Available via license: CC BY
Content may be subject to copyright.
Agronomy2020,10,743;doi:10.3390/agronomy10050743www.mdpi.com/journal/agronomy
Article
SmartFarmingTechnologyTrends:Economic
andEnvironmentalEffects,LaborImpact,
andAdoptionReadiness
AthanasiosT.Balafoutis
1,
*,FritsK.VanEvert
2
andSpyrosFountas
3
1
InstituteofBio‐Economy&Agro‐Technology,CentreofResearch&TechnologyHellas,
DimarchouGeorgiadou118,38333Volos,Greece
2
AgrosystemsResearch,WageningenUniversity&Research,P.O.Box16,
6700AAWageningen,TheNetherlands;frits.vanevert@wur.nl
3
DepartmentofNaturalResourcesManagementandAgriculturalEngineering,AgriculturalUniversityof
Athens,11855Athens,Greece;sfountas@aua.gr
*Correspondence:a.balafoutis@certh.gr;Tel.:+30‐2311‐257‐651
Received:18February2020;Accepted:18May2020;Published:21May2020
Abstract:Farmingfaceschallengesthatincreasetheadverseeffectsonfarms’economics,labor,and
theenvironment.Smartfarmingtechnologies(SFTs)areexpectedtoassistinrevertingthissituation.
Inthiswork,1064SFTswerederivedfromscientificpapers,researchprojects,andindustrial
products.Theywereclassifiedbytechnologyreadinesslevel(TRL),typology,andfieldoperation,
andtheywereassessedfortheireconomic,environmental,andlaborimpact,aswellastheir
adoptionreadinessfromend‐users.ItwasshownthatscientificarticlesdealtwithSFTsoflower
TRLthanresearchprojects.Inscientificarticles,researchersinvestigatedmostlyrecording
technologies,while,inresearchprojects,theyfocusedprimarilyonfarmmanagementinformation
systemsandrobotic/automationsystems.ScoutingtechnologieswerethemainSFTtypeinscientific
papersandresearchprojects,butvariablerateapplicationtechnologiesweremostlylocatedin
commercialproducts.Inscientificpapers,therewaslimitedanalysisofeconomic,environmental,
andlaborimpactoftheSFTsunderinvestigation,while,inresearchprojects,theseimpactswere
studiedthoroughly.Further,incommercialSFTs,thefocuswasoneconomicimpactandlesson
laborandenvironmentalissues.Withrespecttoadoptionreadiness,itwasfoundthatallofthe
factorstofacilitateSFTadoptionbecamemorepositivemovingfromSFTsinscientificpapersto
fullyfunctionalcommercialSFTs,indicatingthatSFTsreachthemarketwhenmostofthesefactors
areaddressedforthebenefitofthefarmers.ThisSFTanalysisisexpectedtoinformresearcherson
adaptingtheirresearch,aswellashelppolicy‐makersadjusttheirstrategytowarddigitized
agricultureadoptionandfarmerswiththecurrentsituationandfuturetrendsofSFTs.
Keywords:smartfarmingtechnologies;recording;reacting;guiding;farmmanagement
informationsystem;agriculturalrobots;automatedsystems
1.Introduction
AgriculturalperformanceintermsofproductivityledfarmingpracticesaftertheGreen
Revolutionofthe1950s,withlimitedattentionpaidtotherespectiveimpactonsustainability.
However,conventionalfarmingpracticesareatapointwhereagriculturalinputsareoverused,labor
isnolongerinabundance,andtheenergydemandiscontinuouslyincreasing[1].Newopportunities
areemerginginfarming,asaresultoftherapiddevelopmentofcommunicationnetworksandthe
availabilityofawiderangeofnewremote,proximal,andcontactsensors[2–6].Intheagricultural
Agronomy2020,10,7432of25
context,thesetechnologieshelpcaptureandtransmitgeo‐localizedreal‐timeinformationatlowcost
[7–10].Oncegathered,processed,andanalyzed,thesedatacanassistindeterminingthestateofthe
agro‐environment(e.g.,soil,crop,andclimate)and,whencombinedwithagro‐climaticand
economicmodels,technicalinterventionscanbeappliedatthefieldlevelbyeitherconventional
meansorautomated/robotizedsolutions[11].
Alltheseaspectsareundertheconceptnamed“smartfarming”thatrepresentstheapplication
ofmoderninformationandcommunicationtechnologies(ICT)intoagriculture[12–14].Theseinclude
variablerateapplicators[15–17],Internetofthings(IoT)[18,19],geo‐positioningsystems[20,21],big
data[22–24],unmannedaerialvehicles(UAVs,drones)[18,25],automatedsystems,androbotics
[26,27].Smartfarmingisbasedonapreciseandresource‐efficientapproachandattemptstoachieve
higherefficiencyonagriculturalgoodsproductionwithincreasedqualityinasustainablebasis[28].
However,fromthefarmer’spointofview,smartfarmingshouldprovideaddedvalueintheformof
moreaccurateandtimelydecision‐makingand/ormoreefficientexploitationoperationsand
management[29].
Smartfarmingtechnologies(SFTs)canbedividedintothreemaincategories:farmmanagement
informationsystems(FMIS),precisionagriculture(PA)systems,andagriculturalautomationand
robotics.FMISsrepresentmainlysoftwaresystemsforcollecting,processing,storing,and
disseminatingdataintheformrequiredtocarryoutafarm’soperationsandfunctions.Significant
researchworkwascarriedoutinthisareainthelast20years[30–33]andthisdevelopmentassisted
inhavingmanycommercialproductsalreadyonthemarketthat,inmanycases,showsignificant
economic,environmental,andsocialbenefits[28].
PAreferstothefarmingmanagementconceptaimedatoptimizinginputusebasedonrecording
technologiestoobserveandmeasureinter‐andintra‐fieldspatialandtemporalvariabilityincrops,
aimingtoimproveeconomicreturnsandreduceenvironmentalimpact[34].PAisabletoincrease
inputefficiencyformaintainingorevenincreasingproductionrate[35–37],usingremotesensing
technologiesfordatagatheringwitheithersatelliteplatformsforspaceimagery[38–40]or
aircrafts/UAVsforaerialapplications[41–43],combineduseofsensorsforgrounddataacquisition
[44],wirelessnetworksforinterconnectingthem[4,10,45,46],geospatialdataanalyticscomingfrom
differentsources[47],decisionsupportsystems(DSSs)foroptimizedfarmingdecision‐making
[48,49],andothers.
Reactingtechnologiesarebasedonagriculturalautomationandroboticsthatareseparate,but
closelyrelatedICTsectors.Inthecaseofopen‐fieldagriculture,theyareinterconnectedtocoverthe
processofapplyingautomaticcontrol,artificialintelligencetechniques,androboticplatformsatall
levelsofagriculturalproduction.Automationtechnologiesinagriculturefoundhighresearch
interestwithmachinelearningbeingthoroughlyusedforagriculturalpurposes[50–52],aswellas
computervisionandartificialintelligence[53,54],three‐dimensional(3D)imagery[55],and
navigationsystemsforoff‐roadagriculturalvehicles[56].Basedonthesedevelopmentsandonthe
industrialroboticstateoftheart,agriculturalrobotsofalltypeswereappliedinrecentyears[26,57–
59]withspecifictasks,suchasweedcontrol[60],harvesting[61],etc.
Attentiontowardsmartfarmingisgrowingrapidly,andseveralstudiesofthecurrentstatusof
SFTdevelopmentandadoptionrateamongfarmersworldwidewerereleased.Themostknown,due
toitscontinuousbi‐annualreleasefrom1997untiltoday,istheCropLife/PurduePrecisionAgSurvey
thatdealswithadoptionratesofcertainSFTsintheUnitedStates(US)andCanada,basedonretail
cropinputdealersregardingtheirsmartfarmingservices.Thelastversion(2019)[62]showedthe
increasinguseofdataforcropmanagementdecisions,withsensingtechnologyservices(soil
sampling,satellite/UAVimaging,yieldmapping)andvariablerateservicesbeingsignificantly
increasedincomparisontothepreviousedition(2017),presentingthecontinuousSFTadoption
incrementintheUS.
InEurope,wheresmartfarmingislessdiffusedthanNorthAmerica,SFTuptakeislessexplored,
whilemoststudiesarecountry‐specific[63].However,recentSFTadoptionresearchwasconducted
indifferentEuropeancountriestoalsoobservegeographicalandculturalcausesofreducedadoption
rates[29,63,64].Particularly,Barnesetal.(2019a)[63]consideredmachineguidanceandvariablerate
Agronomy2020,10,7433of25
nitrogentechnologiesasthemostsignificantSFTsforarablefarmingandconductedanempirical
examinationofuptakeinfiveEuropeancountries.Theyshowedthatfarmsizeandincomereflectthe
mostimportantbarrierstoadoptionforallcountriesunderinvestigation;furthermore,incountries
withsmallfarmsoflowincome,subsidyandtaxationwereconsideredthemainpositivedriversof
SFTuptake.Barnesetal.(2019b)[64]alsoidentifiedincentivesforSFTstobeadoptedinEuropeusing
datafromthesamefivecountriesasinReference[63],anditwasfoundthatcurrentSFTadoptersare
divergentfromnon‐adopters,whilethefirstadoptersareinfluencedbyeconomicandinformational
interventions.Increasingadoptionisconstrainedbyskepticismtowardeconomicreturnsandthat
EuropeanUnion(EU)policydoesnotrecognizecomplexityacrossdomainstoenableuptake.
Kerneckeretal.(2020)[29]alsoworkedontheadoptionoftechnologicalinnovationsinagriculture
byconductingasurveyinsevenEuropeancountriesandinfourcroppingsystems,andtheyshowed
thatadoptionincreaseswithfarmsizeinarablefarms.FarmersperceiveSFTasuseful,buttheyare
stillnotconvincedofSFTpotential.Ontheotherhand,expertsseemtobemoreconvincedofSFT
assetsandexpectalotfromSFTfuturedevelopment.Countryspecificitiesshouldbeconsideredto
improveSFTdiffusion.
EvenifadoptionratescanbeincreasedthroughoptimizationofSFTresultsandrelatedpolicies
andincentives,SFTscomeswiththeriskofreboundeffectsoftheiruseinagriculturalpractices.This
isbecause,evenifsmartfarmingisexpectedtoconsiderablycontributetoenvironmentaland
resourceprotection(asstatedaboveusingPAtechniques),theoccurrenceofpotentialreboundeffects
foragriculturalland,water,fertilizers,andplantprotectionproductsishighlyprobable[65–67].
Itisevidentthatsmartfarmingevolvestechnologicallyatafastpaceinbothresearchandmarket
domains,butitsadoptionfromend‐usersdoesnotfollowthesamefootsteps.Ifanevaluationofthe
promisingpositiveimpactofSFTsaccompaniedbyanadoptionreadinessanalysiswouldbe
available,thentheuptakeofsuchtechnologieswouldpossiblyincrease.Hence,athorough
assessmentandcomparisonofSFTsfromresearch(scientificpapers),innovation(researchprojects),
andmarket(commercialproducts)couldassistinbetterunderstandingtheevolutionofSFTsand
howthisevolutionaffectsfactorsofadoptionreadinessandrelatedeconomic,environmental,and
laboraspectswithinafarm.Basedonthisneed,theobjectiveofthisstudywas(i)tomaptheexisting
researchandcommercialSFTswithregardtotheirtechnologicalreadinesslevel,type,andthefield
operationtheyareusedfor;(ii)toidentifytheeaseofSFTadoption;and(iii)toprovidethemain
impactsofSFTsonfarmeconomics,environment,andlabor.Thisworkisexpectedtocontributeto
theliteraturewithaglobalperspectiveofvariousSFTsdevelopedfromresearchtoinnovationand
thentothemarket,aswellasshowthedifferencesintheirimpactandadoptionreadiness.
2.MaterialsandMethods
Thisworkfocusesonopen‐fieldproduction;hence,weconsideredSFTsusedinarable
(includingfodderproduction)andhorticultural(fruitandvegetableproduction)farming.Areview
ofsuchSFTswasconductedbasedonscientificliterature,currentandpastEUresearchprojects,and
commerciallyavailableproducts.TheeconomicandenvironmentalchallengesthatSFTsfacewere
determinedbyasetofkeyperformanceindicators(KPIs)(Section2.1).FortheselectionoftheSFTs,
asystematicsearchprocedurewasdevelopedforscientificpapers,researchprojects,andcommercial
products(Section2.2).Finally,informationabouttheidentifiedSFTswascollectedbydevelopinga
questionnairetorecorddataforeachSFT’sadoptionreadinessanditsperformanceregardingthe
selectedKPIs(Section2.3).
2.1.KeyPerformanceIndicatorsforOpenFieldProduction
Severalauthorsproposedgroupingindicatorstomeasuretheperformanceofagricultural
systems.InastudyintheUnitedKingdom(UK),indicatorclusters(e.g.,biodiversity,energy,value
chain)weredefined,withmeasurableparametersforeachcluster(e.g.,numberofspeciesonthe
farm,energybalance,totalvalueofproduction)[68].Inanotherstudy,theliteratureonagricultural
sustainabilitywassurveyed,andindicatorswereidentifiedandgroupedinathree‐levelhierarchy
[69].Anin‐depthreviewofindicatorconstructionisalsoavailable[70].Indicatorsetswerealso
Agronomy2020,10,7434of25
proposedbypublicorganizations,suchastheEuropeanEnvironmentalAgency(EEA)[71]andthe
OrganizationforEconomicCo‐operationandDevelopment(OECD)[72],aswellasprivate
organizations,suchasTheSustainabilityConsortium(TSC)[73]andGlobalReportingInitiative
(GRI)[74].Alltheseindicatorsetsaredifferentandhaveslightlydifferentpurposes.Thereisnotone
singlesetofindicatorsthatsuitsourcurrentpurposebetterthanalltheothers.Weusedthepublished
indicatorsetsforourstudy.
Weexaminedthepublishedindicatorsandderivedchallengesinagriculturethatcouldbe
possiblyaddressedbySFTs.InTable1,thesechallengesarelistedalongwithSFTsthatcanbeused
toaddressthem.
Table1.Challengesidentifiedinopen‐fieldfarmingaccompaniedbyrelevantsmartfarming
technologies(SFTs)thatcouldaddressthem.DSS—decisionsupportsystem;FMIS—farm
managementinformationsystem;VRA—variablerateapplication;RFID—radiofrequency
identification;QR–QuickResponse..
Challeng
e
RelevantSmartFarmingTechnologies
Resourceefficiency(e.g.,water,nutrients,
pesticides,labor)
sensorsandnetworks
bigdataanalytictools
DSS
FMIS
intelligentwaterapplicationsystems
VRAfertilization/pesticidessystems
RFIDtags
Management/preventionofdiseases,
weeds,etc.
earlywarningsensorsandnetworks
specificfarmmachines
FMIS
DSSforinfestationmanagement
VRAsprayingsystem
Riskmanagement(e.g.,foodsafety,
pesticideresidueeliminationand
emissionofagro‐chemicals,etc.)
sensors(e.g.,weatherstation,multispectral
cameras,thermalcameras,etc.)
traceabilitytechnology
barcodes,QRcodes,RFID
real‐timerecordingsystems
Compliancewithlegislationand
standards(greeningofCAP;regulations
onsoilmanagement,pesticide,fertilizer,
andwateruse)
recordingtechnologies
web‐based,open,andinteroperablestandardsfor
end‐to‐endtrackingsystems
Collaborationacrossthesupplychain
(supplychainofcompaniesand
processors)
smarttraceabilitysystem
smartlogisticssystem
variousanalyticaltools
WeexaminedthepublishedindicatorstocreatealistofKPIstobeusedforassessingtheimpact
ofSFTsintermsofthreemainissuesassociatedwithagriculturalsystemsthatareofhighimportance
forend‐usersandthegeneralpublic:farmeconomics,theenvironment,andlaborwithinthefarm
(Table2).ThedefinitionofeachKPIandthereasoningforincludingthemaregiveninTable2.These
KPIsare,inmanycases,interconnectedandmightalsohaveanimpactoneachother.
Agronomy2020,10,7435of25
Table2.Keyperformanceindicators(KPIs)combinedwiththeirdescriptionandthereasoningfor
theirinclusiontoassesstheimpactofsmartfarmingtechnologies(SFTs)inopen–fieldfarming,
regardingfarmeconomics,environment,andlaborwithinthefarm.
A/A
Key
Performance
Indicator
DescriptionoftheKPIinRelationtothe
SpecificImpactCategory
ReasoningtobeSelectedasSignificant
KPIintheSpecificImpactCategory
FarmEconomics
1Productivity
Ratioofavolumemeasureofoutputto
avolumemeasureofinputuseinfarm
production[75]
Itisanindextoexpressthe
optimizationoftheagricultural
practicesofafarmthroughSFTuse,
whichreflectsfarmeconomics
2Qualityof
product
Qualitativefeaturesofagricultural
products(e.g.,intact,sound,clean,free
ofpests,freshappearance,normaland
sufficientphysiologicaland
morphologicaldevelopment,maturity,
firmness,freeofdecayaffecting
edibility,absenceofdefects)[76]
TheinfluenceofSFTsonthe
productqualitycouldincrease
productvalue
3Revenue
Incomeofafarmfromitsnormal
businessactivities,usuallyfromthe
salesofagriculturalgoodstocustomers
[77]
Revenueiscrucialfortheviability
offarms,andSFTscouldassistinits
increasebyoptimizingproduction
andquality
4InputcostsCostofinputs(e.g.,seeds,fertilizers,
pesticides,fuel,irrigationwater)[78]
ThemainroleofSFTsisthe
optimizationofinputsthatreflect
costreductionforafarm
5Variablecosts
Expensesthatvaryindirectproportion
tothequantityofoutput(e.g.,raw
materials,packaging,labor)[79]
Reductionofallfarmexpenses
employingdifferentkindsofSFTs
canpositivelyimpactthefinal
income
6Cropwastage
Cropthatgetsspilledorspoiltbeforeit
reachesthemarket(e.g.,fruitswith
blotsorblemishfrompests,orof
irregularshapefromabnormal
development)[80]
SFTscouldassistinbettercrop
protectionschemesandselective
harvestingreducingcropwastage
7EnergyuseAmountofenergythatisusedforall
needsofafarm[81]
Optimizedprocessesinthefarm
(e.g.,tractororrobotrooting,
selectiveharvestingthatreduces
storageneeds,etc.)canreduce
energyuseandtherespectivecost
Environment
8Soil
biodiversity
Thevariationinsoillife,fromgenesto
communities,andtheecological
complexesofwhichtheyarepart,i.e.,
fromsoilmicro‐habitatstolandscapes
[82]
Optimizedcropproductionusing
SFTs(i.e.,minimizingfieldpasses
usingauto‐guidance)could
preservesoilbiodiversityand
sustainability,allowingsoillife
conservation
9Biodiversity
Thenumberandtypesofplantsand
animalsthatexistinaparticularareaor
intheworldgenerally[83]
Reducedbiodiversityimpact
throughoptimizationofinputs
(variableratefertilizationor
pesticideapplication)andspray
driftreductionusingSFTs
10FertilizeruseExtentoffertilizeruseinagricultural
production[84]
Decreasingthefertilizeruse
applyingSFTsmeansthatleaching
togroundwaterorhighsoilGHG
emissionscanbereduced
11Pesticideuse Extentofpesticideuseinagricultural
production[85]
Pesticideusereductionemploying
SFTscanprovidelesspointand
Agronomy2020,10,7436of25
diffusecontaminationofnon‐crop
areas
12Irrigation
wateruse
Waterappliedbyanirrigationsystem
tosustainplantgrowthinagricultural
andhorticulturalpractices[86]
OptimizingwaterusewithSFT
applicationwouldassistin
maintainingwaterreservesand
reduceover‐pumping
13CH4emissions
Allreleasesofthemaingreenhouse
gasesrelatedtoagriculturalactivity
(CH4,CO2,N2O)derivedduringcrop
productiononafarm[87]
Improvingallaspectsofinput
application(seeds,fertilizers,
pesticides,fuel,irrigationwater)
canresultinlessGHGemissions
withapositiveimpactonglobal
warmingpotential
14CO2emissions
15N2Oemissions
16NH3emissionsNH3releasesmainlyfromfertilizeruse
forcropproductiononafarm[88]
Acidificationeffectsattributedto
drydepositionofNH3couldbe
reducedbynitrogenapplication
throughSFTs
17NO3leaching
MovementofNO3tothegroundwater
increasingnitrogenlossesfrom
nitrogenfertilizerinputstoagricultural
land[89]
Controllingnitrogenfertilizationto
optimizeitsusefromthecrops
wouldreduceNO3leachingwitha
positiveimpactonsoilandwater
resources
18Pesticide
residues
Anysubstanceormixtureofsubstances
infoodresultingfromtheuseofa
pesticideontherespectivecrop
includinganyspecifiedderivatives
consideredtobeoftoxicological
significance[90]
VariableratesprayingthroughSFTs
canlessenpesticidedosage
reducingtheresiduesonproducts
intherespectivefieldanddiminish
spraydriftforlessresiduesin
neighboringfields
19Weedpressure
Effectsofweed,pest,anddisease
growthinafield[91]
Controllingweed,pest,anddisease
populationanddensitymainlywith
timelyandprecisepesticide
applicationwouldreducetheir
impactonthefinalyieldandquality
20Pestpressure
21Disease
pressure
Labor
22Labortime
Timedevotedtolaborandconsidered
asacommodityorasameasureof
effort[92]
SFTscouldreducethelabortime,
throughroboticapplications,auto‐
guidance,tele‐operation
23Farmer’sstress
Adversereactionpeoplehaveto
excessivepressureorothertypesof
demandplacedonthem[93]
SFTscouldreducefarmers’stress
throughbetteroptimizationofthe
resourcesandschedulingofthe
operations
24HeavylaborHeavypracticalwork,especiallywhen
itinvolveshardphysicaleffort[94]
SFTscouldreduceheavylabor
usingautomationandrobotic
technologiesfordemandingfield
operations
25Workers’
injury
Injuryorillnesscaused,contributedor
significantlyaggravatedbyeventsor
exposuresintheworkenvironment[95]
Automationandroboticscould
reducefarmers’injuries,i.e.,
automatichitchcouplingor
automaticsprayerfilling
26Accidents
Discreteoccurrenceinthecourseof
workleadingtophysicalormental
occupationalinjury[96]
SFTsprovideadvancedsensorsfor
activeandpassiveoperations,such
asauto‐guidanceforautomatic
turningsinheadlandsthatreduce
accidents
2.2.Search
WesearchedforSFTsderivedfromscientificpapers,researchprojects,andindustrialproducts.
Themethodologyusedisgivenbelow.
Agronomy2020,10,7437of25
2.2.1.Peer‐ReviewedScientificPapers
WeemployedScopus(www.scopus.com)asithasabroadcoverageincludingmanydisciplines
(notjustagriculture)andscientificjournalsofdifferentranking(notonlytopjournals).
Aquerywasdevelopedinconsultationwithaprofessionallibrariantosearcharticlesthatmight
describeSFTs.Thequeryconsistedoftwoparts:afirstpartthataimedtoselectallarticlesrelatedto
technology,andasecondpartthataimedtoselectallarticlesrelatedtoopen‐fieldfarming.Thetwo
partsofthequerywerejoinedwithan“AND”clause.Theselectionofkeywordswassupplemented
byconsiderationsonthescopeofrelevanttimeandsubjectrelatedsettings.Thefollowingquerywas
usedtoselectarticles:
(TITLE‐ABS‐KEY(sensorordecision‐supportorDSSordatabaseorICTorautomat*or
autonom*orrobot*orGPSorGNSSor“informationsystem”or“imageanalysis”or“image
processing”or“precisionagriculture”or“smartfarming”or“precisionfarming”))
AND
(TITLE‐ABS‐KEY(agricult*orcrop*orarabl*orfarm*orvineyardororchardorhorticult*or
vegetabl*))
AND
(LIMIT‐TO(DOCTYPE,”ar”)ORLIMIT‐TO(DOCTYPE,”re”))AND(LIMIT‐TO(SUBJAREA,
”AGRI”)ORLIMIT‐TO(SUBJAREA,”ENGI”)),
wherekeywordsendingwith“*”couldhavedifferentendings(e.g.,automat*willretrieve
“automatic”,aswellas“automated”);GPS—globalpositioningsystem,GNSS—globalnavigation
satellitesystem.
Resultswerelimitedbyyear,documenttype(article),subjecttype(agriculture),andlanguage
(English).Forourpurpose,wecollectedpapersonlyfrom2012andlater,inordertofocusonrecent
SFTsthatarelikelyofinteresttoallrelatedstakeholdersandespeciallyend‐users.Thequerywas
optimizedandverifiedbyusingarandomsampleof10keypapersthatwereconsideredrelevantto
thedevelopmentofSFTspracticalforfarmers.Thequerywasconsideredcompletedwhenthese10
paperswereincludedinthequeryresult.
TheScopusqueryresultedinalargenumberofarticlesthatareexpectedtoholdinformationon
SFTs.Fromthesepapers,thereweremanythatwerenotrelevanttotheopen‐fieldagriculture.
Therefore,amanualselectionprocedurewasusedtoselectonlythearticlesthatarerelevant,namely,
articlesdescribingatechnologythatcan(orcouldbe)usedbyafarmerintheirdailyfarmingpractice.
Throughout,wefocusedonthequestion,“isthisarelevantSFT?”.Weusedanexclusionapproach
andremovedpapersrelatedto(i)post‐harvest,processing,distributing,ormarketing,(ii)
evapotranspirationcalculations,(iii)landsuitability(selectingonlyDSSsrelatedtocropssuitability),
(iv)watermanagement,likedroughts(butincludinganythingrelatedtoirrigation),(v)tractor
engines,and(vi)greenhousecultivation.
Havingavailableonlythescientificpapersrelevanttooursearch,themanualselectionofarticles
continuedinthreerounds.Firstly,weusedthetitletoremovepapersthatwerenotrelevant.For
example,apaperwiththetitle“ANewAssessmentofSoilLossDuetoWindErosioninEuropean
AgriculturalSoilsUsingaQuantitativeSpatiallyDistributedModelingApproach”wasselectedby
ourquerybecauseitsabstractcontainedtheterms“geographicinformationsystem”and“arable
land”.However,thetitleclearlydoesnotdescribeatoolusefultofarmers.Therefore,weremovedit
fromourlist.Secondly,forthosepaperswithrelevanttitles,wealsoreadtheabstractandexcluded
thosenotpracticallyusefulforfarmers.Asanexample,apaperwiththetitle“WirelessSensor
NetworkandInternetofThings(IoT)SolutioninAgriculture”seemedofinterest.Theabstractmade
itclearthatthispaperdescribednetworkinfrastructurethatcouldcertainlybeusedinafarm.
However,thiswouldnotbeuseddirectlybyfarmers.Ratheritwouldbeacomponentinthe
developmentandoperationalizationofasensornetworkthatinturnwouldsupporttoolsfor
decision‐makingbyfarmers.Inshort,thispaperdidnotdescribeanSFTdirectlyusefulforafarmer
inopen‐fieldagriculture,anditwasexcluded.Asathirdstep,weattemptedtolocatethefulltextof
thepaper.Ifthatprovedimpossible,orifthepaperturnedouttobewritteninalanguageotherthan
English,thenweremovedfromthelist.Ifthefulltextindicatedthatthepaperwasnotrelevantto
Agronomy2020,10,7438of25
open‐fieldagriculture,itwasalsoremovedfromthelist.Forpapersleftattheendofstepthree,the
authorsansweredthequestionsofthesurveyofSection2.3usingthefulltextofthepaper.
2.2.2.ResearchProjects
Fortheretrievalofresearchprojects,anactivesearchwascarriedoutforEU‐fundedprojects.
Horizon2020andFP7programswerecollectedfromtheCORDIS[97]websiteoftheEUand
importedintoarelationaldatabase.TheScopusquerywastranslatedtoanSQLquerywhich
searchedcolumns“title”and“objective”forEUresearchprojects,usingthesamelistofkeywordsas
intheScopusquery.Inthisprocess,theauthorsansweredthequestionsofthesurveyofSection2.3
usingtheinformationoftheproject’swebsiteanddeliverablesand,inmanycases,viapersonal
communicationwiththeprojects’coordinators.
2.2.3.IndustrialProducts(CommerciallyAvailableProductsandServices)
Forthecollectionofindustryresults,acallwasannouncedthroughtheSmart‐AKISproject
newsletter(www.smart‐akis.com),aswellthroughtheEuropeanAssociationofAgricultural
Machinery(CEMA)tobecomeknownbythenetworkofSFTcompaniesunderitsumbrellaorrelated
totheassociation.Awebsearchgaveinsightintothecompaniesthatarepossiblyinvolvedinthe
developmentofSFTs.Wesearchedforcompanieswithrelevantcredentialsforsmartfarming,such
asinvolvementintheproductionoffarmingequipmentandmachineryorstakeholdersinvolvedin
thedevelopmentofagronomicsoftware.TherelevantnetworksofFIWAREFRACTALSandSmart
AgrifoodIIwereconsulted.Furthermore,weusedallSmart‐AKISpartnersnetworkofadvisersto
contactrelevantstakeholders,andthelaststepwasfortheauthorsofthisworktoconductadesk
searchthoughinternettolocatemorecommercialSFTs.ThequestionnairewasansweredbytheSFT
providerswiththeassistanceoftheauthorsofthiswork.Inthecasethatthequestionnairewas
inadequatelyfilledin,theSFTproviderswerecontactedagain(thequestionnaireaskedfortheir
consenttodoso)toprovidethemissingorinconsistentinformation.Ifthequestionnairewasstillnot
totallyfilledin,thentheSFTwasexcludedfromthesearch.
2.3.QuestionnaireDevelopment
AquestionnairewasconstructedforrecordingdataabouteachSFTfoundinthethreecategories
(scientificpapers,researchprojects,commercialproducts).Thequestionnairewasdevelopedbased
ontheassessmentofthefulllistofchallengesandrespectiveKPIs,andthreeversionswereproduced
(oneforeachcategory).Thequestionnaireconsistedoftwomainparts:(1)descriptiveinformation
fortheSFT,includingbasicinformation,technologyreadinesslevel,type,andfieldoperationthatit
isusedfor;(2)assessmentinformationabouteaseofadoptionandpossibleeffectsonfarmeconomics,
environment,andlabor.TheassessmentsectionwasevaluatedusingaLikertscaleoffivelevels.The
responseswereanalyzedusingdescriptivestatisticsforLikertdatainRsoftware(freesoftwareby
theRFoundationfromStatisticalComputing,Vienna,Austria).Thequestionnairewasalsobasedon
theEIP‐AGRIcommonformat[98]asmuchaspossible,anditwasdistributedonlineviaalinktothe
identifiedstakeholders.Thespecificcontentofeachpartinthequestionnaireisdescribedbelow.
2.3.1.BasicInformationaboutSFT
Afterquestionsthatwerespecifictothetypeofentry(scientificpaper,researchproject,or
industrialproduct),somebasicinformationquestionswereaskedabouttheSFT.Indicatively,for
papers,theauthorship,scientificjournal,yearofpublication,andDOIwereasked,while,forprojects,
durationandstatus(ongoingorterminated),typeofEUfunding,budget,andthecoordinatorwere
given.Finally,forproducts,thedetailsofthecompanyandthepersoninchargeweredefined.
2.3.2.TechnologyReadinessLevel(TRL)
TheTRLofatechnologyindicatesitsmaturitylevelandrangesfromTRL1(basicprinciples
observed)toTRL9(actualsystemproveninoperationalenvironment)[99].Basedonthis
Agronomy2020,10,7439of25
classification,TRLwasspecifiedfortheSFTspresentedinscientificpapersandtheresearchprojects,
while,forcommercialproducts,itwasconsideredasTRL9becausetheyarealreadyoperationalon
themarket.TRLwasdefinedbytheauthorsusingtheAFRLTRLCalculator(version2.2.)[100]for
eachoftheincludedSFTsinthesearch.Theprocesswasasfollows:threeequalbatchesofSFTsfrom
bothscientificpapers(177papersineachbatch)andresearchprojects(twobatchesof31projectsand
onebatchof32projects)wererespectivelydefined.Then,eachauthorwasassignedwithtwobatches
ofeachcategory,inordertoremainneutralinallpapers,andprojectsofthethirdbatch.Incaseof
disagreementabouttheTRLlevelofacertainSFTbetweenthetwoauthorsthatassessedthesame
batch,thethirdauthorwouldbeaskedtoevaluate,andhisassessmentwouldbetakenintoaccount.
Itshouldbementionedthatthelevelofdisagreementwasverylow(in17outof531scientificpapers
(3%)andinsixoutof94researchprojects(6%)),anditremainedbetweentwoneighboringTRLlevels
duetotheaccuratedefinitionsgivenbyReferences[77,78]andtheexperienceoftheauthors.
2.3.3.TypologyofSFTs
ForabetterunderstandingoftheSFTlandscape,theclassificationofSchwarzandHerold[101]
wasused.TheseauthorsclassifiedSFTsasrecording,reacting,orguidingtechnologies.Inaddition
totheseclasses,inthiswork,“FMIS”and“robotic/automationsystem”wereused,becauseresearch,
innovation,andmarketapplicationoftheseSFTcategoriesfoundhighinterestinrecentyears
[28,52,59].Itshouldbenotedthatthesefiveclassesarenotmutuallyexclusive,meaningthata
particularSFTmayberecordingandreactingatthesametime.AroboticSFTwilltypicallyusesome
kindofguidingtechnologyandeitherrecordorreact,orpossiblydoboth.Theprincipalfunction
wasusedinouranalysis.
2.3.4.FieldOperationConductedwiththeSFT
ThemainfieldoperationsthateachSFTcouldbeusedweregiveninthequestionnairetobe
chosen,namely,(1)tillage,(2)sowing,(3)transplanting,(4)fertilization,(5)pesticideapplicationfor
weed,pest,anddiseasecontrol,(6)irrigation,and(7)cropscouting(measuringandrecordingcrop
andsoilparametersinthefield),forexample,inthesituationoffielddataretrieval.Theoptionto
includeanotherfieldoperationwasprovided.
2.3.5.EaseofAdoptionoftheSFT
InadditiontocharacteristicsofSFTsthatrelatetothechallengesthatfarmersface,therewere
alsoquestionsrelatedtoeaseofadoptionofSFTs.TheRogersmethod[102]forevaluationof
innovationswasused,wherepotentialadoptersevaluateaninnovationintermsofitsrelative
advantage(theperceivedefficienciesgainedrelativetocurrenttoolsorprocedures),compatibility
withthepre‐existingsystem,complexityordifficultytolearn,testability,potentialforreinvention
(usingthetoolforinitiallyunintendedpurposes),andobservedeffects.Respondentswereaskedto
indicatewhetherornottheyagreedwiththefollowingsevenstatements,usingtheLikertscalein
fivelevelsofagreement(stronglydisagree,disagree,noopinion,agree,andstronglyagree):
1. TheSFTreplacesatoolortechnologythatiscurrentlyused.TheSFTisbetterthanthecurrent
tool.
ThisquestionisspecificallytargetedatSFTsthataimatcreatingaddedvalueoverexistingtools.
2. TheSFTcanbeusedwithoutmakingmajorchangestotheexistingsystem.
SomeSFTsareexpectedtorequiremorechangestotheexistingsystemthanothers.
3. TheSFTdoesnotrequiresignificantlearningbeforethefarmercanuseit.
Thisstatementcangiveanindicationonthelearningeffortthatneedstobemadebythefarmer
andcanbeusefulinordertocomparethedifferenceinlearningrequirementsbetweenSFTs.
4. TheSFTcanbeusedinotherusefulwaysthanintendedbytheinventor.
Agronomy2020,10,74310of25
SomeSFTsmayholdmultiplepurposesusefulfortheachievementofmanyverydifferent
effects.
5. TheSFThaseffectsthatcanbedirectlyobservedbythefarmer.
Itisconsideredanadvantagewheneffectscanbedirectlyobservablebyafarmer,asitwillmake
itmorelikelythatthefarmerwillfindtheSFTrelevantfortheirsituation.
6. UsingtheSFTrequiresalargetimeinvestmentbythefarmer.
Thisstatementwillgiveanindicationonthetimeinvestmentthatisneededfromthefarmerin
ordertousetheSFT,whichwillplayaroleinhowattractivetheSFTistouse.
7. TheSFTproducesinformationthatcanbeinterpreteddirectly(exampleoftheopposite:theSFT
producesavegetationindexbutnobodyknowswhattodowithit).
Itisdesirablewhenresultsarepresentedinsuchamannerthattheyareeasytointerpret.This
makestheresultsmoreinterestingforend‐usersandresultsininterpretationconsistency.
2.3.6.EffectofUsingtheSFT
AveryimportantpartofthisworkwastodefinetheeffectofeachSFTinagriculturalproduction.
TheidentifiedKPIsinSection2.1wereusedascriteriatomeasuretheimpactonfarmeconomics,the
environment,andlaborwithinthefarm.Effectswereexpectedonthese26criticalaspects,ofwhich
fiveareinfluencedpositivelybytheSFTs,increasingthem(productivity;qualityofaproduct;
revenue;soilbiodiversity;biodiversity),and21areaffectedpositivelybytheSFTs,decreasingthem
(inputcosts;variablecosts;cropwastage;energyuse;CH4emissions;CO2emissions;N2Oemissions;
NH3emissions;NO3,emissions;fertilizeruse;pesticideuse;irrigationwater;labortime;farmers’
stress;heavylabor;injury;accidents;pesticideresidue;weedpressure;pestpressure(insects);disease
pressure).EffectscouldbeexpressedusingtheLikertscaleinfivelevelsofchange(largedecrease,
somedecrease,noeffect,someincrease,andlargeincrease).Therespondentcouldsupplementthis
scalewithrelevantpercentagesorevenmorepreciseindicationoftheeffectsoftheSFTwhenthis
waspossible.
3.ResultsandDiscussion
ThissectionprovidesthefinalnumberofSFTsidentifiedinscientificpapers,researchprojects,
andcommercialproductsthroughoursearch.TheseSFTswerepresentedandcomparedintermsof
technologyreadinesslevel(TRL1–9),type(recording,reacting,guiding,FMIS,and
robotic/automation),andfieldoperationsaddressed(tillage,sowing,transplanting,fertilizing,
weeding,cropprotection,irrigation,harvesting,scouting).Thiswasusedtopresentsomeperspective
trendsofthecurrentsituationinSFTdevelopment.Thefactorsthatwereexpectedtoaffectadoption
readinessofSFTswerealsodescribed,whiletheeffectonfarmeconomics,theenvironment,and
laborwasgiven,inordertoidentifythemostimpactfulcategoriesofSFTswithintheinventoryof
thiswork.
3.1.NumbersandKindsofSFTs
ThenumberofarticlesdescribinganSFTisgrowingrapidly(Figure1),showingthetrendof
researchtotransferconventionalagriculturebasedontheGreenRevolutionconcept(agricultural
mechanization,uniforminputapplication)toamodernsmartagriculture(ICTinterferencein
agriculturalmachineryforincreasedprecisionandspecifiedinputapplication).
Intotal,13,251scientificpaperswerefoundinthecitationdatabaseScopuswiththequery
describedinSection2.2,andthemanualselectionresultedinasmallfractionofthesescientificpapers
(531or4%ofthetotal)beingselectedbasedonthedeploymentofaprototypetestedinfield
conditions,whichcanbedirectlyusefultofarmers.Thislowpercentageofthetotalnumberof
scientificpapersindicatesthatmostresearchpresentedmainlyimmatureconceptsthatrequire
severalstepsbeforetheycanbebeneficialforeverydayagriculturalpractices.
Agronomy2020,10,74311of25
Figure1.Temporalevolutionofpublishedscientificarticlesonsmartfarmingtechnologies(SFTs)on
ayearlybasis(fortheperiod1981–2017)identifiedthroughaScopusquery(asof18July2018).The
queryselectedarticlesthatcontainedkeywordsrelatedtotechnology(sensor,decisionsupport,DSS,
database,ICT,automat*,autonom*,robot*,GPS,GNSS,informationsystem,imageanalysis,image
processing,precisionagriculture,smartfarming,precisionfarming)andtoopen‐fieldfarming
(agricult*,crop*,arabl*,farm*,vineyard,orchard,horticult*,vegetabl*).ICT—informationand
communicationtechnologies;GPS—globalpositioningsystem;GNSS—globalnavigationsatellite
system.
TheEuropeanCommissionCORDISonlinedatabasewithasearchforfundedprojectsresulted
in94researchprojectsfromFP7andH2020fundingframeworksdirectlyrelatedtoSFTs,whilethe
searchforindustrialSFTsolutionsconcluded439productsthatareavailableonthemarketfor
farmerstopurchase.Intotal,1064SFTswereselectedforthisanalysisforallcategories(Table3),for
whichthequestionnairewascompleted.
Table3.Totalnumberofsmartfarmingtechnologies(SFTs)identifiedbythesearchconductedin
availablescientificpapers,researchprojectsandindustrialproducts.
TypeTotalNumber
Researcharticles531
Researchprojects94
Industrysolutions439
Total1064
3.2.TechnologyReadinessLevel(TRL)ofSFTs
Figure2presentsthedifferencesinTRLbetweenthescientificpapersandresearchprojects(by
definition,theTRLofcommercialproductsis9).
(a)ScientificPapers(b)ResearchProjects
Figure2.Technologicalreadinesslevel(TRL)oftheidentifiedsmartfarmingtechnologies(SFTs)in
(a)scientificpapersand(b)researchprojects.TRLrangesfromTRL1(basicprinciplesobserved)to
Agronomy2020,10,74312of25
TRL9(actualsysteminoperationalenvironment)[99]andwasdefinedusingtheAFRLTRL
Calculator(version2.2.)[100].CommercialSFTswereexcludedbythisprocess(theyallhadTRL9).
Mosttechnologieswereatthestagewheretheyarevalidatedinarelevantenvironment.Inall
cases,afewentrieswereoftheearlieststagesinwhichonlybasicprincipleswereobservedor
technologyconceptsformulated.Inresearchprojects,itcanbeseenthatthemajorityhadTRL5–7,
butanimportantfindingisthat16%ofprojectsresultedinacommercialproduct(TRL9),showing
therecenttrendofprojectsfocusingonanalliancebetweenacademiaandbusinessesforreal
applications.
3.3.TypesofSFTs
DifferenttypesofSFTscanbedistinguishedinscientificpapers,researchprojects,and
commercialproducts(Figure3).Byfocusingonjustscientificpaperspublishedacrossthesixyears
underconsideration,itisobviousthattherewasafocusonrecording,withrelativelylittleattention
towardreacting.Thisisnotacomfortingpicture,becauseitsuggeststhat,whilethereisalargeeffort
onmeasurements,thereisalackofeffortontranslatingmeasurementsintoon‐farmpracticalactions.
Itshouldbenotedthatthisoutcomecorrespondsuncomfortablywellwiththegeneralbeliefthat
SFTspromisemorethantheydeliver(e.g.,seeReference[103]).However,thisfindingwasnotshown
inresearchprojectsandcommercialproductstosuchanextent.
(a)ScientificPapers(b)ResearchProjects(c)CommercialProducts
No.ofSFTs%No.ofSFTs%No.ofSFTs%
Recording28653.92526.612829.1
Reacting7814.788.56815.5
Guiding234.333.2306.8
FMIS8716.44143.613731.2
Robot/Automation5710.71718.17617.3
TotalNo.ofSFTs53110094100439100
Figure3.Allocationoftheidentifiedsmartfarmingtechnologies(SFTs)toeachtype(recording,
reacting,guiding,farmmanagementinformationsystems(FMIS),androbotic/automationsystems)
basedontheclassificationofSchwarzandHerold[101]modifiedbytheauthorsin(a)scientific
papers,(b)researchprojects,and(c)commercialproducts.
Regardingtheresearchprojects,itcanbeseenthattheEUfundingwasdirectedmoretoward
FMISdevelopmentfollowedbyrecordingtechnologies.Thismighthavehappenedasmeasuredin‐
fielddatahavetobetranslatedintoinformationthroughICTtoolsforsupportingfarms’statistics
andfarmers’decisions[33],whichisthefirststepbeforereacting.ReactingSFTswerealsosupported
bytheEU,buttoalowerextent,suggestingthatthisSFTtypeisalsounderdevelopment.An
importantreadingofFigure3bisalsothatrobotsandautomationforagriculturalusereceived
attentionandwerefundedevenmorethanotherreactingSFTs.ThismaybeexplainedbysuchSFTs
beingperceivedasasolutioninapplyingsmartfarmingapplicationsinfieldconditionsusingtheir
advantages(smallsize,in‐fieldprecisenavigation)[104].Thistrendcouldalsobeassociatedwiththe
Agronomy2020,10,74313of25
specificityoffieldplotsinEuropebeingmuchsmallercomparedtotheUS[105],makingasmall
robotorswarmsofsmallrobotsmuchmoreofinterestforEuropeanagriculture[58].
Asfortheindustrialproducts(Figure3c),therewasamoreuniformdistributionbetweenSFT
categories.Onlyguidancetechnologieswerefoundlessofteninoursearch,probablybecausethey
arethemostmaturecommercialSFTs[106]andlimitednewcompaniesareenteringthemarket.Itis
importanttopointoutthatrecordingtechnologiesandFMIShavethelargestnumberofSFTs,
partiallyfollowingthetrendsinbothscientificpapersandresearchprojects.Reactingand
robotic/automationtechnologieswerealsosignificantlyrepresentedinthecommercialproduct
inventory,evenifresearch(papersandprojects)didnotseemtofocusonthesesubjectstoahigh
extent(Figure3).Regardingrobotic/automationSFTs,thenumberofavailablemarketsolutions
seemeddisproportionatelyhighincomparisontoresearchoutcomesinthesamefield.Inour
findings,therewasanincreasingtrendforthesetechnologiesmovingfromscientificpapersto
commercialproducts.Thismaybebecauseagriculturalresearchexperiencedadelayincopingwith
thedevelopmentofthesehigh‐endSFTs,andcompaniesusinginternalresearchanddevelopment
producedmarketableproductswithoutpublishingthisworkinscientificjournalsforintellectual
propertyreasons.ThesecompanieseithercollaborateinlargeconsortiumsofEUresearchprojectsto
optimizeandmarketsuchproductsorgodirectlybytheirownmeansinmarketableproducts.In
addition,higherfundingforinfrastructureinresearchgroupsisrequiredtocarryoutworkwith
roboticsystems,andthismayhavealsoinfluencedthelownumberofrobotic/automationSFTsin
researchprojectsandscientificpapersincomparisontootherSFTs,suchasrecordingtechnologies.
3.4.FieldOperationsAddressedbytheIdentifiedSFTs
ThefieldoperationsthattheidentifiedSFTswereusedforaresummarizedinFigure4.
(a)ScientificPapers(b)ResearchProjects(c)CommercialProducts
No.ofSFTs%No.ofSFTs%No.ofSFTs%
Tillage173.277.46113.9
Sowing50.999.6327.3
Transplanting30.666.4235.2
Fertilizing8215.41516.07817.8
Weeding5810.966.44410.0
CropProtection7614.31212.87617.3
Irrigation7213.61313.86314.4
Harvesting336.21111.7378.4
Scouting18534.81516.0255.7
TotalNo.ofSFTs53110094100439100
Figure4.Allocationoftheidentifiedsmartfarmingtechnologies(SFTs)toeachcategorythat
addressesacertainfieldoperation(tillage,sowing,transplanting,fertilizing,weeding,crop
protection,irrigation,harvesting,andcrop/soilscouting)in(a)scientificpapers,(b)researchprojects,
and(c)commercialproducts.
Inscientificpapers,cropandsoilscoutingwasthemostcommonapplicationfortheSFTs
described,inaccordancewiththetrendofFigure3,whererecordingSFTswerethemostprominent.
Agronomy2020,10,74314of25
Onthecontrary,SFTsderivedfromscientificpapersfocusedverylittleonsoiltillageand
sowing/transplanting,eventhoughtheycanprovidesignificantsavingsinplantestablishmentand
increaseyieldpotential(especiallyinhybridseeds,suchascornandpotatoes).Ontheotherhand,
thisworkconfirmsthatreactingapplicationtechnologiesareofgreatimportanceforresearchers(also
duetofarmers’interestsinthesesubjects),asalsoseenintheliteraturewithfertilizing[107,108],
weeding[109],cropprotection[110],irrigation[111],andharvesting[61,112]beingimportant
researchsubjectsinrecentyears.
Thebestrepresentedsubjectsinresearchprojectswerefertilizationandcrop/soilscouting.
Fertilizationisindeedoneofthetargetsforvariablerateapplicationtoensureyieldmaintenanceor
evenincreaseyieldwiththeleastpossiblenutrientsapplied[107],andEUresearchprojectsseemto
fundthisissuetoagreatextent.Asforscouting,itisoftenchosensimultaneouslywithotherfield
operations(mostoftentogetherwithfertilization)and,inonly22%ofcases,itistheonlychosenfield
operation.Thisresultpresentstheneedfordatagatheringbeforeanysmartfieldapplication,as
statedinmanySFT‐relatedpublications[113–115].Tillage,sowing/transplanting,andweedingwere
lessfound,asinthescientificpapers.Researchontheseoperationsisindeedlacking,andthereason
maybethereluctanceofresearchersandfunderstocarryoutresearchinthisdomain,probablydue
tothefactthatitisstillunclearhoweffectiveitisandhowitfitswithothervariableratetechnologies.
However,themostcrucialconclusionfromFigure4bisthatEU‐fundedresearchiswelldistributed
amongresearchtopicsandisgenerallydirectedtoallagriculturalpractices.
Regardingtheindustrialproducts,thesituationisdifferentasscoutinghadasignificantnumber
ofSFTsidentified,butnotthemajority,asseeninscientificpapersandresearchprojects.Thismight
indicatethatindustrialsolutionsareslowlymovingtointegratedsystems(requiredequipmentfor
dataacquisitionandactuationcombined).Ontheotherhand,fertilizationremainsthemost
importantSFTsoldonthemarketasinpapersandprojects,followedbycropprotectionand
irrigation,whicharethethreemostcrucialagriculturalpracticesformostcrops.SincetheSFTmarket
intheEUisstillinitsinfancy,companiesaredirectedmainlytowardtheseapplicationsthatareof
highimportanceforfarmers.Companiesthatwillsurviveorevenevolverapidlyneedtodemonstrate
dynamiccapabilities(inthiscase,tooffereffectiveandefficientSFTswithtangibleresults),move
beyondconventionalagriculturalmachineryandgainacompetitiveadvantagethatgenerateslong‐
termSchumpeterianrents[116].Itisinterestingtopointoutthatnotonlytillage,butalso
sowing/transplantinghavesignificantrepresentationintheindustrialSFTs,possiblyillustratingthat
suchtechnologiesarealreadymatureinthemarket(oratleasttheiraccuracyisadequatefor
practitioners)and,therefore,researchwasnotdirectedtowardtheminrecentyears.
3.5.FactorsThatCanBeExpectedtoAffectAdoptionofSFTs
BasedonthesevenstatementsoftheRogersframework(Section2.3.5),theinventoriedSFTs
wereassessedintermsofaffectingadoptionreadiness.Theresultsforscientificpapers,research
projects,andindustrialproductsareshowninFigure5.
BycomparingtheresultsofthethreeSFTcategories,itisobviousthatthereisaconstanttrend
ofchangeforallsevenstatementsoftheRogersframework,movingfromscientificpapers(newideas
withlowTRL)toresearchprojects(morematureideaswithhigherTRL)andfinallyindustrial
products(maturecommercialsolutionsofTRL9).Morespecifically,SFTspresentedinscientific
papersarenotindicatedasasignificantreplacementofanexistingtool,whilethisisquitemore
prominentformostoftheSFTslistedinresearchprojectsandcommercialproducts.Probably,new
SFTsdevelopedfromscientistsareyettofindtheiractualplaceinagriculturalpractice,while,in
projectsandespeciallyinH2020EUprojects,theroleofandtheneedforthedevelopedSFTswere
alreadyidentifiedfromscratch.AsforthecommercialSFTs,oneofthemainreasonsforaproductto
bemarketedisitsabilitytoreplaceexistingtechnologyandtoeasetheend‐user’sbusiness[117,118].
Regardingtheneedformajorchangesinexistingsystems,researchersinscientificpapersare
workingonradicalconceptsthatwillmakeachangeinexistingfarmingpractices,whileresearch
projectsand,toagreaterextent,commercialproductsaredirectedtowardsolutionsthatcancover
theneedsoffarmersbyadjustingtheirexistingsystems[29].SFTsinscientificpapersseemtorequire
Agronomy2020,10,74315of25
lesslearningfromtheend‐userthanthoseinresearchprojectsandcommercialproducts.Thisresult
wasexpected,asresearchersbelievethattheirideasareeasilyinterpretedbyauserastheyhavegreat
knowledgeofwhattheyareworkingon,while,astheSFTmovesintorealconditions,itbecomes
obviousthatatypicalfarmerwillhavetobetaughtthesenewICTsolutionsthattheyarenotusedto
byincreasingtheirSFTliteracy,whichisoneofthemainbarriersforSFTadoption[119].
Figure5.Responsesregardingadoptionreadinessofthesmartfarmingtechnologies(SFTs)identified
inscientificpapers,research