ArticlePDF Available

Abstract and Figures

Farming faces challenges that increase the adverse effects on farms’ economics, labor, and the environment. Smart farming technologies (SFTs) are expected to assist in reverting this situation. In this work, 1064 SFTs were derived from scientific papers, research projects, and industrial products. They were classified by technology readiness level (TRL), typology, and field operation, and they were assessed for their economic, environmental, and labor impact, as well as their adoption readiness from end-users. It was shown that scientific articles dealt with SFTs of lower TRL than research projects. In scientific articles, researchers investigated mostly recording technologies, while, in research projects, they focused primarily on farm management information systems and robotic/automation systems. Scouting technologies were the main SFT type in scientific papers and research projects, but variable rate application technologies were mostly located in commercial products. In scientific papers, there was limited analysis of economic, environmental, and labor impact of the SFTs under investigation, while, in research projects, these impacts were studied thoroughly. Further, in commercial SFTs, the focus was on economic impact and less on labor and environmental issues. With respect to adoption readiness, it was found that all of the factors to facilitate SFT adoption became more positive moving from SFTs in scientific papers to fully functional commercial SFTs, indicating that SFTs reach the market when most of these factors are addressed for the benefit of the farmers. This SFT analysis is expected to inform researchers on adapting their research, as well as help policy-makers adjust their strategy toward digitized agriculture adoption and farmers with the current situation and future trends of SFTs.
Content may be subject to copyright.
Agronomy2020,10,743;doi:10.3390/agronomy10050743www.mdpi.com/journal/agronomy
Article
SmartFarmingTechnologyTrends:Economic
andEnvironmentalEffects,LaborImpact,
andAdoptionReadiness
AthanasiosT.Balafoutis
1,
*,FritsK.VanEvert
2
andSpyrosFountas
3
1
InstituteofBioEconomy&AgroTechnology,CentreofResearch&TechnologyHellas,
DimarchouGeorgiadou118,38333Volos,Greece
2
AgrosystemsResearch,WageningenUniversity&Research,P.O.Box16,
6700AAWageningen,TheNetherlands;frits.vanevert@wur.nl
3
DepartmentofNaturalResourcesManagementandAgriculturalEngineering,AgriculturalUniversityof
Athens,11855Athens,Greece;sfountas@aua.gr
*Correspondence:a.balafoutis@certh.gr;Tel.:+302311257651
Received:18February2020;Accepted:18May2020;Published:21May2020
Abstract:Farmingfaceschallengesthatincreasetheadverseeffectsonfarms’economics,labor,and
theenvironment.Smartfarmingtechnologies(SFTs)areexpectedtoassistinrevertingthissituation.
Inthiswork,1064SFTswerederivedfromscientificpapers,researchprojects,andindustrial
products.Theywereclassifiedbytechnologyreadinesslevel(TRL),typology,andfieldoperation,
andtheywereassessedfortheireconomic,environmental,andlaborimpact,aswellastheir
adoptionreadinessfromendusers.ItwasshownthatscientificarticlesdealtwithSFTsoflower
TRLthanresearchprojects.Inscientificarticles,researchersinvestigatedmostlyrecording
technologies,while,inresearchprojects,theyfocusedprimarilyonfarmmanagementinformation
systemsandrobotic/automationsystems.ScoutingtechnologieswerethemainSFTtypeinscientific
papersandresearchprojects,butvariablerateapplicationtechnologiesweremostlylocatedin
commercialproducts.Inscientificpapers,therewaslimitedanalysisofeconomic,environmental,
andlaborimpactoftheSFTsunderinvestigation,while,inresearchprojects,theseimpactswere
studiedthoroughly.Further,incommercialSFTs,thefocuswasoneconomicimpactandlesson
laborandenvironmentalissues.Withrespecttoadoptionreadiness,itwasfoundthatallofthe
factorstofacilitateSFTadoptionbecamemorepositivemovingfromSFTsinscientificpapersto
fullyfunctionalcommercialSFTs,indicatingthatSFTsreachthemarketwhenmostofthesefactors
areaddressedforthebenefitofthefarmers.ThisSFTanalysisisexpectedtoinformresearcherson
adaptingtheirresearch,aswellashelppolicymakersadjusttheirstrategytowarddigitized
agricultureadoptionandfarmerswiththecurrentsituationandfuturetrendsofSFTs.
Keywords:smartfarmingtechnologies;recording;reacting;guiding;farmmanagement
informationsystem;agriculturalrobots;automatedsystems
1.Introduction
AgriculturalperformanceintermsofproductivityledfarmingpracticesaftertheGreen
Revolutionofthe1950s,withlimitedattentionpaidtotherespectiveimpactonsustainability.
However,conventionalfarmingpracticesareatapointwhereagriculturalinputsareoverused,labor
isnolongerinabundance,andtheenergydemandiscontinuouslyincreasing[1].Newopportunities
areemerginginfarming,asaresultoftherapiddevelopmentofcommunicationnetworksandthe
availabilityofawiderangeofnewremote,proximal,andcontactsensors[2–6].Intheagricultural
Agronomy2020,10,7432of25
context,thesetechnologieshelpcaptureandtransmitgeolocalizedrealtimeinformationatlowcost
[7–10].Oncegathered,processed,andanalyzed,thesedatacanassistindeterminingthestateofthe
agroenvironment(e.g.,soil,crop,andclimate)and,whencombinedwithagroclimaticand
economicmodels,technicalinterventionscanbeappliedatthefieldlevelbyeitherconventional
meansorautomated/robotizedsolutions[11].
Alltheseaspectsareundertheconceptnamed“smartfarming”thatrepresentstheapplication
ofmoderninformationandcommunicationtechnologies(ICT)intoagriculture[12–14].Theseinclude
variablerateapplicators[15–17],Internetofthings(IoT)[18,19],geopositioningsystems[20,21],big
data[22–24],unmannedaerialvehicles(UAVs,drones)[18,25],automatedsystems,androbotics
[26,27].Smartfarmingisbasedonapreciseandresourceefficientapproachandattemptstoachieve
higherefficiencyonagriculturalgoodsproductionwithincreasedqualityinasustainablebasis[28].
However,fromthefarmer’spointofview,smartfarmingshouldprovideaddedvalueintheformof
moreaccurateandtimelydecisionmakingand/ormoreefficientexploitationoperationsand
management[29].
Smartfarmingtechnologies(SFTs)canbedividedintothreemaincategories:farmmanagement
informationsystems(FMIS),precisionagriculture(PA)systems,andagriculturalautomationand
robotics.FMISsrepresentmainlysoftwaresystemsforcollecting,processing,storing,and
disseminatingdataintheformrequiredtocarryoutafarm’soperationsandfunctions.Significant
researchworkwascarriedoutinthisareainthelast20years[30–33]andthisdevelopmentassisted
inhavingmanycommercialproductsalreadyonthemarketthat,inmanycases,showsignificant
economic,environmental,andsocialbenefits[28].
PAreferstothefarmingmanagementconceptaimedatoptimizinginputusebasedonrecording
technologiestoobserveandmeasureinter‐andintrafieldspatialandtemporalvariabilityincrops,
aimingtoimproveeconomicreturnsandreduceenvironmentalimpact[34].PAisabletoincrease
inputefficiencyformaintainingorevenincreasingproductionrate[35–37],usingremotesensing
technologiesfordatagatheringwitheithersatelliteplatformsforspaceimagery[38–40]or
aircrafts/UAVsforaerialapplications[41–43],combineduseofsensorsforgrounddataacquisition
[44],wirelessnetworksforinterconnectingthem[4,10,45,46],geospatialdataanalyticscomingfrom
differentsources[47],decisionsupportsystems(DSSs)foroptimizedfarmingdecisionmaking
[48,49],andothers.
Reactingtechnologiesarebasedonagriculturalautomationandroboticsthatareseparate,but
closelyrelatedICTsectors.Inthecaseofopenfieldagriculture,theyareinterconnectedtocoverthe
processofapplyingautomaticcontrol,artificialintelligencetechniques,androboticplatformsatall
levelsofagriculturalproduction.Automationtechnologiesinagriculturefoundhighresearch
interestwithmachinelearningbeingthoroughlyusedforagriculturalpurposes[50–52],aswellas
computervisionandartificialintelligence[53,54],threedimensional(3D)imagery[55],and
navigationsystemsforoffroadagriculturalvehicles[56].Basedonthesedevelopmentsandonthe
industrialroboticstateoftheart,agriculturalrobotsofalltypeswereappliedinrecentyears[26,57–
59]withspecifictasks,suchasweedcontrol[60],harvesting[61],etc.
Attentiontowardsmartfarmingisgrowingrapidly,andseveralstudiesofthecurrentstatusof
SFTdevelopmentandadoptionrateamongfarmersworldwidewerereleased.Themostknown,due
toitscontinuousbiannualreleasefrom1997untiltoday,istheCropLife/PurduePrecisionAgSurvey
thatdealswithadoptionratesofcertainSFTsintheUnitedStates(US)andCanada,basedonretail
cropinputdealersregardingtheirsmartfarmingservices.Thelastversion(2019)[62]showedthe
increasinguseofdataforcropmanagementdecisions,withsensingtechnologyservices(soil
sampling,satellite/UAVimaging,yieldmapping)andvariablerateservicesbeingsignificantly
increasedincomparisontothepreviousedition(2017),presentingthecontinuousSFTadoption
incrementintheUS.
InEurope,wheresmartfarmingislessdiffusedthanNorthAmerica,SFTuptakeislessexplored,
whilemoststudiesarecountryspecific[63].However,recentSFTadoptionresearchwasconducted
indifferentEuropeancountriestoalsoobservegeographicalandculturalcausesofreducedadoption
rates[29,63,64].Particularly,Barnesetal.(2019a)[63]consideredmachineguidanceandvariablerate
Agronomy2020,10,7433of25
nitrogentechnologiesasthemostsignificantSFTsforarablefarmingandconductedanempirical
examinationofuptakeinfiveEuropeancountries.Theyshowedthatfarmsizeandincomereflectthe
mostimportantbarrierstoadoptionforallcountriesunderinvestigation;furthermore,incountries
withsmallfarmsoflowincome,subsidyandtaxationwereconsideredthemainpositivedriversof
SFTuptake.Barnesetal.(2019b)[64]alsoidentifiedincentivesforSFTstobeadoptedinEuropeusing
datafromthesamefivecountriesasinReference[63],anditwasfoundthatcurrentSFTadoptersare
divergentfromnonadopters,whilethefirstadoptersareinfluencedbyeconomicandinformational
interventions.Increasingadoptionisconstrainedbyskepticismtowardeconomicreturnsandthat
EuropeanUnion(EU)policydoesnotrecognizecomplexityacrossdomainstoenableuptake.
Kerneckeretal.(2020)[29]alsoworkedontheadoptionoftechnologicalinnovationsinagriculture
byconductingasurveyinsevenEuropeancountriesandinfourcroppingsystems,andtheyshowed
thatadoptionincreaseswithfarmsizeinarablefarms.FarmersperceiveSFTasuseful,buttheyare
stillnotconvincedofSFTpotential.Ontheotherhand,expertsseemtobemoreconvincedofSFT
assetsandexpectalotfromSFTfuturedevelopment.Countryspecificitiesshouldbeconsideredto
improveSFTdiffusion.
EvenifadoptionratescanbeincreasedthroughoptimizationofSFTresultsandrelatedpolicies
andincentives,SFTscomeswiththeriskofreboundeffectsoftheiruseinagriculturalpractices.This
isbecause,evenifsmartfarmingisexpectedtoconsiderablycontributetoenvironmentaland
resourceprotection(asstatedaboveusingPAtechniques),theoccurrenceofpotentialreboundeffects
foragriculturalland,water,fertilizers,andplantprotectionproductsishighlyprobable[65–67].
Itisevidentthatsmartfarmingevolvestechnologicallyatafastpaceinbothresearchandmarket
domains,butitsadoptionfromendusersdoesnotfollowthesamefootsteps.Ifanevaluationofthe
promisingpositiveimpactofSFTsaccompaniedbyanadoptionreadinessanalysiswouldbe
available,thentheuptakeofsuchtechnologieswouldpossiblyincrease.Hence,athorough
assessmentandcomparisonofSFTsfromresearch(scientificpapers),innovation(researchprojects),
andmarket(commercialproducts)couldassistinbetterunderstandingtheevolutionofSFTsand
howthisevolutionaffectsfactorsofadoptionreadinessandrelatedeconomic,environmental,and
laboraspectswithinafarm.Basedonthisneed,theobjectiveofthisstudywas(i)tomaptheexisting
researchandcommercialSFTswithregardtotheirtechnologicalreadinesslevel,type,andthefield
operationtheyareusedfor;(ii)toidentifytheeaseofSFTadoption;and(iii)toprovidethemain
impactsofSFTsonfarmeconomics,environment,andlabor.Thisworkisexpectedtocontributeto
theliteraturewithaglobalperspectiveofvariousSFTsdevelopedfromresearchtoinnovationand
thentothemarket,aswellasshowthedifferencesintheirimpactandadoptionreadiness.
2.MaterialsandMethods
Thisworkfocusesonopenfieldproduction;hence,weconsideredSFTsusedinarable
(includingfodderproduction)andhorticultural(fruitandvegetableproduction)farming.Areview
ofsuchSFTswasconductedbasedonscientificliterature,currentandpastEUresearchprojects,and
commerciallyavailableproducts.TheeconomicandenvironmentalchallengesthatSFTsfacewere
determinedbyasetofkeyperformanceindicators(KPIs)(Section2.1).FortheselectionoftheSFTs,
asystematicsearchprocedurewasdevelopedforscientificpapers,researchprojects,andcommercial
products(Section2.2).Finally,informationabouttheidentifiedSFTswascollectedbydevelopinga
questionnairetorecorddataforeachSFT’sadoptionreadinessanditsperformanceregardingthe
selectedKPIs(Section2.3).
2.1.KeyPerformanceIndicatorsforOpenFieldProduction
Severalauthorsproposedgroupingindicatorstomeasuretheperformanceofagricultural
systems.InastudyintheUnitedKingdom(UK),indicatorclusters(e.g.,biodiversity,energy,value
chain)weredefined,withmeasurableparametersforeachcluster(e.g.,numberofspeciesonthe
farm,energybalance,totalvalueofproduction)[68].Inanotherstudy,theliteratureonagricultural
sustainabilitywassurveyed,andindicatorswereidentifiedandgroupedinathreelevelhierarchy
[69].Anindepthreviewofindicatorconstructionisalsoavailable[70].Indicatorsetswerealso
Agronomy2020,10,7434of25
proposedbypublicorganizations,suchastheEuropeanEnvironmentalAgency(EEA)[71]andthe
OrganizationforEconomicCooperationandDevelopment(OECD)[72],aswellasprivate
organizations,suchasTheSustainabilityConsortium(TSC)[73]andGlobalReportingInitiative
(GRI)[74].Alltheseindicatorsetsaredifferentandhaveslightlydifferentpurposes.Thereisnotone
singlesetofindicatorsthatsuitsourcurrentpurposebetterthanalltheothers.Weusedthepublished
indicatorsetsforourstudy.
Weexaminedthepublishedindicatorsandderivedchallengesinagriculturethatcouldbe
possiblyaddressedbySFTs.InTable1,thesechallengesarelistedalongwithSFTsthatcanbeused
toaddressthem.
Table1.Challengesidentifiedinopenfieldfarmingaccompaniedbyrelevantsmartfarming
technologies(SFTs)thatcouldaddressthem.DSS—decisionsupportsystem;FMIS—farm
managementinformationsystem;VRA—variablerateapplication;RFID—radiofrequency
identification;QRQuickResponse..
Challeng
e
RelevantSmartFarmingTechnologies
Resourceefficiency(e.g.,water,nutrients,
pesticides,labor)
sensorsandnetworks
bigdataanalytictools
DSS
FMIS
intelligentwaterapplicationsystems
VRAfertilization/pesticidessystems
RFIDtags
Management/preventionofdiseases,
weeds,etc.
earlywarningsensorsandnetworks
specificfarmmachines
FMIS
DSSforinfestationmanagement
VRAsprayingsystem
Riskmanagement(e.g.,foodsafety,
pesticideresidueeliminationand
emissionofagrochemicals,etc.)
sensors(e.g.,weatherstation,multispectral
cameras,thermalcameras,etc.)
traceabilitytechnology
barcodes,QRcodes,RFID
realtimerecordingsystems
Compliancewithlegislationand
standards(greeningofCAP;regulations
onsoilmanagement,pesticide,fertilizer,
andwateruse)
recordingtechnologies
webbased,open,andinteroperablestandardsfor
endtoendtrackingsystems
Collaborationacrossthesupplychain
(supplychainofcompaniesand
processors)
smarttraceabilitysystem
smartlogisticssystem
variousanalyticaltools
WeexaminedthepublishedindicatorstocreatealistofKPIstobeusedforassessingtheimpact
ofSFTsintermsofthreemainissuesassociatedwithagriculturalsystemsthatareofhighimportance
forendusersandthegeneralpublic:farmeconomics,theenvironment,andlaborwithinthefarm
(Table2).ThedefinitionofeachKPIandthereasoningforincludingthemaregiveninTable2.These
KPIsare,inmanycases,interconnectedandmightalsohaveanimpactoneachother.
Agronomy2020,10,7435of25
Table2.Keyperformanceindicators(KPIs)combinedwiththeirdescriptionandthereasoningfor
theirinclusiontoassesstheimpactofsmartfarmingtechnologies(SFTs)inopen–fieldfarming,
regardingfarmeconomics,environment,andlaborwithinthefarm.
A/A
Key
Performance
Indicator
DescriptionoftheKPIinRelationtothe
SpecificImpactCategory
ReasoningtobeSelectedasSignificant
KPIintheSpecificImpactCategory
FarmEconomics
1Productivity
Ratioofavolumemeasureofoutputto
avolumemeasureofinputuseinfarm
production[75]
Itisanindextoexpressthe
optimizationoftheagricultural
practicesofafarmthroughSFTuse,
whichreflectsfarmeconomics
2Qualityof
product
Qualitativefeaturesofagricultural
products(e.g.,intact,sound,clean,free
ofpests,freshappearance,normaland
sufficientphysiologicaland
morphologicaldevelopment,maturity,
firmness,freeofdecayaffecting
edibility,absenceofdefects)[76]
TheinfluenceofSFTsonthe
productqualitycouldincrease
productvalue
3Revenue
Incomeofafarmfromitsnormal
businessactivities,usuallyfromthe
salesofagriculturalgoodstocustomers
[77]
Revenueiscrucialfortheviability
offarms,andSFTscouldassistinits
increasebyoptimizingproduction
andquality
4InputcostsCostofinputs(e.g.,seeds,fertilizers,
pesticides,fuel,irrigationwater)[78]
ThemainroleofSFTsisthe
optimizationofinputsthatreflect
costreductionforafarm
5Variablecosts
Expensesthatvaryindirectproportion
tothequantityofoutput(e.g.,raw
materials,packaging,labor)[79]
Reductionofallfarmexpenses
employingdifferentkindsofSFTs
canpositivelyimpactthefinal
income
6Cropwastage
Cropthatgetsspilledorspoiltbeforeit
reachesthemarket(e.g.,fruitswith
blotsorblemishfrompests,orof
irregularshapefromabnormal
development)[80]
SFTscouldassistinbettercrop
protectionschemesandselective
harvestingreducingcropwastage
7EnergyuseAmountofenergythatisusedforall
needsofafarm[81]
Optimizedprocessesinthefarm
(e.g.,tractororrobotrooting,
selectiveharvestingthatreduces
storageneeds,etc.)canreduce
energyuseandtherespectivecost
Environment
8Soil
biodiversity
Thevariationinsoillife,fromgenesto
communities,andtheecological
complexesofwhichtheyarepart,i.e.,
fromsoilmicrohabitatstolandscapes
[82]
Optimizedcropproductionusing
SFTs(i.e.,minimizingfieldpasses
usingautoguidance)could
preservesoilbiodiversityand
sustainability,allowingsoillife
conservation
9Biodiversity
Thenumberandtypesofplantsand
animalsthatexistinaparticularareaor
intheworldgenerally[83]
Reducedbiodiversityimpact
throughoptimizationofinputs
(variableratefertilizationor
pesticideapplication)andspray
driftreductionusingSFTs
10FertilizeruseExtentoffertilizeruseinagricultural
production[84]
Decreasingthefertilizeruse
applyingSFTsmeansthatleaching
togroundwaterorhighsoilGHG
emissionscanbereduced
11Pesticideuse Extentofpesticideuseinagricultural
production[85]
Pesticideusereductionemploying
SFTscanprovidelesspointand
Agronomy2020,10,7436of25
diffusecontaminationofnoncrop
areas
12Irrigation
wateruse
Waterappliedbyanirrigationsystem
tosustainplantgrowthinagricultural
andhorticulturalpractices[86]
OptimizingwaterusewithSFT
applicationwouldassistin
maintainingwaterreservesand
reduceoverpumping
13CH4emissions
Allreleasesofthemaingreenhouse
gasesrelatedtoagriculturalactivity
(CH4,CO2,N2O)derivedduringcrop
productiononafarm[87]
Improvingallaspectsofinput
application(seeds,fertilizers,
pesticides,fuel,irrigationwater)
canresultinlessGHGemissions
withapositiveimpactonglobal
warmingpotential
14CO2emissions
15N2Oemissions
16NH3emissionsNH3releasesmainlyfromfertilizeruse
forcropproductiononafarm[88]
Acidificationeffectsattributedto
drydepositionofNH3couldbe
reducedbynitrogenapplication
throughSFTs
17NO3leaching
MovementofNO3tothegroundwater
increasingnitrogenlossesfrom
nitrogenfertilizerinputstoagricultural
land[89]
Controllingnitrogenfertilizationto
optimizeitsusefromthecrops
wouldreduceNO3leachingwitha
positiveimpactonsoilandwater
resources
18Pesticide
residues
Anysubstanceormixtureofsubstances
infoodresultingfromtheuseofa
pesticideontherespectivecrop
includinganyspecifiedderivatives
consideredtobeoftoxicological
significance[90]
VariableratesprayingthroughSFTs
canlessenpesticidedosage
reducingtheresiduesonproducts
intherespectivefieldanddiminish
spraydriftforlessresiduesin
neighboringfields
19Weedpressure
Effectsofweed,pest,anddisease
growthinafield[91]
Controllingweed,pest,anddisease
populationanddensitymainlywith
timelyandprecisepesticide
applicationwouldreducetheir
impactonthefinalyieldandquality
20Pestpressure
21Disease
pressure
Labor 
22Labortime
Timedevotedtolaborandconsidered
asacommodityorasameasureof
effort[92]
SFTscouldreducethelabortime,
throughroboticapplications,auto
guidance,teleoperation
23Farmer’sstress
Adversereactionpeoplehaveto
excessivepressureorothertypesof
demandplacedonthem[93]
SFTscouldreducefarmers’stress
throughbetteroptimizationofthe
resourcesandschedulingofthe
operations
24HeavylaborHeavypracticalwork,especiallywhen
itinvolveshardphysicaleffort[94]
SFTscouldreduceheavylabor
usingautomationandrobotic
technologiesfordemandingfield
operations
25Workers’
injury
Injuryorillnesscaused,contributedor
significantlyaggravatedbyeventsor
exposuresintheworkenvironment[95]
Automationandroboticscould
reducefarmers’injuries,i.e.,
automatichitchcouplingor
automaticsprayerfilling
26Accidents
Discreteoccurrenceinthecourseof
workleadingtophysicalormental
occupationalinjury[96]
SFTsprovideadvancedsensorsfor
activeandpassiveoperations,such
asautoguidanceforautomatic
turningsinheadlandsthatreduce
accidents
2.2.Search
WesearchedforSFTsderivedfromscientificpapers,researchprojects,andindustrialproducts.
Themethodologyusedisgivenbelow.
Agronomy2020,10,7437of25
2.2.1.PeerReviewedScientificPapers
WeemployedScopus(www.scopus.com)asithasabroadcoverageincludingmanydisciplines
(notjustagriculture)andscientificjournalsofdifferentranking(notonlytopjournals).
Aquerywasdevelopedinconsultationwithaprofessionallibrariantosearcharticlesthatmight
describeSFTs.Thequeryconsistedoftwoparts:afirstpartthataimedtoselectallarticlesrelatedto
technology,andasecondpartthataimedtoselectallarticlesrelatedtoopenfieldfarming.Thetwo
partsofthequerywerejoinedwithan“AND”clause.Theselectionofkeywordswassupplemented
byconsiderationsonthescopeofrelevanttimeandsubjectrelatedsettings.Thefollowingquerywas
usedtoselectarticles:
(TITLEABSKEY(sensorordecisionsupportorDSSordatabaseorICTorautomat*or
autonom*orrobot*orGPSorGNSSor“informationsystem”or“imageanalysis”or“image
processing”or“precisionagriculture”or“smartfarming”or“precisionfarming”))
AND
(TITLEABSKEY(agricult*orcrop*orarabl*orfarm*orvineyardororchardorhorticult*or
vegetabl*))
AND
(LIMITTO(DOCTYPE,”ar”)ORLIMITTO(DOCTYPE,”re”))AND(LIMITTO(SUBJAREA,
”AGRI”)ORLIMITTO(SUBJAREA,”ENGI”)),
wherekeywordsendingwith“*”couldhavedifferentendings(e.g.,automat*willretrieve
“automatic”,aswellas“automated”);GPS—globalpositioningsystem,GNSS—globalnavigation
satellitesystem.
Resultswerelimitedbyyear,documenttype(article),subjecttype(agriculture),andlanguage
(English).Forourpurpose,wecollectedpapersonlyfrom2012andlater,inordertofocusonrecent
SFTsthatarelikelyofinteresttoallrelatedstakeholdersandespeciallyendusers.Thequerywas
optimizedandverifiedbyusingarandomsampleof10keypapersthatwereconsideredrelevantto
thedevelopmentofSFTspracticalforfarmers.Thequerywasconsideredcompletedwhenthese10
paperswereincludedinthequeryresult.
TheScopusqueryresultedinalargenumberofarticlesthatareexpectedtoholdinformationon
SFTs.Fromthesepapers,thereweremanythatwerenotrelevanttotheopenfieldagriculture.
Therefore,amanualselectionprocedurewasusedtoselectonlythearticlesthatarerelevant,namely,
articlesdescribingatechnologythatcan(orcouldbe)usedbyafarmerintheirdailyfarmingpractice.
Throughout,wefocusedonthequestion,“isthisarelevantSFT?”.Weusedanexclusionapproach
andremovedpapersrelatedto(i)postharvest,processing,distributing,ormarketing,(ii)
evapotranspirationcalculations,(iii)landsuitability(selectingonlyDSSsrelatedtocropssuitability),
(iv)watermanagement,likedroughts(butincludinganythingrelatedtoirrigation),(v)tractor
engines,and(vi)greenhousecultivation.
Havingavailableonlythescientificpapersrelevanttooursearch,themanualselectionofarticles
continuedinthreerounds.Firstly,weusedthetitletoremovepapersthatwerenotrelevant.For
example,apaperwiththetitle“ANewAssessmentofSoilLossDuetoWindErosioninEuropean
AgriculturalSoilsUsingaQuantitativeSpatiallyDistributedModelingApproach”wasselectedby
ourquerybecauseitsabstractcontainedtheterms“geographicinformationsystem”and“arable
land”.However,thetitleclearlydoesnotdescribeatoolusefultofarmers.Therefore,weremovedit
fromourlist.Secondly,forthosepaperswithrelevanttitles,wealsoreadtheabstractandexcluded
thosenotpracticallyusefulforfarmers.Asanexample,apaperwiththetitle“WirelessSensor
NetworkandInternetofThings(IoT)SolutioninAgriculture”seemedofinterest.Theabstractmade
itclearthatthispaperdescribednetworkinfrastructurethatcouldcertainlybeusedinafarm.
However,thiswouldnotbeuseddirectlybyfarmers.Ratheritwouldbeacomponentinthe
developmentandoperationalizationofasensornetworkthatinturnwouldsupporttoolsfor
decisionmakingbyfarmers.Inshort,thispaperdidnotdescribeanSFTdirectlyusefulforafarmer
inopenfieldagriculture,anditwasexcluded.Asathirdstep,weattemptedtolocatethefulltextof
thepaper.Ifthatprovedimpossible,orifthepaperturnedouttobewritteninalanguageotherthan
English,thenweremovedfromthelist.Ifthefulltextindicatedthatthepaperwasnotrelevantto
Agronomy2020,10,7438of25
openfieldagriculture,itwasalsoremovedfromthelist.Forpapersleftattheendofstepthree,the
authorsansweredthequestionsofthesurveyofSection2.3usingthefulltextofthepaper.
2.2.2.ResearchProjects
Fortheretrievalofresearchprojects,anactivesearchwascarriedoutforEUfundedprojects.
Horizon2020andFP7programswerecollectedfromtheCORDIS[97]websiteoftheEUand
importedintoarelationaldatabase.TheScopusquerywastranslatedtoanSQLquerywhich
searchedcolumns“title”and“objective”forEUresearchprojects,usingthesamelistofkeywordsas
intheScopusquery.Inthisprocess,theauthorsansweredthequestionsofthesurveyofSection2.3
usingtheinformationoftheproject’swebsiteanddeliverablesand,inmanycases,viapersonal
communicationwiththeprojects’coordinators.
2.2.3.IndustrialProducts(CommerciallyAvailableProductsandServices)
Forthecollectionofindustryresults,acallwasannouncedthroughtheSmartAKISproject
newsletter(www.smartakis.com),aswellthroughtheEuropeanAssociationofAgricultural
Machinery(CEMA)tobecomeknownbythenetworkofSFTcompaniesunderitsumbrellaorrelated
totheassociation.Awebsearchgaveinsightintothecompaniesthatarepossiblyinvolvedinthe
developmentofSFTs.Wesearchedforcompanieswithrelevantcredentialsforsmartfarming,such
asinvolvementintheproductionoffarmingequipmentandmachineryorstakeholdersinvolvedin
thedevelopmentofagronomicsoftware.TherelevantnetworksofFIWAREFRACTALSandSmart
AgrifoodIIwereconsulted.Furthermore,weusedallSmartAKISpartnersnetworkofadvisersto
contactrelevantstakeholders,andthelaststepwasfortheauthorsofthisworktoconductadesk
searchthoughinternettolocatemorecommercialSFTs.ThequestionnairewasansweredbytheSFT
providerswiththeassistanceoftheauthorsofthiswork.Inthecasethatthequestionnairewas
inadequatelyfilledin,theSFTproviderswerecontactedagain(thequestionnaireaskedfortheir
consenttodoso)toprovidethemissingorinconsistentinformation.Ifthequestionnairewasstillnot
totallyfilledin,thentheSFTwasexcludedfromthesearch.
2.3.QuestionnaireDevelopment
AquestionnairewasconstructedforrecordingdataabouteachSFTfoundinthethreecategories
(scientificpapers,researchprojects,commercialproducts).Thequestionnairewasdevelopedbased
ontheassessmentofthefulllistofchallengesandrespectiveKPIs,andthreeversionswereproduced
(oneforeachcategory).Thequestionnaireconsistedoftwomainparts:(1)descriptiveinformation
fortheSFT,includingbasicinformation,technologyreadinesslevel,type,andfieldoperationthatit
isusedfor;(2)assessmentinformationabouteaseofadoptionandpossibleeffectsonfarmeconomics,
environment,andlabor.TheassessmentsectionwasevaluatedusingaLikertscaleoffivelevels.The
responseswereanalyzedusingdescriptivestatisticsforLikertdatainRsoftware(freesoftwareby
theRFoundationfromStatisticalComputing,Vienna,Austria).Thequestionnairewasalsobasedon
theEIPAGRIcommonformat[98]asmuchaspossible,anditwasdistributedonlineviaalinktothe
identifiedstakeholders.Thespecificcontentofeachpartinthequestionnaireisdescribedbelow.
2.3.1.BasicInformationaboutSFT
Afterquestionsthatwerespecifictothetypeofentry(scientificpaper,researchproject,or
industrialproduct),somebasicinformationquestionswereaskedabouttheSFT.Indicatively,for
papers,theauthorship,scientificjournal,yearofpublication,andDOIwereasked,while,forprojects,
durationandstatus(ongoingorterminated),typeofEUfunding,budget,andthecoordinatorwere
given.Finally,forproducts,thedetailsofthecompanyandthepersoninchargeweredefined.
2.3.2.TechnologyReadinessLevel(TRL)
TheTRLofatechnologyindicatesitsmaturitylevelandrangesfromTRL1(basicprinciples
observed)toTRL9(actualsystemproveninoperationalenvironment)[99].Basedonthis
Agronomy2020,10,7439of25
classification,TRLwasspecifiedfortheSFTspresentedinscientificpapersandtheresearchprojects,
while,forcommercialproducts,itwasconsideredasTRL9becausetheyarealreadyoperationalon
themarket.TRLwasdefinedbytheauthorsusingtheAFRLTRLCalculator(version2.2.)[100]for
eachoftheincludedSFTsinthesearch.Theprocesswasasfollows:threeequalbatchesofSFTsfrom
bothscientificpapers(177papersineachbatch)andresearchprojects(twobatchesof31projectsand
onebatchof32projects)wererespectivelydefined.Then,eachauthorwasassignedwithtwobatches
ofeachcategory,inordertoremainneutralinallpapers,andprojectsofthethirdbatch.Incaseof
disagreementabouttheTRLlevelofacertainSFTbetweenthetwoauthorsthatassessedthesame
batch,thethirdauthorwouldbeaskedtoevaluate,andhisassessmentwouldbetakenintoaccount.
Itshouldbementionedthatthelevelofdisagreementwasverylow(in17outof531scientificpapers
(3%)andinsixoutof94researchprojects(6%)),anditremainedbetweentwoneighboringTRLlevels
duetotheaccuratedefinitionsgivenbyReferences[77,78]andtheexperienceoftheauthors.
2.3.3.TypologyofSFTs
ForabetterunderstandingoftheSFTlandscape,theclassificationofSchwarzandHerold[101]
wasused.TheseauthorsclassifiedSFTsasrecording,reacting,orguidingtechnologies.Inaddition
totheseclasses,inthiswork,“FMIS”and“robotic/automationsystem”wereused,becauseresearch,
innovation,andmarketapplicationoftheseSFTcategoriesfoundhighinterestinrecentyears
[28,52,59].Itshouldbenotedthatthesefiveclassesarenotmutuallyexclusive,meaningthata
particularSFTmayberecordingandreactingatthesametime.AroboticSFTwilltypicallyusesome
kindofguidingtechnologyandeitherrecordorreact,orpossiblydoboth.Theprincipalfunction
wasusedinouranalysis.
2.3.4.FieldOperationConductedwiththeSFT
ThemainfieldoperationsthateachSFTcouldbeusedweregiveninthequestionnairetobe
chosen,namely,(1)tillage,(2)sowing,(3)transplanting,(4)fertilization,(5)pesticideapplicationfor
weed,pest,anddiseasecontrol,(6)irrigation,and(7)cropscouting(measuringandrecordingcrop
andsoilparametersinthefield),forexample,inthesituationoffielddataretrieval.Theoptionto
includeanotherfieldoperationwasprovided.
2.3.5.EaseofAdoptionoftheSFT
InadditiontocharacteristicsofSFTsthatrelatetothechallengesthatfarmersface,therewere
alsoquestionsrelatedtoeaseofadoptionofSFTs.TheRogersmethod[102]forevaluationof
innovationswasused,wherepotentialadoptersevaluateaninnovationintermsofitsrelative
advantage(theperceivedefficienciesgainedrelativetocurrenttoolsorprocedures),compatibility
withthepreexistingsystem,complexityordifficultytolearn,testability,potentialforreinvention
(usingthetoolforinitiallyunintendedpurposes),andobservedeffects.Respondentswereaskedto
indicatewhetherornottheyagreedwiththefollowingsevenstatements,usingtheLikertscalein
fivelevelsofagreement(stronglydisagree,disagree,noopinion,agree,andstronglyagree):
1. TheSFTreplacesatoolortechnologythatiscurrentlyused.TheSFTisbetterthanthecurrent
tool.
ThisquestionisspecificallytargetedatSFTsthataimatcreatingaddedvalueoverexistingtools.
2. TheSFTcanbeusedwithoutmakingmajorchangestotheexistingsystem.
SomeSFTsareexpectedtorequiremorechangestotheexistingsystemthanothers.
3. TheSFTdoesnotrequiresignificantlearningbeforethefarmercanuseit.
Thisstatementcangiveanindicationonthelearningeffortthatneedstobemadebythefarmer
andcanbeusefulinordertocomparethedifferenceinlearningrequirementsbetweenSFTs.
4. TheSFTcanbeusedinotherusefulwaysthanintendedbytheinventor.
Agronomy2020,10,74310of25
SomeSFTsmayholdmultiplepurposesusefulfortheachievementofmanyverydifferent
effects.
5. TheSFThaseffectsthatcanbedirectlyobservedbythefarmer.
Itisconsideredanadvantagewheneffectscanbedirectlyobservablebyafarmer,asitwillmake
itmorelikelythatthefarmerwillfindtheSFTrelevantfortheirsituation.
6. UsingtheSFTrequiresalargetimeinvestmentbythefarmer.
Thisstatementwillgiveanindicationonthetimeinvestmentthatisneededfromthefarmerin
ordertousetheSFT,whichwillplayaroleinhowattractivetheSFTistouse.
7. TheSFTproducesinformationthatcanbeinterpreteddirectly(exampleoftheopposite:theSFT
producesavegetationindexbutnobodyknowswhattodowithit).
Itisdesirablewhenresultsarepresentedinsuchamannerthattheyareeasytointerpret.This
makestheresultsmoreinterestingforendusersandresultsininterpretationconsistency.
2.3.6.EffectofUsingtheSFT
AveryimportantpartofthisworkwastodefinetheeffectofeachSFTinagriculturalproduction.
TheidentifiedKPIsinSection2.1wereusedascriteriatomeasuretheimpactonfarmeconomics,the
environment,andlaborwithinthefarm.Effectswereexpectedonthese26criticalaspects,ofwhich
fiveareinfluencedpositivelybytheSFTs,increasingthem(productivity;qualityofaproduct;
revenue;soilbiodiversity;biodiversity),and21areaffectedpositivelybytheSFTs,decreasingthem
(inputcosts;variablecosts;cropwastage;energyuse;CH4emissions;CO2emissions;N2Oemissions;
NH3emissions;NO3,emissions;fertilizeruse;pesticideuse;irrigationwater;labortime;farmers’
stress;heavylabor;injury;accidents;pesticideresidue;weedpressure;pestpressure(insects);disease
pressure).EffectscouldbeexpressedusingtheLikertscaleinfivelevelsofchange(largedecrease,
somedecrease,noeffect,someincrease,andlargeincrease).Therespondentcouldsupplementthis
scalewithrelevantpercentagesorevenmorepreciseindicationoftheeffectsoftheSFTwhenthis
waspossible.
3.ResultsandDiscussion
ThissectionprovidesthefinalnumberofSFTsidentifiedinscientificpapers,researchprojects,
andcommercialproductsthroughoursearch.TheseSFTswerepresentedandcomparedintermsof
technologyreadinesslevel(TRL1–9),type(recording,reacting,guiding,FMIS,and
robotic/automation),andfieldoperationsaddressed(tillage,sowing,transplanting,fertilizing,
weeding,cropprotection,irrigation,harvesting,scouting).Thiswasusedtopresentsomeperspective
trendsofthecurrentsituationinSFTdevelopment.Thefactorsthatwereexpectedtoaffectadoption
readinessofSFTswerealsodescribed,whiletheeffectonfarmeconomics,theenvironment,and
laborwasgiven,inordertoidentifythemostimpactfulcategoriesofSFTswithintheinventoryof
thiswork.
3.1.NumbersandKindsofSFTs
ThenumberofarticlesdescribinganSFTisgrowingrapidly(Figure1),showingthetrendof
researchtotransferconventionalagriculturebasedontheGreenRevolutionconcept(agricultural
mechanization,uniforminputapplication)toamodernsmartagriculture(ICTinterferencein
agriculturalmachineryforincreasedprecisionandspecifiedinputapplication).
Intotal,13,251scientificpaperswerefoundinthecitationdatabaseScopuswiththequery
describedinSection2.2,andthemanualselectionresultedinasmallfractionofthesescientificpapers
(531or4%ofthetotal)beingselectedbasedonthedeploymentofaprototypetestedinfield
conditions,whichcanbedirectlyusefultofarmers.Thislowpercentageofthetotalnumberof
scientificpapersindicatesthatmostresearchpresentedmainlyimmatureconceptsthatrequire
severalstepsbeforetheycanbebeneficialforeverydayagriculturalpractices.
Agronomy2020,10,74311of25
Figure1.Temporalevolutionofpublishedscientificarticlesonsmartfarmingtechnologies(SFTs)on
ayearlybasis(fortheperiod1981–2017)identifiedthroughaScopusquery(asof18July2018).The
queryselectedarticlesthatcontainedkeywordsrelatedtotechnology(sensor,decisionsupport,DSS,
database,ICT,automat*,autonom*,robot*,GPS,GNSS,informationsystem,imageanalysis,image
processing,precisionagriculture,smartfarming,precisionfarming)andtoopenfieldfarming
(agricult*,crop*,arabl*,farm*,vineyard,orchard,horticult*,vegetabl*).ICT—informationand
communicationtechnologies;GPS—globalpositioningsystem;GNSS—globalnavigationsatellite
system.
TheEuropeanCommissionCORDISonlinedatabasewithasearchforfundedprojectsresulted
in94researchprojectsfromFP7andH2020fundingframeworksdirectlyrelatedtoSFTs,whilethe
searchforindustrialSFTsolutionsconcluded439productsthatareavailableonthemarketfor
farmerstopurchase.Intotal,1064SFTswereselectedforthisanalysisforallcategories(Table3),for
whichthequestionnairewascompleted.
Table3.Totalnumberofsmartfarmingtechnologies(SFTs)identifiedbythesearchconductedin
availablescientificpapers,researchprojectsandindustrialproducts.
TypeTotalNumber
Researcharticles531
Researchprojects94
Industrysolutions439
Total1064
3.2.TechnologyReadinessLevel(TRL)ofSFTs
Figure2presentsthedifferencesinTRLbetweenthescientificpapersandresearchprojects(by
definition,theTRLofcommercialproductsis9).
(a)ScientificPapers(b)ResearchProjects
Figure2.Technologicalreadinesslevel(TRL)oftheidentifiedsmartfarmingtechnologies(SFTs)in
(a)scientificpapersand(b)researchprojects.TRLrangesfromTRL1(basicprinciplesobserved)to
Agronomy2020,10,74312of25
TRL9(actualsysteminoperationalenvironment)[99]andwasdefinedusingtheAFRLTRL
Calculator(version2.2.)[100].CommercialSFTswereexcludedbythisprocess(theyallhadTRL9).
Mosttechnologieswereatthestagewheretheyarevalidatedinarelevantenvironment.Inall
cases,afewentrieswereoftheearlieststagesinwhichonlybasicprincipleswereobservedor
technologyconceptsformulated.Inresearchprojects,itcanbeseenthatthemajorityhadTRL5–7,
butanimportantfindingisthat16%ofprojectsresultedinacommercialproduct(TRL9),showing
therecenttrendofprojectsfocusingonanalliancebetweenacademiaandbusinessesforreal
applications.
3.3.TypesofSFTs
DifferenttypesofSFTscanbedistinguishedinscientificpapers,researchprojects,and
commercialproducts(Figure3).Byfocusingonjustscientificpaperspublishedacrossthesixyears
underconsideration,itisobviousthattherewasafocusonrecording,withrelativelylittleattention
towardreacting.Thisisnotacomfortingpicture,becauseitsuggeststhat,whilethereisalargeeffort
onmeasurements,thereisalackofeffortontranslatingmeasurementsintoonfarmpracticalactions.
Itshouldbenotedthatthisoutcomecorrespondsuncomfortablywellwiththegeneralbeliefthat
SFTspromisemorethantheydeliver(e.g.,seeReference[103]).However,thisfindingwasnotshown
inresearchprojectsandcommercialproductstosuchanextent.
(a)ScientificPapers(b)ResearchProjects(c)CommercialProducts
No.ofSFTs%No.ofSFTs%No.ofSFTs%
Recording28653.92526.612829.1
Reacting7814.788.56815.5
Guiding234.333.2306.8
FMIS8716.44143.613731.2
Robot/Automation5710.71718.17617.3
TotalNo.ofSFTs53110094100439100
Figure3.Allocationoftheidentifiedsmartfarmingtechnologies(SFTs)toeachtype(recording,
reacting,guiding,farmmanagementinformationsystems(FMIS),androbotic/automationsystems)
basedontheclassificationofSchwarzandHerold[101]modifiedbytheauthorsin(a)scientific
papers,(b)researchprojects,and(c)commercialproducts.
Regardingtheresearchprojects,itcanbeseenthattheEUfundingwasdirectedmoretoward
FMISdevelopmentfollowedbyrecordingtechnologies.Thismighthavehappenedasmeasuredin
fielddatahavetobetranslatedintoinformationthroughICTtoolsforsupportingfarms’statistics
andfarmers’decisions[33],whichisthefirststepbeforereacting.ReactingSFTswerealsosupported
bytheEU,buttoalowerextent,suggestingthatthisSFTtypeisalsounderdevelopment.An
importantreadingofFigure3bisalsothatrobotsandautomationforagriculturalusereceived
attentionandwerefundedevenmorethanotherreactingSFTs.ThismaybeexplainedbysuchSFTs
beingperceivedasasolutioninapplyingsmartfarmingapplicationsinfieldconditionsusingtheir
advantages(smallsize,infieldprecisenavigation)[104].Thistrendcouldalsobeassociatedwiththe
Agronomy2020,10,74313of25
specificityoffieldplotsinEuropebeingmuchsmallercomparedtotheUS[105],makingasmall
robotorswarmsofsmallrobotsmuchmoreofinterestforEuropeanagriculture[58].
Asfortheindustrialproducts(Figure3c),therewasamoreuniformdistributionbetweenSFT
categories.Onlyguidancetechnologieswerefoundlessofteninoursearch,probablybecausethey
arethemostmaturecommercialSFTs[106]andlimitednewcompaniesareenteringthemarket.Itis
importanttopointoutthatrecordingtechnologiesandFMIShavethelargestnumberofSFTs,
partiallyfollowingthetrendsinbothscientificpapersandresearchprojects.Reactingand
robotic/automationtechnologieswerealsosignificantlyrepresentedinthecommercialproduct
inventory,evenifresearch(papersandprojects)didnotseemtofocusonthesesubjectstoahigh
extent(Figure3).Regardingrobotic/automationSFTs,thenumberofavailablemarketsolutions
seemeddisproportionatelyhighincomparisontoresearchoutcomesinthesamefield.Inour
findings,therewasanincreasingtrendforthesetechnologiesmovingfromscientificpapersto
commercialproducts.Thismaybebecauseagriculturalresearchexperiencedadelayincopingwith
thedevelopmentofthesehighendSFTs,andcompaniesusinginternalresearchanddevelopment
producedmarketableproductswithoutpublishingthisworkinscientificjournalsforintellectual
propertyreasons.ThesecompanieseithercollaborateinlargeconsortiumsofEUresearchprojectsto
optimizeandmarketsuchproductsorgodirectlybytheirownmeansinmarketableproducts.In
addition,higherfundingforinfrastructureinresearchgroupsisrequiredtocarryoutworkwith
roboticsystems,andthismayhavealsoinfluencedthelownumberofrobotic/automationSFTsin
researchprojectsandscientificpapersincomparisontootherSFTs,suchasrecordingtechnologies.
3.4.FieldOperationsAddressedbytheIdentifiedSFTs
ThefieldoperationsthattheidentifiedSFTswereusedforaresummarizedinFigure4.

(a)ScientificPapers(b)ResearchProjects(c)CommercialProducts
No.ofSFTs%No.ofSFTs%No.ofSFTs%
Tillage173.277.46113.9
Sowing50.999.6327.3
Transplanting30.666.4235.2
Fertilizing8215.41516.07817.8
Weeding5810.966.44410.0
CropProtection7614.31212.87617.3
Irrigation7213.61313.86314.4
Harvesting336.21111.7378.4
Scouting18534.81516.0255.7
TotalNo.ofSFTs53110094100439100
Figure4.Allocationoftheidentifiedsmartfarmingtechnologies(SFTs)toeachcategorythat
addressesacertainfieldoperation(tillage,sowing,transplanting,fertilizing,weeding,crop
protection,irrigation,harvesting,andcrop/soilscouting)in(a)scientificpapers,(b)researchprojects,
and(c)commercialproducts.
Inscientificpapers,cropandsoilscoutingwasthemostcommonapplicationfortheSFTs
described,inaccordancewiththetrendofFigure3,whererecordingSFTswerethemostprominent.
Agronomy2020,10,74314of25
Onthecontrary,SFTsderivedfromscientificpapersfocusedverylittleonsoiltillageand
sowing/transplanting,eventhoughtheycanprovidesignificantsavingsinplantestablishmentand
increaseyieldpotential(especiallyinhybridseeds,suchascornandpotatoes).Ontheotherhand,
thisworkconfirmsthatreactingapplicationtechnologiesareofgreatimportanceforresearchers(also
duetofarmers’interestsinthesesubjects),asalsoseenintheliteraturewithfertilizing[107,108],
weeding[109],cropprotection[110],irrigation[111],andharvesting[61,112]beingimportant
researchsubjectsinrecentyears.
Thebestrepresentedsubjectsinresearchprojectswerefertilizationandcrop/soilscouting.
Fertilizationisindeedoneofthetargetsforvariablerateapplicationtoensureyieldmaintenanceor
evenincreaseyieldwiththeleastpossiblenutrientsapplied[107],andEUresearchprojectsseemto
fundthisissuetoagreatextent.Asforscouting,itisoftenchosensimultaneouslywithotherfield
operations(mostoftentogetherwithfertilization)and,inonly22%ofcases,itistheonlychosenfield
operation.Thisresultpresentstheneedfordatagatheringbeforeanysmartfieldapplication,as
statedinmanySFTrelatedpublications[113–115].Tillage,sowing/transplanting,andweedingwere
lessfound,asinthescientificpapers.Researchontheseoperationsisindeedlacking,andthereason
maybethereluctanceofresearchersandfunderstocarryoutresearchinthisdomain,probablydue
tothefactthatitisstillunclearhoweffectiveitisandhowitfitswithothervariableratetechnologies.
However,themostcrucialconclusionfromFigure4bisthatEUfundedresearchiswelldistributed
amongresearchtopicsandisgenerallydirectedtoallagriculturalpractices.
Regardingtheindustrialproducts,thesituationisdifferentasscoutinghadasignificantnumber
ofSFTsidentified,butnotthemajority,asseeninscientificpapersandresearchprojects.Thismight
indicatethatindustrialsolutionsareslowlymovingtointegratedsystems(requiredequipmentfor
dataacquisitionandactuationcombined).Ontheotherhand,fertilizationremainsthemost
importantSFTsoldonthemarketasinpapersandprojects,followedbycropprotectionand
irrigation,whicharethethreemostcrucialagriculturalpracticesformostcrops.SincetheSFTmarket
intheEUisstillinitsinfancy,companiesaredirectedmainlytowardtheseapplicationsthatareof
highimportanceforfarmers.Companiesthatwillsurviveorevenevolverapidlyneedtodemonstrate
dynamiccapabilities(inthiscase,tooffereffectiveandefficientSFTswithtangibleresults),move
beyondconventionalagriculturalmachineryandgainacompetitiveadvantagethatgenerateslong
termSchumpeterianrents[116].Itisinterestingtopointoutthatnotonlytillage,butalso
sowing/transplantinghavesignificantrepresentationintheindustrialSFTs,possiblyillustratingthat
suchtechnologiesarealreadymatureinthemarket(oratleasttheiraccuracyisadequatefor
practitioners)and,therefore,researchwasnotdirectedtowardtheminrecentyears.
3.5.FactorsThatCanBeExpectedtoAffectAdoptionofSFTs
BasedonthesevenstatementsoftheRogersframework(Section2.3.5),theinventoriedSFTs
wereassessedintermsofaffectingadoptionreadiness.Theresultsforscientificpapers,research
projects,andindustrialproductsareshowninFigure5.
BycomparingtheresultsofthethreeSFTcategories,itisobviousthatthereisaconstanttrend
ofchangeforallsevenstatementsoftheRogersframework,movingfromscientificpapers(newideas
withlowTRL)toresearchprojects(morematureideaswithhigherTRL)andfinallyindustrial
products(maturecommercialsolutionsofTRL9).Morespecifically,SFTspresentedinscientific
papersarenotindicatedasasignificantreplacementofanexistingtool,whilethisisquitemore
prominentformostoftheSFTslistedinresearchprojectsandcommercialproducts.Probably,new
SFTsdevelopedfromscientistsareyettofindtheiractualplaceinagriculturalpractice,while,in
projectsandespeciallyinH2020EUprojects,theroleofandtheneedforthedevelopedSFTswere
alreadyidentifiedfromscratch.AsforthecommercialSFTs,oneofthemainreasonsforaproductto
bemarketedisitsabilitytoreplaceexistingtechnologyandtoeasetheenduser’sbusiness[117,118].
Regardingtheneedformajorchangesinexistingsystems,researchersinscientificpapersare
workingonradicalconceptsthatwillmakeachangeinexistingfarmingpractices,whileresearch
projectsand,toagreaterextent,commercialproductsaredirectedtowardsolutionsthatcancover
theneedsoffarmersbyadjustingtheirexistingsystems[29].SFTsinscientificpapersseemtorequire
Agronomy2020,10,74315of25
lesslearningfromtheenduserthanthoseinresearchprojectsandcommercialproducts.Thisresult
wasexpected,asresearchersbelievethattheirideasareeasilyinterpretedbyauserastheyhavegreat
knowledgeofwhattheyareworkingon,while,astheSFTmovesintorealconditions,itbecomes
obviousthatatypicalfarmerwillhavetobetaughtthesenewICTsolutionsthattheyarenotusedto
byincreasingtheirSFTliteracy,whichisoneofthemainbarriersforSFTadoption[119].
Figure5.Responsesregardingadoptionreadinessofthesmartfarmingtechnologies(SFTs)identified
inscientificpapers,researchprojects,andcommercialproductsusingtheRogersframework[102]
basedonaLikertscaleoffivelevels(stronglydisagreetostronglyagree).
Atypicalinventionpresentedinascientificpapercannotbethoughtofasasolutionforother
purposesthantheoneitwasdirectedtoand,hence,itwasnotindicatedassuch.SFTsinresearch
projectsandincommercialproductsaremoreabletobeusedforotherpurposesthanintendeddue
totheircloserrelationshipwitheverydayfarmingandtheirhighercompatibilitywithexisting
machinery,whichneverthelessremainsasignificantbarrier,eveninindustrialSFTs[29,63,120].The
directeffectofSFTsisnotvisibleinimmaturetechnologiespresentedinscientificpapers.However,
inlargeresearchprojectsandcommercialproducts,thesedirecteffectswereinvestigatedmore
rigorously;forthelatter,theneedforthisinvestigationstemsfromaneedtobemarketedwith
tangibleeffectsonthefarm,i.e.,thepotentialenduser[121,122],whichunfortunatelyremainsoneof
thesignificantbarriersforSFTadoption[64].Indeed,amajorfactorinthediffusionofanytechnology
istheacquisitionofinformationbytheenduser[123,124].Thistypeofinformationneedstoinclude,
butnotbelimitedto,thebenefitsofadoptingthetechnology,thecompatibilitywithexisting
technologies,andrelativeadvantagesincomparisonwithsubstitutetechnologies.Naturally,this
typeofinformationcannotbeconveyedtotheenduserwhenSFTsarestillintheearlystagesof
researchaspresentedinscientificpapers.Whilemoreinformationcanbeavailabletothefarmerin
largescaleprojects,completeinformationcanbemoreefficientlyconveyedintermsofitstangible
effectsviacommercialproducts.
ThetimethatanSFTrequiresforitsusertobeacquaintedwithwasdeclaredaslongerin
prototypesproducedinscientificpapersthaninresearchprojectsandindustrialproducts,where
structuredmanualsandhelpdesksupportisavailablefromscratch.Finally,anSFTinscientific
papersisinmostcasesimmature,andthedataderivedfromitrequirelongprocessingtoprovide
Agronomy2020,10,74316of25
usefulinformation,whileresearchprojectsaremorematureandindustrialproductsinparticular
needtomaketheclient’slifeeasierbyprovidingfastandclearinformationofdecisionmaking.
3.6.EffectsonFarmEconomics,theEnvironment,andLabor
Theeffectsonthe26differentaspectsdescribedinSection2.3.6weredifferentforSFTsderived
fromscientificpapers,researchprojects,andindustrialproducts(Figure6).ItcanbeseenthatSFTs
fromscientificpapers(Figure6a)didnotfocusontheirimpact,ratherthantheirfunctionalityand
reliableresultsinthepromisedaction[37],while,inresearchprojects(Figure6b)whichmainly
involveinnovationorresearchandinnovationactions(IAorRIA)[125],themajorityofSFTsolutions
wereassessedintermsofeconomic,environmental,andlaborimpact,andtheirbenefitswere
revealed.Asforcommercialproducts,Figure6cpresentsthatmostofthe26aspectswereinfluenced
toanextentbetweenscientificpapersandresearchprojects.Thisfactshowsthatthereboundeffect
ofusingcommercialSFTsineverydayfarmingcouldreducethedeclaredpositiveeffectsofSFTsin
allaspects[64,65].Italsoindicatesthatproductprovidersmightbemodestinwhattheypromise,so
thatenoughpositiveimpactsareprovidedtothecustomerstoseetangibleresultsandtoincrease
trustintheseproducts.Inaddition,commercialproductsweretheonlycategoryamongpapers,
projects,andproductswhereoppositeopinionsabouttheireffectwerefound,whichindicatesthat
marketedSFTswhichareappliedinrealconditionsarealsofollowedbydisadvantages.However,it
shouldbepointedoutthat,eveninthiscase,thedeclarednegativeeffectswereverylimited,showing
thepotentialofSFTsforagriculturalproductionimprovement.
(a)
(b)
Agronomy2020,10,74317of25
(c)
Figure6.Effectsoftheidentifiedsmartfarmingtechnologies(SFTs)onfarmeconomics,the
environment,andlaborusingaqualitativeassessmentofSFTsin(a)scientificarticles,(b)research
papers,and(c)commercialproductsbasedonaLikertscaleoffivelevels(largedecreasetolarge
increase).
3.6.1.FarmEconomics
Productivity,revenue,andqualityareexpectedtoincreasewhenusingallSFTs.Indeed,
numerousreviewsindicatedthatSFTscanproducepositiveeconomicresultsincomparisonto
conventionalpractices[37,126–129].Thesethreeaspectsfollowasimilartrendofexpectedincrease
fromscientificpaperstoresearchprojectsandthentocommercialproducts,indicatingthat
innovativeSFTsbecomecommercialwhenitisbelievedthattheeconomicgainsforfarmsare
significantandthatthisisthemainaimofproductproviders[117].Ontheotherhand,theremaining
economicaspects(inputandvariablecosts,cropwastage,andenergyuse)followedanothertrend,
withresearchprojectspromisinghigherimpactsthanindustrialproductsandscientificpapers(in
thisorder).ThismaybeexplainedbyresearchprojectsassessingseveralaspectsofSFTperformance,
whilescientificpapersfocusmainlyontechnologicalachievementsandcommercialproductsin
termsoftheSFTeconomicgainsfortheenduser.Anotherreasoncouldalsobetheselfpromotionof
researchprojectstocovertheexpectationsoffundingauthorities.
3.6.2.Environment
Amongthe14environmentalaspects,themostinfluencedinallcategorieswereagricultural
inputs(fertilizers,pesticides,andirrigationwater).Thisfindingisconnectedwiththeinputand
variablecosteffectofSection3.6.1andwiththemainprincipleofSFTstomaintainorincrease
productionwithloweragriculturalinputs[130].Onthecontrary,theleastaffectedaspectswere
gaseousemissionsofalltypes(withCO
2
beingthemostaffected),indicatingthateitherthereis
limitedeffectorthatitisyettobeinvestigatedthoroughlybyresearchersandindustry[37].Weed,
pest,anddiseasepressurecanalsobereducedbySFTapplication,whichisconnectedtoreduced
pesticideusethatislessneededduetolowerpressure.Anincreasein(soil)biodiversitywasalso
declared,probablybecauserationalinputusederivedfromSFTapplicationreducestheeffecton
faunaandflora,leadingtobiodiversitypreservation[131].Allenvironmentalaspectswerefoundto
bemoreaffectedbyprojectSFTsthanbyproductorpaperSFTs,showingthesametrendasthe
economicaspectsinSection3.6.1.
Agronomy2020,10,74318of25
3.6.3.Labor
Labortimeandfarmers’stresswerethemostaffectedaspectsasSFTsfacilitateallagricultural
practices.Itshouldbepointedoutthat,eveniffarmers’stressisshowntobereducedsignificantly,
theactualuseofanSFTcaninvolvequitesomeupfrontstress,becauseoftheneedtoprocess
informationandcalibratethetechnology,aswellaswhentechnologiesfail.Stresslevelisdifferent
amongSFTtypes,withguidancetechnologiesthatarefunctionalandefficientforyearsreducing
stressalotmorethanvariableratetechnologiesthatrequiredetailedandcontinuouscalibrationto
operateproperlycomparedtoconventionaluniformapplication.Enduserlaborheavinesswasalso
declaredtobereduced,whileinjuriesandaccidentswerenotpresentedasveryaffected.These
findingsshowhowICTsolutionsprovidedbySFTsaresupposedtomakefarmers’liveseasierand
thattheyareinlinewithseveralresearchstudiesonthissubject.MeyerAurichetal.(2008)[132]
showedthatprecisionagriculturetechnologiescanreducelaborduetotheautomationofvariable
rateapplication,whilePedersenetal.(2006)[133]presentedthatprecisionagricultureislesslabor
intensiveandcanreducerestrictionsonavailabledailyworkinghours.Inaddition,Batte(2003)[134]
introducedtheindirectimpactofguidancetechnologiesontheavailabilityoflaborforother
agriculturalwork.
4.Conclusions
AlargenumberofSFTs(1064)derivedfromscientificpapers(531),researchprojects(94),and
commercialproducts(439)werecollectedandanalyzedinthiswork.Theywereaccompaniedby
additionalinformationabouttheirtypeandfieldoperationusedfor,aswellasinrelationtotheir
adoptionreadinessexpectationsandtheireconomic,environmental,andlaborimpact.Scientific
papersmainlyfocusedonrecordingtechnologies,whileresearchprojectsfocusedonhighendFMIS
translatingthecollecteddatatovaluabledecisions.Commercialproductsweremorebalanced
betweenSFTtypes,withrecordingandFMISagainreceivingthehighestattention,withreactingand
robotic/automationtechnologiesalsohighlyrepresented,asfarmersrequireexecutablesolutionsfor
theireverydayoperations.ThecollectedSFTsofscientificpapersweremainlyusedforcropandsoil
scouting,andtheresearchprojectsweremostlyrelatedtofertilization,whilecommercialSFTswere
directedtowardthethreemostcrucialagriculturalpracticesformostcrops,namely,fertilization,
cropprotection,andirrigation.
ThefactorsaffectingadoptionreadinessofSFTsshowedaconstanttrendofchange.SFTsfrom
researchprojectsandcommercialproductswereindicatedasasignificantreplacementofexisting
solutions,butnotbringingmajorchangesinexistingagriculturalsystems.SFTsinscientificpapers
wereindicatedasrequiringlesslearningfromtheendusersthaninresearchprojectsandevenmore
soincommercialproducts.Finally,datafromSFTsinscientificpapersweredifficulttointerpretinto
usefulinformation,whileresearchprojectsandespeciallyindustrialproductsprovidedclearer
informationtotheenduser.
Theeconomic,environmental,andlaboreffectsoftheinventoriedSFTsweredifferentin
scientificpapers,researchprojects,andindustrialproducts.Scientificpapersdidnotprovidespecific
impactstatements,whilebenefitsordrawbacksofSFTsinresearchprojectswerehighlyinvestigated,
asthisisrequiredbyresearchfundingagencies;commercialSFTswerealsodeclaredtohave
adequatelyhighimpact.Regardingfarmeconomics,commercialSFTswereindicatedashavingthe
highestexpectedincreaseinproductivity,revenue,andquality,while,forinputandvariablecosts,
cropwastage,andenergyuse,SFTsfromresearchprojectspromisedhigherimpactsthancommercial
productsandscientificpapers.Asfortheenvironmentalimpact,themostinfluencedenvironmental
aspectsinallcategorieswereagriculturalinputreduction(fertilizers,pesticides,andirrigation
water).Onthecontrary,theleastaffectedaspectsweregaseousemissionsofalltypes.Intermsof
labor,workingtimeandfarmers’stresswerethemostaffectedaspects,whileworkheavinesswas
alsodeclaredtobereduced;injuries/accidentswerenotaffectedtoahighextent.
Fromthiswork,itwasrevealedthatresearchisslowlyshiftingfromrecordingtechnologiesto
actuationtechnologies,whiletheshareofscientificpapersonreactingandrobotics/automationsis
Agronomy2020,10,74319of25
increasing(albeitfromalowbase).However,recordingtechnologiesstilloccupythemajorityofSFTs
withmanynew(typesof)sensorsandmeasurementmethodsfound,especiallyinscientificpapers.
Thisseemstoindicatethatthereisaknowledgegapbetween,ontheonehand,measuringthe
statusofcropandsoiland,ontheotherhand,usingthatinformationtomakepracticaldecisionsin
farming.Therefore,researchisneededtoprovidetheknowledgethatwillallowrecordingSFTstobe
appliedinpractice.Inparticular,moreresearchisneededtoprovideoptimizedalgorithms,easily
calibratedsensor/applicationequipment,andhigherapplicationprecisionforvariableratepesticide
orfertilizerapplication,aswellasvariablerateseedingandtillage.Itisexpectedthat
robots/automationforweedcontrolandotheroperationswilldeliverlargebenefitsinreducinglabor
demandandinputuse;however,atpresent,fewSFTscanbeclassifiedassuch.Therefore,research
shouldalsobedirectedtowardthesetechnologies,atrendthatwasalsoshownbyourwork.
Finally,onlyafewSFTsidentifiedinourinventoryexplicitlyaddressedissuesrelatedtodata
management,suchasownership,datatransfer,sharing,security,andprivacy.Thisisnotsurprising
becausetheseissuesare,toalargedegree,organizationalissuesthatcannotbesolvedbyatechnology
alone.Itisclearthattechnical,social,andlegalbarriersrelatedtocollecting,storing,andtransferring
datahinderfarmers’transitiontosmartfarming,anddatasecurityandprivacyimplicationsresulting
fromasecuritybreachareamajorconcernforthedigitizationprocessofagriculture.
ItwasconcludedthattheinventoryofSFTsdescribedinthisstudyisimportantinthesensethat
itprovidesresearcherswithexistingSFTdevelopmentstoseeknewresearchchallenges,policy
makerswithinformationonthecurrentstatusofSFTstodesignincentivesforhigheradoptionrates,
andfarmerswithanopportunitytoacquaintthemselveswiththeSFTsthatareavailable.However,
thisworkalsoidentifiedthefactthatresearchersandSFTprovidersinmostcasesdidnotproduce
quantitativeimpactresultswiththeuseoftheirSFTs,whichmakesourstudystillindicativeabout
theimpactofSFTs,asweanalyzedmainlyqualitativecriteria.Inaddition,thisinventoryshouldbe
updatedregularlyasthetechnologyismovingfastandnewfarmersaregettingmoreawareofthe
availableSFTsonthemarket.Therefore,afollowuptothepresentstudywouldbebeneficialin
creatinganinventoryalsoincludingdatarelatedtechnologies,practices,standards,andagreements,
aswellasnumericalresultsofSFTimpactinrealconditions.
AuthorContributions:Conceptualization,F.K.V.E.,S.F.,andA.T.B.;methodology,F.K.V.E.,A.T.B.,andS.F.;
questionnairefillingandsurvey,A.T.B,F.K.V.E.,andS.F.;dataanalysis,F.K.V.E.andA.T.B.;writing—review
andediting,A.T.B.,F.K.V.E.,andS.F.Allauthorshavereadandagreedtothepublishedversionofthe
manuscript.
Funding:ThispaperwassupportedbytheEuropeanUnion’sHorizon2020coordinationandsupportprogram
undergrantagreementNo696264,projectSmartAKIS“EuropeanAgriculturalKnowledgeandInnovation
Systems(AKIS)towardinnovationdrivenresearchinSmartFarmingTechnology”.
Acknowledgments:TheauthorswouldliketoacknowledgethecontributionofFennyvanEgmond,Michael
Koutsiaras,VassilisPsiroukis,andDinosGrivakisintheinventorypreparation.
ConflictsofInterest:Theauthorsdeclarenoconflictsofinterest.Thefundershadnoroleinthedesignofthe
study;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanuscript,orinthedecisionto
publishtheresults.
Abbreviations
FMISFarmmanagementinformationsystem
DSSDecisionsupportsystem
QRQuickResponse
RFIDRadiofrequencyidentification
VRAVariablerateapplication
RTIReturnabletransportitems
SFMTSmartfarmingmovingtechnologies
SFTSmartfarmingtechnology
Agronomy2020,10,74320of25
References
1. Gomiero,T.;Pimentel,D.;Paoletti,M.G.IsThereaNeedforaMoreSustainableAgriculture?Crit.Rev.
PlantSci.2011,30,6–23.
2. World,B.ICTinAgriculture(UpdatedEdition):ConnectingSmallholderstoKnowledge,Networks,and
Institutions;WorldBank:Washington,DC,USA,2017.
3. Wang,N.;Zhang,N.;Wang,M.Wirelesssensorsinagricultureandfoodindustry—Recentdevelopment
andfutureperspective.Comput.Electron.Agric.2006,50,1–14.
4. Aqeelur,R.;Abbasi,A.Z.;Islam,N.;Shaikh,Z.A.Areviewofwirelesssensorsandnetworksʹapplications
inagriculture.Comput.Stand.Interfaces2014,36,263–270.
5. King,A.Technology:TheFutureofAgriculture.Nature2017,544,S21–S23.
6. Toth,C.;źków,G.Remotesensingplatformsandsensors:Asurvey.IsprsJ.Photogramm.RemoteSens.
2016,115,22–36.
7. Mahan,J.R.;Yeater,K.M.Agriculturalapplicationsofalowcostinfraredthermometer.Comput.Electron.
Agric.2008,64,262–267.
8. Polo,J.;Hornero,G.;Duijneveld,C.;García,A.;Casas,O.,DesignofalowcostWirelessSensorNetwork
withUAVmobilenodeforagriculturalapplications.Comput.Electron.Agric.2015,119,19–32.
9. Kumar,A.;Kamal,K.;Arshad,M.O.;Mathavan,S.;Vadamala,T.Smartirrigationusinglowcostmoisture
sensorsandXBeebasedcommunication.InProceedingsoftheIEEEGlobalHumanitarianTechnology
Conference(GHTC2014),SanJose,CA,USA,10–13October2014;pp.333–337.
10. Kumar,S.A.;Ilango,P.TheImpactofWirelessSensorNetworkintheFieldofPrecisionAgriculture:A
Review.Wirel.Pers.Commun.2018,98,685–698.
11. Rose,D.C.;Chilvers,J.Agriculture4.0:BroadeningResponsibleInnovationinanEraofSmartFarming.
Front.Sustain.FoodSyst.2018,2.doi:10.3389/fsufs.2018.00087.
12. Walter,A.;Finger,R.;Huber,R.;Buchmann,N.Opinion:Smartfarmingiskeytodevelopingsustainable
agriculture.Proc.Natl.Acad.Sci.USA2017,114,6148.
13. Bacco,M.;Berton,A.;Ferro,E.;Gennaro,C.;Gotta,A.;Matteoli,S.;Paonessa,F.;Ruggeri,M.;Virone,G.;
Zanella,A.Smartfarming:Opportunities,challengesandtechnologyenablers.InProceedingsofthe2018
IoTVerticalandTopicalSummitonAgricultureTuscany(IOTTuscany),Tuscany,Italy,8–9May2018;
pp.1–6.
14. Bacco,M.;Barsocchi,P.;Ferro,E.;Gotta,A.;Ruggeri,M.TheDigitisationofAgriculture:ASurveyof
ResearchActivitiesonSmartFarming.Array2019,3–4,100009.
15. Nawar,S.;Corstanje,R.;Halcro,G.;Mulla,D.;Mouazen,A.M.ChapterFour—DelineationofSoil
ManagementZonesforVariableRateFertilization:AReview.InAdvancesinAgronomy;Sparks,D.L.,Ed.;
AcademicPress:Cambridge,MA,USA,2017;Volume143,pp.175–245.
16. Alameen,A.A.;AlGaadi,K.A.;Tola,E.Developmentandperformanceevaluationofacontrolsystemfor
variablerategranularfertilizerapplication.Comput.Electron.Agric.2019,160,31–39.
17. Stamatiadis,S.;Schepers,J.S.;Evangelou,E.;Glampedakis,A.;Glampedakis,M.;Dercas,N.;Tsadilas,C.;
Tserlikakis,N.;Tsadila,E.VariablerateapplicationofhighspatialresolutioncanimprovecottonNuse
efficiencyandprofitability.Precis.Agric2020,21,695–712.
18. Boursianis,A.D.;Papadopoulou,M.S.;Diamantoulakis,P.;LiopaTsakalidi,A.;Barouchas,P.;Salahas,G.;
Karagiannidis,G.;Wan,S.;Goudos,S.K.InternetofThings(IoT)andAgriculturalUnmannedAerial
Vehicles(UAVs)inSmartFarming:AComprehensiveReview.InternetThings2020,100187.
doi:10.1016/j.iot.2020.100187.
19. Muangprathub,J.;Boonnam,N.;Kajornkasirat,S.;Lekbangpong,N.;Wanichsombat,A.;Nillaor,P.IoT
andagriculturedataanalysisforsmartfarm.Comput.Electron.Agric.2019,156,467–474.
20. Falco,G.;Nicola,M.;Pini,M.;Marucco,G.;Wilde,W.D.;Popugaev,A.;Gay,P.;Aimonino,D.R.
InvestigationofperformanceofGNSSbaseddevicesforprecisepositioninginharshagriculture
environments.InProceedingsofthe2019IEEEInternationalWorkshoponMetrologyforAgricultureand
Forestry(MetroAgriFor),Portici,Italy,24–26October2019;pp.1–6.
21. Stombaugh,T.SatellitebasedPositioningSystemsforPrecisionAgriculture.InPrecisionAgricultureBasics;
AmericanSocietyofAgronomy;CropScienceSocietyofAmerica;SoilScienceSocietyofAmerica:
Madison,WI,USA,2018;pp.25–36.
22. Kamilaris,A.;Kartakoullis,A.;PrenafetaBoldú,F.X.Areviewonthepracticeofbigdataanalysisin
agriculture.Comput.Electron.Agric.2017,143,23–37.
Agronomy2020,10,74321of25
23. Bronson,K.;Knezevic,I.BigDatainfoodandagriculture.BigDataSoc.2016,3.
doi:10.1177/2053951716648174.
24. Wolfert,S.;Ge,L.;Verdouw,C.;Bogaardt,M.J.BigDatainSmartFarming—Areview.Agric.Syst.2017,
153,69–80.
25. Tsouros,C.D.;Bibi,S.;Sarigiannidis,G.P.AReviewonUAVBasedApplicationsforPrecisionAgriculture.
Information2019,10,349.
26. Hajjaj,S.S.H.;Sahari,K.S.M.Reviewofagriculturerobotics:Practicalityandfeasibility.InProceedingsof
the2016IEEEInternationalSymposiumonRoboticsandIntelligentSensors(IRIS),Tokyo,Japan,17–20
December2016;pp.194–198.
27. Marinoudi,V.;Sørensen,C.G.;Pearson,S.;Bochtis,D.Roboticsandlabourinagriculture.Acontext
consideration.Biosyst.Eng.2019,184,111–121.
28. Balafoutis,A.T.;Beck,B.;Fountas,S.;Tsiropoulos,Z.;Vangeyte,J.;vanderWal,T.;SotoEmbodas,I.;
GómezBarbero,M.;Pedersen,S.M.SmartFarmingTechnologies—Description,TaxonomyandEconomic
Impact.InPrecisionAgriculture:TechnologyandEconomicPerspectives;Pedersen,S.M.,Lind,K.M.,Eds.;
SpringerInternationalPublishing:Cham,Switzerland,2017;pp.21–77.
29. Kernecker,M.;Knierim,A.;Wurbs,A.;Kraus,T.;Borges,F.Experienceversusexpectation:farmers’
perceptionsofsmartfarmingtechnologiesforcroppingsystemsacrossEurope.Precis.Agric2020,21,34–
50.
30. Lewis,T.Evolutionoffarmmanagementinformationsystems.Comput.Electron.Agric.1998,19,233–248.
31. Kitchen,N.R.Emergingtechnologiesforrealtimeandintegratedagriculturedecisions.Comput.Electron.
Agric.2008,61,1–3.
32. Kaloxylos,A.;Eigenmann,R.;Teye,F.;Politopoulou,Z.;Wolfert,S.;Shrank,C.;Dillinger,M.;
Lampropoulou,I.;Antoniou,E.;Pesonen,L.;etal.FarmmanagementsystemsandtheFutureInternetera.
Comput.Electron.Agric.2012,89,130–144.
33. Fountas,S.;Carli,G.;Sørensen,C.G.;Tsiropoulos,Z.;Cavalaris,C.;Vatsanidou,A.;Liakos,B.;Canavari,
M.;Wiebensohn,J.;Tisserye,B.Farmmanagementinformationsystems:Currentsituationandfuture
perspectives.Comput.Electron.Agric.2015,115,40–50.
34. Finger,R.;Swinton,S.M.;ElBenni,N.;Walter,A.PrecisionFarmingattheNexusofAgricultural
ProductionandtheEnvironment.Annu.Rev.Resour.Econ.2019,11,313–335.
35. Zhang,N.;Wang,M.;Wang,N.Precisionagriculture—Aworldwideoverview.Comput.Electron.Agric.
2002,36,113–132.
36. Schellberg,J.;Hill,M.J.;Gerhards,R.;Rothmund,M.;Braun,M.Precisionagricultureongrassland:
Applications,perspectivesandconstraints.Eur.J.Agron.2008,29,59–71.
37. Balafoutis,A.;Beck,B.;Fountas,S.;Vangeyte,J.;Wal,T.V.d.;Soto,I.;GómezBarbero,M.;Barnes,A.;Eory,
V.PrecisionAgricultureTechnologiesPositivelyContributingtoGHGEmissionsMitigation,Farm
ProductivityandEconomics.Sustainability2017,9,1339.
38. Ge,Y.;Thomasson,J.A.;Sui,R.Remotesensingofsoilpropertiesinprecisionagriculture:Areview.Front.
EarthSci.2011,5,229–238.
39. Brisco,B.;Brown,R.J.;Hirose,T.;McNairn,H.;Staenz,K.PrecisionAgricultureandtheRoleofRemote
Sensing:AReview.Can.J.RemoteSens.1998,24,315–327.
40. Thorp,K.R.;Tian,L.F.AReviewonRemoteSensingofWeedsinAgriculture.Precis.Agric2004,5,477–508.
41. Zhang,C.;Kovacs,J.M.Theapplicationofsmallunmannedaerialsystemsforprecisionagriculture:A
review.Precis.Agric2012,13,693–712.
42. Abdullahi,H.S.;Mahieddine,F.;Sheriff,R.E.TechnologyImpactonAgriculturalProductivity:AReview
ofPrecisionAgricultureUsingUnmannedAerialVehicles.InWirelessandSatelliteSystems,Proceedingsof
the7thInternationalConference,WiSATS2015,Bradford,UK,6–7July2015;Pillai,P.,Hu,Y.F.,Otung,I.,
Giambene,G.,Eds.;SpringerInternationalPublishing:Cham,Switzerland,2015;pp.388–400.
43. Mogili,U.M.R.;Deepak,B.B.V.L.ReviewonApplicationofDroneSystemsinPrecisionAgriculture.
ProcediaComput.Sci.2018,133,502–509.
44. Reyns,P.;Missotten,B.;Ramon,H.;DeBaerdemaeker,J.AReviewofCombineSensorsforPrecision
Farming.Precis.Agric2002,3,169–182.
45. Awasthi,S.R.N.R.A.MonitoringforPrecisionAgricultureusingWirelessSensorNetworkAreview.Glob.
J.Comput.Sci.Technol.2013,13,ISSN09754172.Availableonline:
https://computerresearch.org/index.php/computer/article/view/391(accessedon20February2020).
Agronomy2020,10,74322of25
46. Jawad,M.H.;Nordin,R.;Gharghan,K.S.;Jawad,M.A.;Ismail,M.EnergyEfficientWirelessSensor
NetworksforPrecisionAgriculture:AReview.Sensors2017,17,1781.
47. Nash,E.;Korduan,P.;Bill,R.Applicationsofopengeospatialwebservicesinprecisionagriculture:A
review.Precis.Agric2009,10,546.
48. Lindblom,J.;Lundström,C.;Ljung,M.;Jonsson,A.Promotingsustainableintensificationinprecision
agriculture:Reviewofdecisionsupportsystemsdevelopmentandstrategies.Precis.Agric2017,18,309–
331.
49. Kuhlmann,F.;Brodersen,C.Informationtechnologyandfarmmanagement:Developmentsand
perspectives.Comput.Electron.Agric.2001,30,71–83.
50. Chlingaryan,A.;Sukkarieh,S.;Whelan,B.Machinelearningapproachesforcropyieldpredictionand
nitrogenstatusestimationinprecisionagriculture:Areview.Comput.Electron.Agric.2018,151,61–69.
51. Behmann,J.;Mahlein,A.K.;Rumpf,T.;Römer,C.;Plümer,L.Areviewofadvancedmachinelearning
methodsforthedetectionofbioticstressinprecisioncropprotection.Precis.Agric2015,16,239–260.
52. Liakos,K.G.;Busato,P.;Moshou,D.;Pearson,S.;Bochtis,D.MachineLearninginAgriculture:AReview.
Sensors2018,18,2674.
53. Patrício,D.I.;Rieder,R.Computervisionandartificialintelligenceinprecisionagricultureforgraincrops:
Asystematicreview.Comput.Electron.Agric.2018,153,69–81.
54. Brosnan,T.;Sun,D.W.Inspectionandgradingofagriculturalandfoodproductsbycomputervision
systems—Areview.Comput.Electron.Agric.2002,36,193–213.
55. VázquezArellano,M.;Griepentrog,W.H.;Reiser,D.;Paraforos,S.D.3DImagingSystemsforAgricultural
Applications—AReview.Sensors2016,16,618.
56. Mousazadeh,H.Atechnicalreviewonnavigationsystemsofagriculturalautonomousoffroadvehicles.J.
Terramechanics2013,50,211–232.
57. Bergerman,M.;Billingsley,J.;Reid,J.;vanHenten,E.RoboticsinAgricultureandForestry.InSpringer
HandbookofRobotics;Siciliano,B.,Khatib,O.,Eds.;SpringerInternationalPublishing:Cham,Switzerland,
2016;pp.1463–1492.
58. Bechar,A.;Vigneault,C.Agriculturalrobotsforfieldoperations:Conceptsandcomponents.Biosyst.Eng.
2016,149,94–111.
59. Bechar,A.;Vigneault,C.Agriculturalrobotsforfieldoperations.Part2:Operationsandsystems.Biosyst.
Eng.2017,153,110–128.
60. Slaughter,D.C.;Giles,D.K.;Downey,D.Autonomousroboticweedcontrolsystems:Areview.Comput.
Electron.Agric.2008,61,63–78.
61. Bac,C.W.;vanHenten,E.J.;Hemming,J.;Edan,Y.HarvestingRobotsforHighvalueCrops:Stateofthe
artReviewandChallengesAhead.J.FieldRobot.2014,31,888–911.
62. Erickson,B.;LowenbergDeBoer,J.2019PrecisionAgricultureDealershipSurvey:MoreMovesToward
DecisionAgriculture.Availableonline:https://www.croplife.com/management/2019precision
agriculturedealershipsurveymoremovestowarddecisionagriculture/(accessedon18March2020).
63. Barnes,A.P.;Soto,I.;Eory,V.;Beck,B.;Balafoutis,A.;Sánchez,B.;Vangeyte,J.;Fountas,S.;vanderWal,
T.;GómezBarbero,M.Exploringtheadoptionofprecisionagriculturaltechnologies:Acrossregional
studyofEUfarmers.LandUsePolicy2019,80,163–174.
64. Barnes,A.P.;Soto,I.;Eory,V.;Beck,B.;Balafoutis,A.T.;Sanchez,B.;Vangeyte,J.;Fountas,S.;vanderWal,
T.;GómezBarbero,M.InfluencingincentivesforprecisionagriculturaltechnologieswithinEuropean
arablefarmingsystems.Environ.Sci.Policy2019,93,66–74.
65. Schieffer,J.;Dillon,C.Theeconomicandenvironmentalimpactsofprecisionagricultureandinteractions
withagroenvironmentalpolicy.Precis.Agric2015,16,46–61.
66. VonAhlefeld,P.J.W.Reboundeffectsinprecisionagriculture—Acommentary.Ber.ÜberLandwirtsch.Z.
FürAgrar.UndLandwirtsch.2019.doi:10.12767/buel.v97i3.247.g452.
67. Paul,C.;Techen,A.K.;Robinson,J.S.;Helming,K.Reboundeffectsinagriculturallandandsoil
management:Reviewandanalyticalframework.J.Clean.Prod.2019,227,1054–1067.
68. Pretty,J.;Smith,G.;Goulding,K.W.T.;Groves,S.J.;Henderson,I.;Hine,R.E.;King,V.;vanOostrum,J.;
Pendlington,D.J.;Vis,J.K.;etal.MultiyearassessmentofUnileverʹsprogresstowardsagricultural
sustainabilityI:Indicators,methodologyandpilotfarmresults.Int.J.Agric.Sustain.2008,6,37–62.
69. Walter,C.;Stützel,H.Anewmethodforassessingthesustainabilityoflandusesystems(I):Identifying
therelevantissues.Ecol.Econ.2009,68,1275–1287.
Agronomy2020,10,74323of25
70. Bockstaller,C.;Guichard,L.;Makowski,D.;Aveline,A.;Girardin,P.;Plantureux,S.Agrienvironmental
indicatorstoassesscroppingandfarmingsystems.Areview.Agron.Sustain.Dev.2008,28,139–149.
71. EuropeanEnvironmentAgency.DigestofEEAIndicators2014;EEATechnicalReportNo.8/2014;European
EnvironmentAgency:København,Denmark,2014.
72. OECD.OECDCompendiumofAgriEnvironmentalIndicators;OECDPublishing:Paris,France,2013.
73. TheSustainabilityConsortium.Availableonline:https://www.sustainabilityconsortium.org/(accessedon
28March2020).
74. GlobalReportingInitiative.Availableonline:https://www.globalreporting.org(accessedon28March
2020).
75. FoodandAgricultureOrganisationoftheUnitedNations,ProductivityandEfficiencyMeasurementin
Agriculture.Availableonline:https://www.fao.org/3/ca6428en/ca6428en.pdf(accessedon22February
2020).
76. UnitedNations.GlossaryofTermsforUsewithUNECEStandardsonFreshFruitandVegetables2016.
Availableonline:
https://www.unece.org/fileadmin/DAM/trade/agr/standard/fresh/StandardLayout/Glossary_FFV_2016_E.
pdf(accessedon22February2020).
77. Wikipedia.AvailableOnline:https://en.wikipedia.org/wiki/Revenue(accessedon22February2020).
78. EuropeanCommission.OverviewoftheAgriculturalInputSectorintheEU.AvailableOnline:
https://www.europarl.europa.eu/RegData/etudes/STUD/2015/563385/IPOL_STU(2015)563385_EN.pdf
(accessedon22February2020).
79. InvestingAnswers.Availableonline:https://investinganswers.com/dictionary/v/variablecosts(accessed
on22February2020).
80. FoodandAgricultureOrganisationoftheUnitedNations.FoodLossandFoodWaste.Availableonline:
www.fao.org/foodlossandfoodwaste/en/(accessedon22February2020).
81. CambridgeDictionary.Availableonline:https://dictionary.cambridge.org/dictionary/english/energy
usage(accessedon22February2020).
82. EuropeanSoilDataCentre,JointResearchCentre.Availableonline:
https://esdac.jrc.ec.europa.eu/themes/soilbiodiversity(accessedon22February2020).
83. CambridgeDictionary.Availableonline:https://dictionary.cambridge.org/dictionary/english/biodiversity
(accessedon22February2020).
84. FoodandAgricultureOrganisationoftheUnitedNations.FertiliserandPlantNutritionBulletin6.
Availableonline:http://www.fao.org/3/aq352e/aq352e.pdf(accessedon22February2020.
85. EuropeanCommission.PesticideResidues.Availableonline:
https://ec.europa.eu/assets/sante/food/plants/pesticides/lop/index.html(accessedon22February2020).
86. UnitedStatesGeologicalSurvey.Availableonline:https://www.usgs.gov/missionareas/water
resources/science/irrigationwateruse?qtscience_center_objects=0#qtscience_center_objects(accessedon
22February2020).
87. FoodandAgricultureOrganisationoftheUnitedNations.EstimatingGreenhouseGasEmissionsin
Agriculture.Availableonline:http://www.fao.org/3/ai4260e.pdf(accessedon22February2020.
88. Buijsman,E.;Maas,H.F.M.;Asman,W.A.H.AnthropogenicNH3emissionsinEurope.Atmos.Environ.
1987,21,1009–1022.
89. Oenema,O.;Boers,P.C.M.;vanEerdt,M.M.;Fraters,B.;vanderMeer,H.G.;Roest,C.W.J.;Schröder,J.J.;
Willems,W.J.Leachingofnitratefromagriculturetogroundwater:Theeffectofpoliciesandmeasuresin
theNetherlands.Environ.Pollut.1998,102,471–478.
90. IUPACGoldbook.Availableonline:https://goldbook.iupac.org/terms/view/P04520(accessedon22
February2020).
91. SustainableAgricultureResearchandEducation.Availableonline:https://www.sare.org/Learning
Center/Bulletins/AWholeFarmApproachtoManagingPests/TextVersion/ReducingPestPressure
(accessed22February2020).
92. Lexico.Availableonline:https://www.lexico.com/definition/labour_time(accessedon22February2020).
93. HealthandSafetyExecutiveUK.Availableonline:https://www.hse.gov.uk/research/rrpdf/rr362.pdf
(accessedon22February2020).
94. CambridgeDictionary.Availableonline:https://dictionary.cambridge.org/dictionary/english/labour
(accessedon22February2020).
Agronomy2020,10,74324of25
95. Safeopedia.Availableonline:https://www.safeopedia.com/definition/1237/workrelatedinjury(accessed
on22February2020).
96. Wikipedia.Availableonline:https://en.wikipedia.org/wiki/Work_accident(accessedon22February2020).
97. EuropeanCommissionCORDISOnlineDatabase.AvailableOnline:https://cordis.europa.eu/(accessedon
18March2020).
98. AgriculturalEuropeanInnovationPlatform(EIPAgri).AvailableOnline:
https://ec.europa.eu/eip/agriculture/en/eipagricommonformat(accessedon18March2020).
99. TechnologyReadinessLevels(TRL)Definition.Availableonline:
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020wp1415annexg
trl_en.pdf(accessedon13January2020).
100. TechnologyReadinessLevel(TRL)CalculatorVersion2.2DevelopedbytheAirForceResearchLaboratory
(AFRL).AvailableOnline:
https://www.dau.edu/cop/stm/Lists/Tools/DispForm.aspx?ID=4&Source=https%3A%2F%2Fwww%2Eda
u%2Eedu%2Fcop%2Fstm%2Flists%2Ftools%2Fallitems%2Easpx&ContentTypeId=0x010051CD3A8A368D
5347A6595B3B5385510700AA867A0513EB0A44B7EC5897985C3BB8(accessedon10January2020).
101. Schwarz,J.;Herold,L.TypologyofPFTechnologies;FP7projectFutureFarm,EuropeanCommission,
Brussels,2011.
102. Rogers,E.M.DiffusionofInnovations,4thed.;TheFreePress:NewYork,NY,USA,1995;p.519.
103. Merfield,C.N.Roboticweeding’sfalsedawn?Tenrequirementsforfullyautonomousmechanicalweed
management.WeedRes.2016,56,340–344.
104. Khan,N.;Medlock,G.;Graves,S.;Anwar,S.GPSGuidedAutonomousNavigationofaSmallAgriculturalRobot
withAutomatedFertilizingSystem;SAETechnicalPaper2018010031,2018,https://doi.org/10.4271/201801
0031.
105. Normile,M.A.;Leetmaa,S.E.U.S.EUFoodandAgricultureComparisons;AgricultureandTradeReport;U.S.
DepartmentofAgriculture:Washington,DC,USA,2004.
106. Baillie,C.P.;Lobsey,C.R.;Antille,D.L.;McCarthy,C.L.;Thomasson,J.A.Areviewofthestateoftheartin
agriculturalautomation.PartIII:Agriculturalmachinerynavigationsystems.InProceedingsofthe2018
ASABEAnnualInternationalMeeting,Detroit,MI,USA,ASABE:St.Joseph,MI,USA,29July1August
2018;p.1.
107. Diacono,M.;Rubino,P.;Montemurro,F.Precisionnitrogenmanagementofwheat.Areview.Agron.
Sustain.Dev.2013,33,219–241.
108. Chen,C.;Pan,J.;Lam,S.K.Areviewofprecisionfertilizationresearch.Environ.EarthSci.2014,71,4073–
4080.
109. Weis,M.;Gutjahr,C.;RuedaAyala,V.;Gerhards,R.;Ritter,C.;Schölderle,F.Precisionfarmingforweed
management:Techniques.GesundePflanz.2008,60,171–181.
110. Song,Y.;Sun,H.;Li,M.;Zhang,Q.TechnologyApplicationofSmartSprayinAgriculture:AReview.Intell.
Autom.SoftComput.2015,21,319–333.
111. Neupane,J.;Guo,W.AgronomicBasisandStrategiesforPrecisionWaterManagement:AReview.
Agronomy2019,9,87.
112. Pereira,C.S.;Morais,R.;Reis,M.J.C.S.Recentadvancesinimageprocessingtechniquesforautomated
harvestingpurposes:Areview.InProceedingsofthe2017IntelligentSystemsConference(IntelliSys),
London,UK,7–8September2017;pp.566–575.
113. Soto,I.;Barnes,A.;Balafoutis,A.;Beck,B.;Sanchez,B.;Vangeyte,J.;Fountas,S.;Wal,T.V.d.;Eory,V.;
GómezBarbero,M.TheContributionofPrecisionAgricultureTechnologiestoFarmProductivityandthe
MitigationofGreenhouseGasEmissionsintheEU;EUScienceHub.PublicationsOfficeoftheEuropean
Union,Brussels,2019,ISBN:9789279928345,ISSN:18319424,DOI:10.2760/016263
114. Pedersen,S.M.;Lind,K.M.PrecisionAgriculture—FromMappingtoSiteSpecificApplication.InPrecision
Agriculture:TechnologyandEconomicPerspectives;Pedersen,S.M.,Lind,K.M.,Eds.;SpringerInternational
Publishing:Cham,Switzerland,2017;pp.1–20.
115. Mouazen,A.M.;Alexandridis,T.;Buddenbaum,H.;Cohen,Y.;Moshou,D.;Mulla,D.;Nawar,S.;Sudduth,
K.A.Chapter2—Monitoring.InAgriculturalInternetofThingsandDecisionSupportforPrecisionSmart
Farming;Castrignanò,A.,Buttafuoco,G.,Khosla,R.,Mouazen,A.M.,Moshou,D.,Naud,O.,Eds.;
AcademicPress:Cambridge,MA,USA,2020;pp.35–138.
Agronomy2020,10,74325of25
116. Kay,N.M.;Leih,S.;Teece,D.J.Theroleofemergenceindynamiccapabilities:Arestatementofthe
frameworkandsomepossibilitiesforfutureresearch.Ind.Corp.Chang.2018,27,623–638.
117. Teece,D.J.Profitingfrominnovationinthedigitaleconomy:Enablingtechnologies,standards,and
licensingmodelsinthewirelessworld.Res.Policy2018,47,1367–1387.
118. Bower,J.L.;Christensen,C.M.Disruptivetechnologies:Catchingthewave.Harv.Bus.Rev.1995,73,43–53.
119. Michels,M.;vonHobe,C.F.;Musshoff,O.Atranstheoreticalmodelfortheadoptionofdronesbylarge
scaleGermanfarmers.J.RuralStud.2020,75,80–88.
120. Drewry,J.L.;Shutske,J.M.;Trechter,D.;Luck,B.D.;Pitman,L.Assessmentofdigitaltechnologyadoption
andaccessbarriersamongcrop,dairyandlivestockproducersinWisconsin.Comput.Electron.Agric.2019,
165,104960.
121. Griliches,Z.HybridCornandtheEconomicsofInnovation.Science1960,132,275.
122. David,P.ZviGrilichesandtheEconomicsofTechnologyDiffusion:Linkinginnovationadoption,
laggedinvestments,andproductivitygrowth.SIERP2015,15005.AvailableOnline:
https://siepr.stanford.edu/sites/default/files/publications/15005_0.pdf(accessedon20February2020).
123. Feder,G.;Slade,R.TheAcquisitionofInformationandtheAdoptionofNewTechnology.Am.J.Agric.
Econ.1984,66,312–320.
124. Genius,M.;Pantzios,C.J.;Tzouvelekas,V.InformationAcquisitionandAdoptionofOrganicFarming
Practices.J.Agric.Resour.Econ.2006,31,93–113.
125. Horizon2020WorkProgramme2018–2020,EuropeanCommissionDecisionC(2019)4575of2July2019.
Availableonline:https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018
2020/annexes/h2020wp1820annexga_en.pdf(accessedon10January2020).
126. Pedersen,S.M.;Fountas,S.;Blackmore,B.S.;Gylling,M.;Pedersen,J.L.Adoptionandperspectivesof
precisionfarminginDenmark.ActaAgric.Scand.Sect.BSoilPlantSci.2004,54,2–8.
127. Jensen,H.G.;Jacobsen,L.B.;Pedersen,S.M.;Tavella,E.Socioeconomicimpactofwidespreadadoptionof
precisionfarmingandcontrolledtrafficsystemsinDenmark.Precis.Agric2012,13,661–677.
128. Bongiovanni,R.;LowenbergDeboer,J.EconomicsofVariableRateLimeinIndiana.Precis.Agric2000,2,
55–70.
129. Bongiovanni,R.;LowenbergDeboer,J.PrecisionAgricultureandSustainability.Precis.Agric2004,5,359–
387.
130. Reddy,P.P.PrecisionAgriculture.InAgroEcologicalApproachestoPestManagementforSustainable
Agriculture;Reddy,P.P.,Ed.;Springer:Singapore,2017;pp.295–309.
131. Erisman,J.W.;vanEekeren,N.;deWit,J.;Koopmans,C.;Cuijpers,W.;Oerlemans,N.;Koks,B.J.
Agricultureandbiodiversity:Abetterbalancebenefitsboth.AimsAgric.Food2016,1,157–174.
132. MeyerAurich,A.;Gandorfer,M.;Heißenhuber,A.Economicanalysisofprecisionfarming
technologiesatthefarmlevel:Twogermancasestudies.2008,67–76,.InO.W.Castelonge,Agricultural
Systems:Economics,Technology,Diversity.NovaSciencePublishers,HauppageNY,USAISBN:9781
606920251
133. Pedersen,S.M.;Fountas,S.;Have,H.;Blackmore,B.S.Agriculturalrobots—Systemanalysisandeconomic
feasibility.Precis.Agric2006,7,295–308.
134. Batte,M.T.PrecisionFarmingandLandLeasingPractices.J.AsfmraAm.Soc.FarmManag.Rural
Appraisers2003,2003,1–9.Availableonline:http://ageconsearch.umn.edu/record/198075/files/200.pdf
(accessedon20March2020).
©2020bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution
(CCBY)license(http://creativecommons.org/licenses/by/4.0/).
... When investing in DTs, farmers are not simply adopting new technologies; they are fundamentally changing how they farm [9]. With DTs, farmers have access to real-time information, which allows them to enhance productivity [10,11], minimize environmental impacts [12][13][14], and mitigate risks, thereby promoting the long-term viability of their operations [9,15]. ...
... When investing in DTs, farmers are not simply adopting new technologies; they are fundamentally changing how they farm [9]. With DTs, farmers have access to real-time information, which allows them to enhance productivity [10,11], minimize environmental impacts [12][13][14], and mitigate risks, thereby promoting the long-term viability of their operations [9,15]. However, there is an absence of research examining how investments in DTs concretely affect farm economic and environmental performance. ...
Article
Full-text available
Farm-level investment in digital tools is often viewed as a necessary part of the agroecological transition. However, its actual relevance remains unclear due to currently ambiguous definitions of farm investments in general and equipment investments in particular. We conducted a systematic review of the farm investment literature to characterize the different categories of digital tools investments seen and to determine how often the environment is considered in this field of research. A total of 131 articles met our eligibility criteria and were subject to further analysis. First, we found that research on farm investments has looked at general farm investments, investments in combined factors of production, and investments in specific factors of production. Second, we discovered that there are four main investment categories for farm equipment (including digital tools). Third, we noted that few studies have addressed the environmental implications of investing in digital tools. Our findings emphasize that, to facilitate the agroecological transition, it will be important to promote broader strategies that encourage farmers to invest in digital tools.
... Current work in Smart Farming solutions is mostly at an early stage, with trends in integrating precision agriculture technologies with IoT solutions. However, many studies overlook user-centered design, technology acceptance, and practical adoption, focusing more on technical validation, suggesting a gap between theoretical frameworks and practical applications, with researchers prioritizing technical aspects over end-user needs, making the Smart Farming adoption process more theoretical than practical [566]. ...
... Key areas include resource efficiency (e.g., water, nutrients, pesticides, labor, energy, warehouse, and land use), disease and weed management, risk management (e.g., food safety, pesticide residue elimination, and agrochemical emissions), compliance with legislation and standards, and synergy across the food supply chain. Addressing these challenges requires considering key performance indicators such as crop wastage, energy use, soil and environmental biodiversity, and irrigation water use [566]. Changing the return on investment paradigm for business models is another critical challenge, particularly given the high technology investment required for Smart Farming. ...
Thesis
Full-text available
This dissertation presents a comprehensive approach to enhancing Theobroma cacao productivity by developing a Decision Support System based on smart farming technologies tailored to smallholder farm conditions. The research integrates data mining techniques, optimization models, and user-centered design principles to address the key environmental, operational, and technological challenges that impact cocoa production. The dissertation is structured into three primary phases: data analysis using the Knowledge Discovery in Databases framework, developing a two-stage stochastic optimization model, and designing a smart farming web application to provide real-time decision support. The findings reveal that environmental variables such as humidity, rainfall, wind speed, and temperature significantly influence cocoa yield, with irrigation and water logging management as critical interventions for optimizing production. The optimization model, tested through extensive simulations, demonstrates its effectiveness in managing water resources and mitigating environmental uncertainties. The smart farming solution, designed with a user-centered approach, offers smallholder farmers an accessible and intuitive tool for real-time decision-making. This research contributes to agricultural optimization by bridging gaps between theoretical models and practical applications in cocoa crop optimization, addressing socio-economic barriers to technology adoption, and providing a scalable solution that can be adapted to other crops and farming systems. Future research opportunities are outlined, focusing on integrating real-time data, enhancing socio-economic models, and expanding the Decision Support System to include multi-crop systems and financial decision support.
... With the exception of GPS-assisted tractors and farm management information software, the implementation of more complex digital applications remains limited in European farming (Lowenberg-DeBoer and Erickson, 2019;Balafoutis et al., 2020), and varies significantly by region (Barnes et al., 2019a). Adoption barriers of precision and digital technologies have been attributed to high initial investment costs (Barnes et al., 2019a), lack of operating skills (Klerkx and Rose, 2020), insufficient infrastructure and access to broadband internet in rural areas (Paustian and Theuvsen, 2017;Da Silveira et al., 2023), as well as lack of trust among farmers due to issues of data sovereignty and privacy . ...
... To ensure the continuity of this new production chain, it will be a useful effort to increase awareness campaigns regarding selective disposal in the FNU supported by the user community, as suggested by Carneiro (2013), Domingues et al. (2016), Rodrigues et al. (2019), Silva and Souza (2019), Deliberador et al. (2021) and Ferreira et al. (2023). According to Balafoutis et al. (2020), in the new technological trends of smart agriculture, it is necessary to measure the effects of generating a product from an economic and environmental point of view, and the development of banana peel biofertilizer and its initial testing of composition and biological safety in an environment laboratory would fit into technological maturity level four. ...
Article
Full-text available
Organic fertilizers derived from solid food waste, such as banana peels, represent a promising circular model for mitigating waste and enhancing biotechnological innovation. This study aimed at the sustainable development of a biofertilizer from discarded Musa sapientum peels. Fresh samples were obtained through selective collection in a university restaurant in the interior of Ceará and carried out quantitative indicators. Pilot study with four collections tested different time-temperature processing for dehydration and flour prototyping. Based on the best morphological aspects of pilots 3 and 4, the operational protocol was chosen for the second phase, with eleven collections subjected to a continuous cycle of automated dehydration at 70oC for 12h, grinding and sieving. The yields of each cycle were analyzed, considering the weight of wet and dry matter. Biochemical analysis detected the presence of the macronutrient nitrogen, phosphorus and potassium and pH in aqueous solution in quintuplicates. Ecotoxicological analysis was conducted in an Artemia salina model for 24h of direct contact with three batches of fertilizer in different concentrations and in quadruplicate. Banana peel was an economical option, and the chosen protocol provided a homogeneous product with medium grain size. Despite the substantial reduction in sample volume, there was a predictable yield of an average of 10.3%, suggesting potential for scalability. The concentration of macronutrients remained within the expected range for a fertilizer for acidic soils, with low nitrogen and high phosphorus and potassium content, which explains the alkalizing effect on pH. There was no toxicity at the low concentrations tested up to 10,000µg/mL, maintaining a lethal concentration below 50%. Banana peel flour showed favorable structural properties for use as biofertilizer. Future studies will be able to elucidate its effectiveness in green areas on the campus and the impact on environmental compliance of the endogenous demand for waste at the university.
... Osrof et al. [6] conducted a systematic review on smart farming adoption, proposing a future agenda to address challenges such as digital literacy and infrastructure gaps. Additional research has highlighted the economic and environmental effects of smart farming technologies [7], the barriers to Agriculture 4.0 adoption [8], and the challenges in scaling agricultural robotics [9]. Despite these valuable insights, gaps remain in integrating alternative frameworks such as DOI and ANT into behavioral models like UTAUT2, particularly in rural, climate-vulnerable regions. ...
Article
Full-text available
This research investigated the determinants of adopting and sustaining the utilization of automated mini-greenhouses in the Philippines, a nation particularly vulnerable to climate change. Using an integrated theoretical framework combining the Unified Theory of Acceptance and Use of Technology (UTAUT2), Diffusion of Innovation (DOI), and Actor-Network Theory (ANT), this research employed a quantitative approach to assess key constructs, such as performance expectancy, effort expectancy, social influence, facilitating conditions, hedonic motivation, trust, habit, and technology readiness. Data were collected through structured surveys administered to smallholder farmers, and the results were analyzed using Python-based statistical tools. The findings indicated that performance expectancy and social influence were significant predictors of technology adoption, while habit and facilitating conditions strongly influenced continued use. Trust and resource accessibility, derived from DOI and ANT, also emerged as critical factors in sustained utilization. These results contributed to understanding smart farming adoption in the context of climate resilience and sustainable agriculture. Future research should explore broader applications of such technologies and further examine their long-term sustainability.
... Information and communication technology is something that is useful to facilitate all aspects of life . In this case, especially in the agricultural sector, they feel the impact of advanced and rapid technological developments [1], and one tangible form of this impact is smart farming [2]. The data needed on cultivation, settings for watering control, and fertilizer application will be measured and displayed via Smartphone, which aims to facilitate farmer activities [3]. ...
Chapter
Full-text available
Here is a 50-word abstract based on your book chapter: This chapter explores cutting-edge technologies and sustainable practices to combat climate change's impact on agriculture. It discusses climate-smart agriculture, genetic engineering for stress-resilient crops, nanotechnology, precision farming, carbon sequestration, and radiation-based techniques. Integrating these approaches ensures food security, mitigates greenhouse gas emissions, and enhances agricultural resilience to climate challenges.
Article
Full-text available
The growing global challenges of environmental degradation and resource scarcity demand innovative agricultural solutions. Intelligent environmental control systems integrating sensors, automation, and artificial intelligence (AI) optimize crop production and sustainability in vertical farming. This review explores the critical role of these technologies in monitoring and adjusting key environmental parameters, including light, temperature, humidity, nutrient delivery, and CO₂ enrichment. Intelligent environmental control systems use real‐time data from sensor networks to continuously maintain optimal growing conditions. Sensors measure changes in the environment, such as light intensity and humidity levels. Automation enables tasks to be performed without human intervention, ensuring consistent adjustments to environmental conditions. AI predicts plant responses and enables proactive management strategies in this context. The review also examines how these technologies integrate, highlighting successful case studies and addressing challenges like energy management, scalability, and system harmonization. Looking ahead, AI's potential in predictive maintenance and emerging trends in vertical farming highlight the transformative role of intelligent environmental control in enhancing agricultural efficiency and sustainability.
Article
Full-text available
Emerging technologies such as Internet of Things (IoT) can provide significant potential in Smart Farming and Precision Agriculture applications, enabling the acquisition of real-time environmental data. IoT devices such as Unmanned Aerial Vehicles (UAVs) can be exploited in a variety of applications related to crops management, by capturing high spatial and temporal resolution images. These technologies are expected to revolutionize agriculture, enabling decision-making in days instead of weeks, promising significant reduction in cost and increase in the yield. Such decisions enable the effective application of farm inputs, supporting the four pillars of precision agriculture, i.e., apply the right practice, at the right place, at the right time and with the right quantity. However, the actual proliferation and exploitation of UAVs in Smart Farming has not been as robust as expected mainly due to the challenges confronted when selecting and deploying the relevant technologies, including the data acquisition and image processing methods. The main problem is that still there is no standardized workflow for the use of UAVs in such applications, as it is a relatively new area. In this article, we review the most recent applications of UAVs for Precision Agriculture. We discuss the most common applications, the types of UAVs exploited and then we focus on the data acquisition methods and technologies, appointing the benefits and drawbacks of each one. We also point out the most popular processing methods of aerial imagery and discuss the outcomes of each method and the potential applications of each one in the farming operations.
Article
Full-text available
The impulse towards a larger introduction of Information and Communication Technology (ICT) in the agricultural field is currently experiencing its momentum, as digitisation has large potentialities to provide benefits for both producers and consumers; on the other hand, pushing technological solutions into a rural context encounters several challenges. In this work, we provide a survey of the most recent research activities, in the form of both research projects and scientific literature, with the objective of showing the already achieved results, the current investigations, and the still open challenges, both technical and non technical. We mainly focus on the EU territory, identifying threats and concerns, and then looking at existing and upcoming solutions to overcome those barriers.
Article
Full-text available
Spatial crop nitrogen (N) management has advanced over the years by using canopy reflectance data to make N recommendations. But the value of an automated system for variable-rate applications (VRA) has not been extensively demonstrated in cotton. This study evaluated the performance of an integrated system for on-the-go VRA at a 1-m spatial resolution in two different field trials in 2016 and 2017. The VRA system applied consistently less fertilizer N than the farmer practice, 42% and 33% less total N in the 2016 and 2017 field trials, respectively. Despite the reduced N inputs, increased energy-use efficiency (EUE) by 16% and return to N cost by €81/ha in 2016, VRA still over-applied N because of lack of yield response to N fertilizer. In the 2017 field, VRA yield gains by 5–8% over the farmer practice were not statistically significant and came about after cotton regrowth due to a bollworm infestation. With or without a back-off function in effect, VRA delivered an Economic Optimum N Rate, greatly increased N recovery by 12–22%, EUE by 26% and net return to N by €190–248/ha in comparison to the farmer. The reduction of N inputs also improved coupling of the soil-crop N cycle by reducing the effects of excess farmer application on soil acidity, electrical conductivity and residual nitrates in the root zone. Under the field conditions of this study, implementation of the high-resolution VRA can result in environmental and economic benefits especially in non-problematic fields where the crop responds to N fertilization.
Article
Full-text available
Vom Einsatz digitaler Informations- und Kommunikationstechnologien wird sich ein großer Beitrag zum Umwelt- und Ressourcenschutz versprochen. Jedoch besteht die Gefahr des Auftretens von Rebound Effekten. Als Rebound Effekt bezeichnet man eine Vielzahl Mechanismen die dazu führen dass die Einsparung einer Ressource durch den Einsatz einer Technologie durch eine erhöhte Nachfrage nach der Ressource kompensiert wird. Übersteigt die erhöhte Nachfrage sogar die Einsparungen spricht man vom Jevons Paradox. Jevons Paradox und Rebound Effekte gehen dabei allgemein auf das adaptive Verhalten von Konsumenten und Produzenten zurück. Informations- und Kommunikationstechnologien finden in der Landschaft durch Technologien im Rahmen der Präzisionslandwirtschaft z. B. durch Sensortechniken Anwendung. Jedoch sind Rebound Effekte in diesem Zusammenhang bisher wenig diskutiert. Der vorliegende Beitrag schließt diese Forschungslücke indem potentielle Rebound Effekte auf Basis einer Literaturrecherche für die Ressourcen Ackerland, Wasser, Nährstoffe in Form von Düngemitteln und Pflanzenschutzmitteln diskutiert werden. Der Beitrag zeigt, dass Rebound Effekte vor allem durch monetäre Anreize für den Landwirt zur Ausweitung bzw. Intensivierung der Produktion entstehen, wenn durch den Einsatz der Technologien die Kosten des Ressourceneinsatzes bzw. die Profitabilität gesteigert wird. Der Beitrag liefert damit wichtige Implikationen für die Entwicklung von Politikmaßnahmen im Rahmen der Nachhaltigkeit und Ressourcenschutz in der Landwirtschaft.
Book
Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies.
Article
Internet of Things (IoT) and Unmanned Aerial Vehicles (UAVs) are two hot technologies utilized in cultivation fields, which transform traditional farming practices into a new era of precision agriculture. In this paper, we perform a survey of the last research on IoT and UAV technology applied in agriculture. We describe the main principles of IoT technology, including intelligent sensors, IoT sensor types, networks and protocols used in agriculture, as well as IoT applications and solutions in smart farming. Moreover, we present the role of UAV technology in smart agriculture, by analyzing the applications of UAVs in various scenarios, including irrigation, fertilization, use of pesticides, weed management, plant growth monitoring, crop disease management, and field-level phenotyping. Furthermore, the utilization of UAV systems in complex agricultural environments is also analyzed. Our conclusion is that IoT and UAV are two of the most important technologies that transform traditional cultivation practices into a new perspective of intelligence in precision agriculture.
Article
To analyse the adoption of drones in agriculture as the latest tool added to the set of precision agriculture technologies, this paper makes use of a novel application of the trans-theoretical model of behavioural change by analysing a sample of 167 large-scale German farmers collected in 2019. The model provides a gradual measure of farmers' decision making with respect to the adoption of drones, which gives more detailed insight into farmers' adoption processes than the more common approach of applied binary classifications. Ordinal logit regression results show that, among other factors, farmers' age, precision agriculture technology literacy and farm size affect farmers’ adoption process. Thus, this paper contributes to the literature by identifying key determinants of the drone adoption process in agriculture. Furthermore, this study provides information about the fields of drone application as well as reasons that oppose the usage of drones by farmers. The results are of interest for policy makers and suppliers of drones.