoboth.Theprincipalfunction
wasusedinouranalysis.
2.3.4.FieldOperationConductedwiththeSFT
ThemainfieldoperationsthateachSFTcouldbeusedweregiveninthequestionnairetobe
chosen,namely,(1)tillage,(2)sowing,(3)transplanting,(4)fertilization,(5)pesticideapplicationfor
weed,pest,anddiseasecontrol,(6)irrigation,and(7)cropscouting(measuringandrecordingcrop
andsoilparametersinthefield),forexample,inthesituationoffielddataretrieval.Theoptionto
includeanotherfieldoperationwasprovided.
2.3.5.EaseofAdoptionoftheSFT
InadditiontocharacteristicsofSFTsthatrelatetothechallengesthatfarmersface,therewere
alsoquestionsrelatedtoeaseofadoptionofSFTs.TheRogersmethod[102]forevaluationof
innovationswasused,wherepotentialadoptersevaluateaninnovationintermsofitsrelative
advantage(theperceivedefficienciesgainedrelativetocurrenttoolsorprocedures),compatibility
withthepreexistingsystem,complexityordifficultytolearn,testability,potentialforreinvention
(usingthetoolforinitiallyunintendedpurposes),andobservedeffects.Respondentswereaskedto
indicatewhetherornottheyagreedwiththefollowingsevenstatements,usingtheLikertscalein
fivelevelsofagreement(stronglydisagree,disagree,noopinion,agree,andstronglyagree):
1. TheSFTreplacesatoolortechnologythatiscurrentlyused.TheSFTisbetterthanthecurrent
tool.
ThisquestionisspecificallytargetedatSFTsthataimatcreatingaddedvalueoverexistingtools.
2. TheSFTcanbeusedwithoutmakingmajorchangestotheexistingsystem.
SomeSFTsareexpectedtorequiremorechangestotheexistingsystemthanothers.
3. TheSFTdoesnotrequiresignificantlearningbeforethefarmercanuseit.
Thisstatementcangiveanindicationonthelearningeffortthatneedstobemadebythefarmer
andcanbeusefulinordertocomparethedifferenceinlearningrequirementsbetweenSFTs.
4. TheSFTcanbeusedinotherusefulwaysthanintendedbytheinventor.
Agronomy2020,10,74310of25
SomeSFTsmayholdmultiplepurposesusefulfortheachievementofmanyverydifferent
effects.
5. TheSFThaseffectsthatcanbedirectlyobservedbythefarmer.
Itisconsideredanadvantagewheneffectscanbedirectlyobservablebyafarmer,asitwillmake
itmorelikelythatthefarmerwillfindtheSFTrelevantfortheirsituation.
6. UsingtheSFTrequiresalargetimeinvestmentbythefarmer.
Thisstatementwillgiveanindicationonthetimeinvestmentthatisneededfromthefarmerin
ordertousetheSFT,whichwillplayaroleinhowattractivetheSFTistouse.
7. TheSFTproducesinformationthatcanbeinterpreteddirectly(exampleoftheopposite:theSFT
producesavegetationindexbutnobodyknowswhattodowithit).
Itisdesirablewhenresultsarepresentedinsuchamannerthattheyareeasytointerpret.This
makestheresultsmoreinterestingforendusersandresultsininterpretationconsistency.
2.3.6.EffectofUsingtheSFT
AveryimportantpartofthisworkwastodefinetheeffectofeachSFTinagriculturalproduction.
TheidentifiedKPIsinSection2.1wereusedascriteriatomeasuretheimpactonfarmeconomics,the
environment,andlaborwithinthefarm.Effectswereexpectedonthese26criticalaspects,ofwhich
fiveareinfluencedpositivelybytheSFTs,increasingthem(productivity;qualityofaproduct;
revenue;soilbiodiversity;biodiversity),and21areaffectedpositivelybytheSFTs,decreasingthem
(inputcosts;variablecosts;cropwastage;energyuse;CH4emissions;CO2emissions;N2Oemissions;
NH3emissions;NO3,emissions;fertilizeruse;pesticideuse;irrigationwater;labortime;farmers’
stress;heavylabor;injury;accidents;pesticideresidue;weedpressure;pestpressure(insects);disease
pressure).EffectscouldbeexpressedusingtheLikertscaleinfivelevelsofchange(largedecrease,
somedecrease,noeffect,someincrease,andlargeincrease).Therespondentcouldsupplementthis
scalewithrelevantpercentagesorevenmorepreciseindicationoftheeffectsoftheSFTwhenthis
waspossible.
3.ResultsandDiscussion
ThissectionprovidesthefinalnumberofSFTsidentifiedinscientificpapers,researchprojects,
andcommercialproductsthroughoursearch.TheseSFTswerepresentedandcomparedintermsof
technologyreadinesslevel(TRL1–9),type(recording,reacting,guiding,FMIS,and
robotic/automation),andfieldoperationsaddressed(tillage,sowing,transplanting,fertilizing,
weeding,cropprotection,irrigation,harvesting,scouting).Thiswasusedtopresentsomeperspective
trendsofthecurrentsituationinSFTdevelopment.Thefactorsthatwereexpectedtoaffectadoption
readinessofSFTswerealsodescribed,whiletheeffectonfarmeconomics,theenvironment,and
laborwasgiven,inordertoidentifythemostimpactfulcategoriesofSFTswithintheinventoryof
thiswork.
3.1.NumbersandKindsofSFTs
ThenumberofarticlesdescribinganSFTisgrowingrapidly(Figure1),showingthetrendof
researchtotransferconventionalagriculturebasedontheGreenRevolutionconcept(agricultural
mechanization,uniforminputapplication)toamodernsmartagriculture(ICTinterferencein
agriculturalmachineryforincreasedprecisionandspecifiedinputapplication).
Intotal,13,251scientificpaperswerefoundinthecitationdatabaseScopuswiththequery
describedinSection2.2,andthemanualselectionresultedinasmallfractionofthesescientificpapers
(531or4%ofthetotal)beingselectedbasedonthedeploymentofaprototypetestedinfield
conditions,whichcanbedirectlyusefultofarmers.Thislowpercentageofthetotalnumberof
scientificpapersindicatesthatmostresearchpresentedmainlyimmatureconceptsthatrequire
severalstepsbeforetheycanbebeneficialforeverydayagriculturalpractices.
Agronomy2020,10,74311of25
Figure1.Temporalevolutionofpublishedscientificarticlesonsmartfarmingtechnologies(SFTs)on
ayearlybasis(fortheperiod1981–2017)identifiedthroughaScopusquery(asof18July2018).The
queryselectedarticlesthatcontainedkeywordsrelatedtotechnology(sensor,decisionsupport,DSS,
database,ICT,automat*,autonom*,robot*,GPS,GNSS,informationsystem,imageanalysis,image
processing,precisionagriculture,smartfarming,precisionfarming)andtoopenfieldfarming
(agricult*,crop*,arabl*,farm*,vineyard,orchard,horticult*,vegetabl*).ICT—informationand
communicationtechnologies;GPS—globalpositioningsystem;GNSS—globalnavigationsatellite
system.
TheEuropeanCommissionCORDISonlinedatabasewithasearchforfundedprojectsresulted
in94researchprojectsfromFP7andH2020fundingframeworksdirectlyrelatedtoSFTs,whilethe
searchforindustrialSFTsolutionsconcluded439productsthatareavailableonthemarketfor
farmerstopurchase.Intotal,1064SFTswereselectedforthisanalysisforallcategories(Table3),for
whichthequestionnairewascompleted.
Table3.Totalnumberofsmartfarmingtechnologies(SFTs)identifiedbythesearchconductedin
availablescientificpapers,researchprojectsandindustrialproducts.
TypeTotalNumber
Researcharticles531
Researchprojects94
Industrysolutions439
Total1064
3.2.TechnologyReadinessLevel(TRL)ofSFTs
Figure2presentsthedifferencesinTRLbetweenthescientificpapersandresearchprojects(by
definition,theTRLofcommercialproductsis9).
(a)ScientificPapers(b)ResearchProjects
Figure2.Technologicalreadinesslevel(TRL)oftheidentifiedsmartfarmingtechnologies(SFTs)in
(a)scientificpapersand(b)researchprojects.TRLrangesfromTRL1(basicprinciplesobserved)to
Agronomy2020,10,74312of25
TRL9(actualsysteminoperationalenvironment)[99]andwasdefinedusingtheAFRLTRL
Calculator(version2.2.)[100].CommercialSFTswereexcludedbythisprocess(theyallhadTRL9).
Mosttechnologieswereatthestagewheretheyarevalidatedinarelevantenvironment.Inall
cases,afewentrieswereoftheearlieststagesinwhichonlybasicprincipleswereobservedor
technologyconceptsformulated.Inresearchprojects,itcanbeseenthatthemajorityhadTRL5–7,
butanimportantfindingisthat16%ofprojectsresultedinacommercialproduct(TRL9),showing
therecenttrendofprojectsfocusingonanalliancebetweenacademiaandbusinessesforreal
applications.
3.3.TypesofSFTs
DifferenttypesofSFTscanbedistinguishedinscientificpapers,researchprojects,and
commercialproducts(Figure3).Byfocusingonjustscientificpaperspublishedacrossthesixyears
underconsideration,itisobviousthattherewasafocusonrecording,withrelativelylittleattention
towardreacting.Thisisnotacomfortingpicture,becauseitsuggeststhat,whilethereisalargeeffort
onmeasurements,thereisalackofeffortontranslatingmeasurementsintoonfarmpracticalactions.
Itshouldbenotedthatthisoutcomecorrespondsuncomfortablywellwiththegeneralbeliefthat
SFTspromisemorethantheydeliver(e.g.,seeReference[103]).However,thisfindingwasnotshown
inresearchprojectsandcommercialproductstosuchanextent.
(a)ScientificPapers(b)ResearchProjects(c)CommercialProducts
No.ofSFTs%No.ofSFTs%No.ofSFTs%
Recording28653.92526.612829.1
Reacting7814.788.56815.5
Guiding234.333.2306.8
FMIS8716.44143.613731.2
Robot/Automation5710.71718.17617.3
TotalNo.ofSFTs53110094100439100
Figure3.Allocationoftheidentifiedsmartfarmingtechnologies(SFTs)toeachtype(recording,
reacting,guiding,farmmanagementinformationsystems(FMIS),androbotic/automationsystems)
basedontheclassificationofSchwarzandHerold[101]modifiedbytheauthorsin(a)scientific
papers,(b)researchprojects,and(c)commercialproducts.
Regardingtheresearchprojects,itcanbeseenthattheEUfundingwasdirectedmoretoward
FMISdevelopmentfollowedbyrecordingtechnologies.Thismighthavehappenedasmeasuredin
fielddatahavetobetranslatedintoinformationthroughICTtoolsforsupportingfarms’statistics
andfarmers’decisions[33],whichisthefirststepbeforereacting.ReactingSFTswerealsosupported
bytheEU,buttoalowerextent,suggestingthatthisSFTtypeisalsounderdevelopment.An
importantreadingofFigure3bisalsothatrobotsandautomationforagriculturalusereceived
attentionandwerefundedevenmorethanotherreactingSFTs.ThismaybeexplainedbysuchSFTs
beingperceivedasasolutioninapplyingsmartfarmingapplicationsinfieldconditionsusingtheir
advantages(smallsize,infieldprecisenavigation)[104].Thistrendcouldalsobeassociatedwiththe
Agronomy2020,10,74313of25
specificityoffieldplotsinEuropebeingmuchsmallercomparedtotheUS[105],makingasmall
robotorswarmsofsmallrobotsmuchmoreofinterestforEuropeanagriculture[58].
Asfortheindustrialproducts(Figure3c),therewasamoreuniformdistributionbetweenSFT
categories.Onlyguidancetechnologieswerefoundlessofteninoursearch,probablybecausethey
arethemostmaturecommercialSFTs[106]andlimitednewcompaniesareenteringthemarket.Itis
importanttopointoutthatrecordingtechnologiesandFMIShavethelargestnumberofSFTs,
partiallyfollowingthetrendsinbothscientificpapersandresearchprojects.Reactingand
robotic/automationtechnologieswerealsosignificantlyrepresentedinthecommercialproduct
inventory,evenifresearch(papersandprojects)didnotseemtofocusonthesesubjectstoahigh
extent(Figure3).Regardingrobotic/automationSFTs,thenumberofavailablemarketsolutions
seemeddisproportionatelyhighincomparisontoresearchoutcomesinthesamefield.Inour
findings,therewasanincreasingtrendforthesetechnologiesmovingfromscientificpapersto
commercialproducts.Thismaybebecauseagriculturalresearchexperiencedadelayincopingwith
thedevelopmentofthesehighendSFTs,andcompaniesusinginternalresearchanddevelopment
producedmarketableproductswithoutpublishingthisworkinscientificjournalsforintellectual
propertyreasons.ThesecompanieseithercollaborateinlargeconsortiumsofEUresearchprojectsto
optimizeandmarketsuchproductsorgodirectlybytheirownmeansinmarketableproducts.In
addition,higherfundingforinfrastructureinresearchgroupsisrequiredtocarryoutworkwith
roboticsystems,andthismayhavealsoinfluencedthelownumberofrobotic/automationSFTsin
researchprojectsandscientificpapersincomparisontootherSFTs,suchasrecordingtechnologies.
3.4.FieldOperationsAddressedbytheIdentifiedSFTs
ThefieldoperationsthattheidentifiedSFTswereusedforaresummarizedinFigure4.

(a)ScientificPapers(b)ResearchProjects(c)CommercialProducts
No.ofSFTs%No.ofSFTs%No.ofSFTs%
Tillage173.277.46113.9
Sowing50.999.6327.3
Transplanting30.666.4235.2
Fertilizing8215.41516.07817.8
Weeding5810.966.44410.0
CropProtection7614.31212.87617.3
Irrigation7213.61313.86314.4
Harvesting336.21111.7378.4
Scouting18534.81516.0255.7
TotalNo.ofSFTs53110094100439100
Figure4.Allocationoftheidentifiedsmartfarmingtechnologies(SFTs)toeachcategorythat
addressesacertainfieldoperation(tillage,sowing,transplanting,fertilizing,weeding,crop
protection,irrigation,harvesting,andcrop/soilscouting)in(a)scientificpapers,(b)researchprojects,
and(c)commercialproducts.
Inscientificpapers,cropandsoilscoutingwasthemostcommonapplicationfortheSFTs
described,inaccordancewiththetrendofFigure3,whererecordingSFTswerethemostprominent.
Agronomy2020,10,74314of25
Onthecontrary,SFTsderivedfromscientificpapersfocusedverylittleonsoiltillageand
sowing/transplanting,eventhoughtheycanprovidesignificantsavingsinplantestablishmentand
increaseyieldpotential(especiallyinhybridseeds,suchascornandpotatoes).Ontheotherhand,
thisworkconfirmsthatreactingapplicationtechnologiesareofgreatimportanceforresearchers(also
duetofarmers’interestsinthesesubjects),asalsoseenintheliteraturewithfertilizing[107,108],
weeding[109],cropprotection[110],irrigation[111],andharvesting[61,112]beingimportant
researchsubjectsinrecentyears.
Thebestrepresentedsubjectsinresearchprojectswerefertilizationandcrop/soilscouting.
Fertilizationisindeedoneofthetargetsforvariablerateapplicationtoensureyieldmaintenanceor
evenincreaseyieldwiththeleastpossiblenutrientsapplied[107],andEUresearchprojectsseemto
fundthisissuetoagreatextent.Asforscouting,itisoftenchosensimultaneouslywithotherfield
operations(mostoftentogetherwithfertilization)and,inonly22%ofcases,itistheonlychosenfield
operation.Thisresultpresentstheneedfordatagatheringbeforeanysmartfieldapplication,as
statedinmanySFTrelatedpublications[113–115].Tillage,sowing/transplanting,andweedingwere
lessfound,asinthescientificpapers.Researchontheseoperationsisindeedlacking,andthereason
maybethereluctanceofresearchersandfunderstocarryoutresearchinthisdomain,probablydue
tothefactthatitisstillunclearhoweffectiveitisandhowitfitswithothervariableratetechnologies.
However,themostcrucialconclusionfromFigure4bisthatEUfundedresearchiswelldistributed
amongresearchtopicsandisgenerallydirectedtoallagriculturalpractices.
Regardingtheindustrialproducts,thesituationisdifferentasscoutinghadasignificantnumber
ofSFTsidentified,butnotthemajority,asseeninscientificpapersandresearchprojects.Thismight
indicatethatindustrialsolutionsareslowlymovingtointegratedsystems(requiredequipmentfor
dataacquisitionandactuationcombined).Ontheotherhand,fertilizationremainsthemost
importantSFTsoldonthemarketasinpapersandprojects,followedbycropprotectionand
irrigation,whicharethethreemostcrucialagriculturalpracticesformostcrops.SincetheSFTmarket
intheEUisstillinitsinfancy,companiesaredirectedmainlytowardtheseapplicationsthatareof
highimportanceforfarmers.Companiesthatwillsurviveorevenevolverapidlyneedtodemonstrate
dynamiccapabilities(inthiscase,tooffereffectiveandefficientSFTswithtangibleresults),move
beyondconventionalagriculturalmachineryandgainacompetitiveadvantagethatgenerateslong
termSchumpeterianrents[116].Itisinterestingtopointoutthatnotonlytillage,butalso
sowing/transplantinghavesignificantrepresentationintheindustrialSFTs,possiblyillustratingthat
suchtechnologiesarealreadymatureinthemarket(oratleasttheiraccuracyisadequatefor
practitioners)and,therefore,researchwasnotdirectedtowardtheminrecentyears.
3.5.FactorsThatCanBeExpectedtoAffectAdoptionofSFTs
BasedonthesevenstatementsoftheRogersframework(Section2.3.5),theinventoriedSFTs
wereassessedintermsofaffectingadoptionreadiness.Theresultsforscientificpapers,research
projects,andindustrialproductsareshowninFigure5.
BycomparingtheresultsofthethreeSFTcategories,itisobviousthatthereisaconstanttrend
ofchangeforallsevenstatementsoftheRogersframework,movingfromscientificpapers(newideas
withlowTRL)toresearchprojects(morematureideaswithhigherTRL)andfinallyindustrial
products(maturecommercialsolutionsofTRL9).Morespecifically,SFTspresentedinscientific
papersarenotindicatedasasignificantreplacementofanexistingtool,whilethisisquitemore
prominentformostoftheSFTslistedinresearchprojectsandcommercialproducts.Probably,new
SFTsdevelopedfromscientistsareyettofindtheiractualplaceinagriculturalpractice,while,in
projectsandespeciallyinH2020EUprojects,theroleofandtheneedforthedevelopedSFTswere
alreadyidentifiedfromscratch.AsforthecommercialSFTs,oneofthemainreasonsforaproductto
bemarketedisitsabilitytoreplaceexistingtechnologyandtoeasetheenduser’sbusiness[117,118].
Regardingtheneedformajorchangesinexistingsystems,researchersinscientificpapersare
workingonradicalconceptsthatwillmakeachangeinexistingfarmingpractices,whileresearch
projectsand,toagreaterextent,commercialproductsaredirectedtowardsolutionsthatcancover
theneedsoffarmersbyadjustingtheirexistingsystems[29].SFTsinscientificpapersseemtorequire
Agronomy2020,10,74315of25
lesslearningfromtheenduserthanthoseinresearchprojectsandcommercialproducts.Thisresult
wasexpected,asresearchersbelievethattheirideasareeasilyinterpretedbyauserastheyhavegreat
knowledgeofwhattheyareworkingon,while,astheSFTmovesintorealconditions,itbecomes
obviousthatatypicalfarmerwillhavetobetaughtthesenewICTsolutionsthattheyarenotusedto
byincreasingtheirSFTliteracy,whichisoneofthemainbarriersforSFTadoption[119].
Figure5.Responsesregardingadoptionreadinessofthesmartfarmingtechnologies(SFTs)identified
inscientificpapers,research