PreprintPDF Available

Risk Screening of Obstructive Sleep Apnea Syndrome by Body Profiles via Random Forests Model

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract and Figures

Background Obstructive Sleep Apnea Syndrome (OSAS) is a major global health concern and is typically diagnosed by in-lab polysomnography (PSG). This examination though has high medical manpower costs and alternative portable methods have further limitations. This paper develops a new model for screening the risk of OSAS in different age groups and gender by using body profiles. The effects of body profiles for different subgroups in sleep stage alteration and OSAS severity are also investigated. Methods The data is derived from 6614 Han-Taiwanese subjects who have previously undergone PSG in order to assess the severity of OSAS in the sleep center of Taipei Medical University Shuang-Ho Hospital between March 2015 and October 2019. Characteristics of subjects, including age, gender, body mass index (BMI), neck circumference, and waist circumference, were obtained from a questionnaire. Pearson regression was used to evaluate the correlations between body profiles and sleep stages as well as sleep disorder indexes. To develop an age and gender independent model, random forests (RF), which is an ensemble learning method with high explainability, were trained by the four groups by gender and age (older or younger than 50 years old) with ratios of 70% (training dataset) and 30% (testing dataset), respectively. Prediction performance was evaluated by sensitivity, specificity and accuracy. Variable importance was assessed by averaging the impurity decrease to account for the effect of different factors. Results Results indicate that high BMI, neck circumference and waist circumference decreased the duration of slow-wave sleep and increased the sleep disorder indices and the percentage of wake and N1. Additionally, screening models for different gender and age utilizing anthropometric features as predictors via RF were established and demonstrated to have high accuracy (75.63% for younger males, 74.72% for elder males, 78.81% for younger females, and 72.10% for elder females). Feature importance indicated that waist circumference was the highest contributing factor in females and elder males, whereas the BMI was the highest contribution in younger males. Conclusions The authors recommend the use of the prediction models for those with Han-Taiwanese craniofacial features.
Content may be subject to copyright.
1
Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.
RiskScreeningofObstructiveSleepApneaSyndrome
byBodyProfilesviaRandomForestsModel
CURRENTSTATUS:UNDERREVIEW
Cheng-YuTsai
ImperialCollegeLondonDepartmentofCivilandEnvironmentalEngineering
Wen-TeLiu
ShuangHoHospital
Yin-TzuLin
ShuangHoHospital
Shang-YangLin
TaipeiMedicalUniversityCollegeofMedicine
ArnabMajumdar
ImperialCollegeLondon
a.majumdar@imperial.ac.ukCorrespondingAuthor
ORCiD:https://orcid.org/0000-0002-6332-7858
RobertHoughton
ImperialCollegeLondonDepartmentofCivilandEnvironmentalEngineering
DeanWu
ShuangHoHospital
Hsin-ChienLee
TaipeiMedicalUniversityCollegeofMedicine
Cheng-JungWu
ShuangHoHospital
LokYeeJoyceLi
ShinKongWuHoSuMemorialHospital
Jer-NanJuang
NationalChengKungUniversity
2
Yi-ShanTsai
TaipeiMedicalUniversityCollegeofPharmacy
Shin-MeiHsu
ShuangHoHospital
Chen-ChenLo
ShuangHoHospital
KangLo
ShuangHoHospital
You-RongChen
ShuangHoHospital
Feng-ChingLin
NationalTaiwanUniversity
DOI:
10.21203/rs.3.rs-22545/v1
SUBJECTAREAS
MedicalInformatics
KEYWORDS
Obstructivesleepapneasyndrome,Polysomnography,anthropometricfeatures,
sleepdisorderindexes,randomforestsmodel
3
Abstract
Background
ObstructiveSleepApneaSyndrome(OSAS)isamajorglobalhealthconcernandistypicallydiagnosed
byin-labpolysomnography(PSG).Thisexaminationthoughhashighmedicalmanpowercostsand
alternativeportablemethodshavefurtherlimitations.Thispaperdevelopsanewmodelforscreening
theriskofOSASindifferentagegroupsandgenderbyusingbodyprofiles.Theeffectsofbody
profilesfordifferentsubgroupsinsleepstagealterationandOSASseverityarealsoinvestigated.
Methods
Thedataisderivedfrom6614Han-TaiwanesesubjectswhohavepreviouslyundergonePSGinorder
toassesstheseverityofOSASinthesleepcenterofTaipeiMedicalUniversityShuang-HoHospital
betweenMarch2015andOctober2019.Characteristicsofsubjects,includingage,gender,bodymass
index(BMI),neckcircumference,andwaistcircumference,wereobtainedfromaquestionnaire.
Pearsonregressionwasusedtoevaluatethecorrelationsbetweenbodyprofilesandsleepstagesas
wellassleepdisorderindexes.Todevelopanageandgenderindependentmodel,randomforests
(RF),whichisanensemblelearningmethodwithhighexplainability,weretrainedbythefourgroups
bygenderandage(olderoryoungerthan50yearsold)withratiosof70%(trainingdataset)and30%
(testingdataset),respectively.Predictionperformancewasevaluatedbysensitivity,specificityand
accuracy.Variableimportancewasassessedbyaveragingtheimpuritydecreasetoaccountforthe
effectofdifferentfactors.
Results
ResultsindicatethathighBMI,neckcircumferenceandwaistcircumferencedecreasedthedurationof
slow-wavesleepandincreasedthesleepdisorderindicesandthepercentageofwakeandN1.
Additionally,screeningmodelsfordifferentgenderandageutilizinganthropometricfeaturesas
predictorsviaRFwereestablishedanddemonstratedtohavehighaccuracy(75.63%foryounger
males,74.72%foreldermales,78.81%foryoungerfemales,and72.10%forelderfemales).Feature
importanceindicatedthatwaistcircumferencewasthehighestcontributingfactorinfemalesand
eldermales,whereastheBMIwasthehighestcontributioninyoungermales.
Conclusions
TheauthorsrecommendtheuseofthepredictionmodelsforthosewithHan-Taiwanesecraniofacial
4
features.
Background
Inrecentyears,ObstructiveSleepApneaSyndrome(OSAS)hasbecomeasourceofmajorhealth
concernsglobally(1).Astudyby(2)reportedthattheestimatedprevalenceofOSAS(moderateto
severedegree)intheUnitedStateswas10%inmalesbetween30and49yearsofage,risingto17%
inelderlymales(between50and70yearsold).Thesamestudynotedthatforfemales,theestimated
prevalencewas3%ofmoderate-to-severeOSASbetweentheage30and49years,againincreasing
to9%between50and70years.Withrespecttocomorbidity,OSASisalsoconsideredasan
independentriskfactorforawiderangeofailments,including:cardiovasculardiseases,systemic
hypertension,stroke,abnormalglucosemetabolismandevencancer(3,4).Furthermore,previous
studieshaveobservedthatOSAScorrelatesto:braindamage,cognitiveimpairment,anddementia
(5–7).Therefore,withoutdoubt,OSASsignificantlyaffectsanindividual’squalityoflife.
TodiagnosetheseverityofOSASandtherebydeveloptherapeuticstrategies,thein-lab
polysomnography(PSG)isthestandardexamination(8).However,thisexaminationhasassociated
highresourcecostsintermsofmedicalmanpowerforcontinuoussleepmonitoring(9).Givenboth
thattheexaminationmodalitiesareexpensiveandthatthereisoftenalackofspaceinasleep
laboratory,thewaitinglistsforanindividualtoreceiveaPSGareusuallylong,e.g.,typically,the
averagewaittimeforreceivingmedicaltherapyafteraPSGintheUnitedStatesis11.6months(10).
Thislimitedavailabilityresultsindelaysinthetimerequiredtodiagnosesleepdisorders(11).To
overcometheselimitations,theHomeSleepTest(HST)hasbeenconsideredasanalternative
portableexaminationfordiagnosingtheseverityofOSAS.However,thistesttoohasnumerous
limitationsregardingitsuse.Forinstance,theaccuratediagnosisofOSASthroughaHSTiscurtailedif
thepatientsuffersfromothercomorbidities(12).Forexample,forsubjectswhosebodymassindex
(BMI)aremorethan40andelderlysubjects(overthe65yearsofage),therearenoestablishedHST
clinicalguidelines(13).Inadditiontothesetests,thereareavarietyofquestionnairesdesignedon
thebasisoftheclinicalpredictionrules,suchas:theBerlinquestionnaire,EpworthSleepinessScale,
andtheSTOP-Bangquestionnaire(14).Althoughthesequestionnaireshavebeenvalidatedashigh
5
sensitivitytoolsforscreeningOSAS,lowspecificityhasbeenobservedineachoftheseveritygroups
(15).Hence,giventheseshortcomingsofthecurrentmethodsofevaluatingOSAS,thereisaneedto
developanewmethodforanaccurateexaminationoftheriskofOSAS.
Inordertodothis,itisworthwhiletoinvestigatethesignificantpredictorsrelatedtoOSASseverity.
Onesuchpredictorisgender,e.g.(16)notedthattheprevalenceofOSASinsouthernPennsylvaniais
nearlythreetimeshigherinmalescomparedtofemales.ThesamestudyreportedthatOSAS
prevalenceinpostmenopausalfemaleswas2.7%andsignificantlyhigherthanthe0.6%prevalencein
premenopausalfemales.Withrespecttoanthropometricprofiles,ahighermeanBMIandalarger
meanneckcircumferencehasbeenobservedinsevereOSASsubjects(N = 25)comparedwithnormal
subjects(N = 14)inTurkey(BMI:34.55kg/m2versus29.83kg/m2,p = 0.021;Neck:40.84cmversus
36.11cm,p < 0.001)(17).AnotherstudyindicatedthatforTurkishadults,theoddsratioforOSAS
was1.09(95%confidenceinterval(CI):1.014–1.17,p < 0.05)witheachincreaseof3.5cminneck
circumference(18).Inanotherstudy,thesignificantmeanlargerwaistcircumferencewasobservedin
asevereOSASgroup(N = 437)comparedwithacontrolgroup(N = 72)intheTurkishsubjects(OSAS
group:111.74 ± 12.47cm;controlgroup:91.67 ± 12.00cm,p < 0.001)(19).Inafurtherstudy,which
involvedOSASsubjects(N = 59)recruitedintheUSA,significantassociationswereobservedbetween
theapnea-hypopneaindex(AHI)andBMI(r = 0.349,p = 0.008),neckcircumference(r = 0.276,p = 
0.038),andwaistcircumference(r = 0.459,p < 0.001)(20).Despiteepidemiologicalreportsshowing
thatexcessbodyprofilesareassociatedwiththeseverityofOSAS,tothebestoftheauthors’
knowledge,thereisstillnoapplicablescreeningmodelforaccessingOSASriskbyconsideringthe
anthropometricdata,genderandageeffects.Furthermore,theassociationsbetweenanthropometric
features,alternationsofsleepstructureandsleep-disorderedindexesfordifferentagegroupsand
gendersalsoremainunclear.
Therefore,thispaperexaminesthehypothesisthatbodyprofiles,asindicatorsofOSASseverity,can
beusedtoperformOSASriskscreening.TheprimaryobjectiveistoestablishOSASriskscreening
modelsfordifferentageandgendergroupsbasedonbodyprofiles.Thesemodelsareestablished
usingtherandomforests(RF)methodwhichhasanumberofadvantageswhencomparedtocurrent
6
methodsofanalysis.Furthermore,thispaperinvestigatedtheeffectsofanthropometricfeaturesin
relationtosleepstagealternationsandsleep-disorderedindexesinsubgroupsbyusingthe
regressionmodel.Thepaperisorganizedasfollows.Section2describesthecollectionofthedataset,
statisticalanalysisandtheestablishmentofthescreeningmodel.Section3presentsthebaseline
characteristicsofthesubjects,thestatisticaloutcomesbetweenbodyprofilesandPSGparameters
andtheclassifyingperformanceofthetrainedmodel.Section4discussestheresultsandcompares
thefindingswithotherrelatedstudies.ThepaperconcludesinSect.5.
Methods
Ethics
ThestudyprotocolwasapprovedbytheEthicsCommitteeoftheTaipeiMedicalUniversity-Joint
InstitutionalReviewBoard(SHH:N201911007).Theexaminationinstitution(SleepcenterofShuang-
HoHospital)wasqualifiedbytheTaiwanSocietyofSleepMedicine.Themethodswereconductedin
accordancewiththeapprovedguidelines.
Studypopulation
ThedataisderivedfromsubjectswhohavepreviouslyundergonePSGinordertoassesstheseverity
ofOSASinthesleepcenterofTaipeiMedicalUniversityShuang-HoHospital(SHH,NewTaipeiCity,
Taiwan)betweenMarch2015andOctober2019.Thecriteriaforparticipantselectionwereasfollows:
(1)theywerebetween18yearsand80yearsofage(2)nonehadreceivedanyinvasivesurgeryfor
OSAStreatment(3)nonehadregularlytakenhypnoticorpsychotropicmedications,andfinally(4)the
totalrecordingtimeofthePSGwasmorethansixhours.Abaselinescreeningquestionnairewas
administeredtoassessthefollowing:age,gender,BMI,neckcircumference,andwaistcircumference.
Additionally,theusageofmedicationandthesurgicalhistoryofeachparticipantwereobtainedfrom
theirclinicalregistration.ItisworthnotingthatallparticipantswereHan-Taiwaneseinethnicorigin,
andcraniofacialfeaturesareconsideredastheeffectivefactorsrelatedtotheOSASseverityforHan
ethnicitycomparedwithotherethnicities(21).However,thesefactorswerenotusedaspredictors
sincethispaperonlyrecruitedHan-Taiwanesesubjects.
Polysomnography
Thefull-nightPSGexaminationwasperformedbyusingResMedEmblaN7000andEmblaMPRinthe
7
sleepcenterofSHH.TherecordedPSGdatainvolvedthefollowing:electroencephalography(EEG),
electrooculography(EOG),chinandlegelectromyography(EMG),electrocardiography(ECG),nasal
andoralairflow,thoracicandabdominalbands,snoringsensor,bodypositionmeter,andoxygen
saturation.ThesedatawerescoredbycertifiedpolysomnographictechnologistsusingRemLogic
(version3.4.1)software.ThesleepstagesandrespiratoryeventswerescoredusingtheAmerican
AcademyofSleepMedicinescoringmanualfor2017(22).ThediagnosisofOSASwasdeterminedby
thefrequencyofapneaandhypopneaevents(23).TheAHIforeachsubjectwascalculatedbythe
totaleventnumbersofapneaandhypopneadividedbythetotalsleepingtime(TST).Infollowingwith
clinicalpractice,subjectswererecommendedtoundertaketheactiveinterventionwhentheirAHIwas
higherthan15timesperhour,whichistheclinicalthresholdformoderatetosevereOSAS(24).
StatisticalAnalysis
AllthestatisticalanalyseswereconductedbyusingPythonstatisticsmodule:Scikit-learn(version:
0.21.2).ThecollectedPSGdata,whichqualifiedwithinclusioncriteria,weredividedintotwogroups
bygender.Thecharacteristicsofthetwogroupswerecomparedbyusingtheindependentstudentt-
testforcontinuousvariablesorthechi-squaretestforcategoricalvariables.Inordertodeterminethe
correlationsbetweenanthropometricfeatures,sleepstructurealternationsandsleep-disordered
indicesconsideringgenderandmenopauseeffects,themaleandfemalegroupsweredividedinto
subgroupsbytheage(overtheageof50yearsorunder)(25).Linearregressionmodelswereusedto
associatethebodyprofilestotheparametersofPSGreportamongfourgroups.Thelevelof
significancewassettop < 0.05.
RandomForests
Previousstudieshaveusedclassificationmethodssuchasgeneticalgorithm(26)andsupportvector
machine(27).Inthispaper,weusedRF,whichisanensemblelearningmodelthatcanbeusedto
performclassification(28).Comparedwithotherclassificationmethods,thismethodhasthefollowing
advantages:fastresultcomputation,highexplainabilityoffeatureimportance,betteranti-noise
ability,stableperformancewithhighaccuracyandtheavoidanceofoverfitting.Therefore,theRF
methodhasbeenwidelyusedtoperformdiagnosisordecisionsupportinthemedicalfield(29,30).In
8
thisstudy,consideringtheamountofdatacollected,whichiseasilyoverfitted,andtoinvestigatethe
importanceofpredictorseffectingtheseverityofOSAS,theRFwasusedtodevelopscreeningmodels
foreachsubgroup.
TheprocedurefortrainingandtestingmodelisillustratedinFig.1.ThePSGdataofthefourgroups
weredividedintheratioof70–30%topreparethetrainingandtestingdatasetrespectively.The
structureofthemodelconsistsofanumberofclassificationandregressiontrees(CART)whichare
trainedonselecteddatausingthebootstraptechnique(28).Thistechniquerandomlysamplesa
subsetateachinternalpartfromthetrainingdatasettodecreasetrainingtimeandtoprevent
overfitting.ThetrainingdatawasinputinamodeliterativelyfortrainingeachCARTinRFwith
bootstrapping.ThenumberofCARTwasdecidedbyout-of-bag(OOB)samplesestimationwhichcan
beusedtoevaluatetheconvergenceofthepredictionerror(31,32).Inthisstudy,themaximum
numberofCARTwasdefinedas800forstabilityandresourceimplication.SinceeachCARTwas
trainedbyavarietyofsubsetdata,overfittingsituationscanbeavoidedandcanbeassembledfor
votingtoperformtheclassification.Furthermore,featureimportancewascomputedbyaveragingthe
impuritydecreasefordeterminingtheeffectbydifferentfactors(33–35).
AccuracyEvaluation
Uponcompletionofthetrainingprocess,thetestingdatasetwasinputintotheRFmodeltoaccess
themodelsensitivity,specificityanditsaccuracy.Theconfusionmatrix,whichisameasurementfor
theperformanceoftheclassification,wascomputed.Thevaluesoftrue-positive(TP),true-negative
(TN),false-positive(FP),andfalse-negative(FN)weredetermined.Inaddition,severalindexes,
includingsensitivity(TP/(TP + FN)),specificity(TN/(TP + FN)),andaccuracy((TP + TN)/(TP + TN + FP
+ FN))werecalculatedtovalidatetheaccuracyofthetrainedmodel.TheReceiverOperating
Characteristic(ROC)curvewascalculatedtodeterminetheoptimalpoint,whichservedasthemost
balancedsensitivityandspecificitypoint.TheAreaUndertheROCcurve(AUC)measuresthe
separabilityofthemodel.Thecloserthisvalueisto1,thebettertheseparabilityofthemodel.In
addition,thepositivelikelihoodratioandthenegativelikelihoodratiowerecalculatedtovalidatethe
performance.
9
Results
Characterizationofstudysubjects
Atotalof6614subjects,ofwhom69.9%(4632)weremale,wereenrolledinthisstudy,andtheir
baselinecharacteristicsaredemonstratedinTable1.Severalfeaturesareworthyofnoteinthis
sample.TherewasasignificantdifferenceinnumbersofdifferentOSASseveritiesbetweenthemale
andfemalegroups(p < 0.01).Theaverageagesofthesubjectsinthemalegroups(48.47 ±
12.81years)weresignificantlylowerthanthevalueofthesubjectsinthenormalgroup(51.94 ±
12.67years;p < 0.01).Foranthropometricfeatures,themeanBMI(26.97 ± 3.96kg/m2),themean
neckcircumference(39.25 ± 3.14cm),andthemeanwaistcircumference(93.73 ± 10.46cm)inthe
malegroupweresignificantlyhigherthanthemeanvaluesinthenormalgroup(p < 0.01).
Table1
Baselinecharacteristicsofsubjectsdividedbygender.
CategoricalVariables Male Female Total P
Number(total) 4623 1991 6614 
Number(age ≥ 50) 2096 1205 3141 
Number(age < 50) 2527 786 3473
Age(years) 48.47 ± 12.81 51.94 ± 12.67 49.52 ± 12.87 < 0.01
BMI(kg/m2)26.97 ± 3.96 25.46 ± 4.72 26.52 ± 4.26 < 0.01
Neckcircumference
(cm) 39.25 ± 3.14 34.13 ± 3.09 37.71 ± 3.91 < 0.01
Waistcircumference
(cm) 93.73 ± 10.46 84.38 ± 11.74 90.92 ± 11.68 < 0.01
AHI(events/hour) 32.18 ± 23.01 17.29 ± 18.94 27.70 ± 22.91 < 0.01
OSASSeveritya   < 0.01
AHI < 15,n(%) 1399(30.26%) 1199(60.22%) 2598(39.28%) 
AHI ≥ 15,n(%) 3224(69.74%) 792(39.78%) 4016(60.72%)
Dataareexpressedasameanwithstandarddeviation
BMI:Bodymassindex;OSAS:Obstructivesleepapneasyndrome
aChi-squaredtest
PSGresultsofstudysubjects
ThemeanvaluesofPSGresultsamongthesubjectsarelistedinTable2.Inthemales,theaverageof
sleepefficiency(SE)intheyoungergroups(9.68 ± 15.54%)weresignificantlyhigherthantheelderly
groups(73.00 ± 16.37%;p < 0.01).Similarresultswereobservedinthefemalegroups(younger:
79.92 ± 15.20%;elder:74.41 ± 16.37%;p < 0.01).Foreachsleepstage,themeanpercentageofthe
wakeandthestageone(N1)inbothgenders,thevaluesoftheyounggroupsweresignificantlylower
thantheelderlygroupsrespectively(allp < 0.01).Incontrast,themeanpercentageofthestagetwo
(N2)andtherapid-eye-movement(REM)stageintheyoungergroupswerehigherthanthevaluesof
elderlygroups(allp < 0.01).Theaverageminutesofthewakeaftersleeponset(WASO)inthe
youngergroupsofbothgenders(male:53.33 ± 48.43min;female:46.13 ± 43.18min)were
10
significantlylowerthanthevaluesoftheelderlygroups(male:76.41 ± 50.33min;female:65.92 ± 
47.89min;p< 0.01).
Table2
PSGresultsofsubjectsdividedbygender.
CategoricalVariables Male ≤ 50y/o Male > 50y/o Female ≤ 50y/o Female > 50y/o
SE(%) 79.68 ± 15.54%*73.00 ± 16.37%*$ 79.92 ± 15.20%#74.41 ± 16.37%#$
Wake(%ofSPT) 15.71 ± 14.65%*& 22.67 ± 15.46%*$ 13.96 ± 13.67%#& 19.86 ± 14.85%#$
N1(%ofSPT) 11.75 ± 8.18%*& 14.10 ± 10.18%*$ 8.40 ± 5.88%#& 9.34 ± 6.85%#$
N2(%ofSPT) 57.88 ± 14.81%*52.89 ± 16.15%*$ 59.03 ± 14.56%#57.50 ± 15.06%#$
REM(%ofSPT) 10.99 ± 6.28%*& 9.41 ± 6.26%*$ 12.31 ± 6.71%#& 10.35 ± 6.44%#$
WASO(mins) 53.33 ± 48.43*& 76.41 ± 50.33*$ 46.13 ± 43.18#& 65.92 ± 47.89#$
AHI(events/hour) 31.06 ± 23.71*& 33.53 ± 22.09*$ 11.34 ± 16.16#& 21.16 ± 19.62#$
Desaturationsindex
(events/hour) 29.92 ± 23.98*& 31.97 ± 22.40*$ 10.48 ± 16.05#& 20.29 ± 19.62#$
Snoringindex
(events/hour) 259.62 ± 212.69&253.51 ± 217.72$149.04 ± 193.74#& 176.49 ± 202.58#$
Arousalsindex
(events/hour) 25.47 ± 16.78*& 28.89 ± 16.56*$ 16.42 ± 10.80#& 20.72 ± 13.01#$
Dataareexpressedasameanwithstandarddeviation
SE:Sleepefficiency;SPT:Sleepperiodtime;N1:Sleepstageone;N2:Sleepstagetwo;REM:Rapideyemovement
stage;WASO:Wakeaftersleeponset;AHI:Apneahypopneaindex.
*:thep-valueislessthan0.05betweenyoungandelderwithinmales.
#:thep-valueislessthan0.05betweenyoungandelderwithinfemales.
&:thep-valueislessthan0.05betweenmalesandfemaleswithinsubjectsyoungerthan50yearsold.
$:thep-valueislessthan0.05betweenmalesandfemaleswithinsubjectsolderthan50yearsold.
Intermsofthesleepqualityindexes,themeanvaluesofAHIanddesaturationindexintheelderly
groupsinbothgendersweresignificantlyhigherthanthevaluesoftheyoungergroups(AHI:p < 0.01;
desaturationindex:p < 0.05).Therewasnosignificantdifferenceinthesnoringindexinmalegroups,
whereasasignificantdifferencewasfoundinthefemalegroups(male:149.04 ± 193.74events/hour;
female:176.49 ± 202.58events/hour,p < 0.01).Also,thereweresignificantdifferencesinarousal
indexbetweenyoungerandeldergroupsinbothgenders(allp < 0.01).Additionally,thepercentage
ofwakeandN1,WASO,AHI,desaturationindex,snoringindex,andarousalindexinmaleswas
significantlyhigherthanvaluesinfemalesinbothyoungerandelderagegroups(allp < 0.05).
Conversely,thepercentageofREMinyoungermalesweresignificantlylowerthanvaluesinyounger
females(allp < 0.05).ThelowerSE,thelowerpercentageofN2,andthelowerpercentageofREMin
eldermaleswereobservedcomparedwithelderfemales(allp < 0.05).
PSGresultsandanthropometricfeatures
TheassociationsbetweentheparametersofPSGresultsandbodyprofilesinthedifferentagegroups
andgendersareillustratedinTable3andTable4respectively.Thesleepefficiency(SE)inelder
11
malesassociatednegativelywiththewaistcircumference,whereasthepercentageofwakestage
associatedpositively(p < 0.05).Similarly,thepercentageofwakestageassociatedpositivelywith
neckandwaistcircumferenceinyoungermales(p < 0.05).Thereweresignificantpositivecorrelations
betweenthepercentageofN1stageandallbodyprofilesamongallgroupsexcepttheBMIofyounger
females.Additionally,significantnegativecorrelationsbetweenthepercentageofN2,neck
circumference,andwaistcircumferenceinmaleswereobserved.ThepercentageofREMnegatively
correlatedtoallbodyprofilesinmales(p < 0.05)andnegativelycorrelatedtotheBMIaswellaswaist
circumferenceinelderfemales(p < 0.05).WhiletherewerepositivecorrelationsbetweenWASOand
allbodyprofilesamongallgroup,theylackedstatisticalsignificance.TheindexesofOSASseverity,
AHI,desaturationindex,snoringindexandarousalsindexallcorrelatedpositivelywithBMI,neck
circumferenceaswellaswaistcircumferenceinallgroups(allp < 0.05).
Table3
Pearson’scorrelationcoefficientsforvariablesofPSGresultsandanthropometricfeaturesinmales
Categorical
Variables Male ≤ 50y/o Male > 50y/o
BMI NC(cm) WC(cm) BMI NC(cm) WC(cm)
Sleepefficiency
(%) 0.0001 -0.0013 -0.0003 -0.0001 -0.0005 -0.0007*
Wake(%of
SPT) 0.0005 0.0020*0.0005*0.0004 0.0013 0.0007*
N1(%ofSPT) 0.0032*0.0047*0.0013*0.0036*0.0061*0.0014*
N2(%ofSPT) -0.0007 -0.0027*-0.0006*-0.0019 -0.0051*-0.0014*
REM(%ofSPT) -0.0017*-0.0014*-0.0006*-0.0017*-0.0015*-0.0006*
WASO(mins) 0.1346 0.5788 0.1553 0.0670 0.3069 0.2041
AHI
(events/hour) 2.7538*3.3725*1.0994*2.5695*2.8574*0.9283*
Desaturations
index
(events/hour)
2.8501*3.4735*1.1196*2.6869*2.9548*0.9587*
Snoringindex
(events/hour) 12.8627*18.0209*5.5982*18.5562*21.5843*6.6324*
Arousalsindex
(events/hour) 0.9191*1.5281*0.3946*0.9420*1.3266*0.3601*
SE:Sleepefficiency;SPT:Sleepperiodtime;N1:Sleepstageone;N2:Sleepstagetwo;REM:Rapideyemovement
stage;WASO:Wakeaftersleeponset;AHI:Apneahypopneaindex;BMI:Bodymassindex;NC:Neck
circumference;WC:Waistcircumference.
*:thep-valueislessthan0.05.
12
Table4
Pearson’scorrelationcoefficientsforvariablesofPSGresultsandanthropometricfeaturesinfemales
Categorical
Variables Female ≤ 50y/o Female > 50y/o
BMI NC(cm) WC(cm) BMI NC(cm) WC(cm)
SE(%) < 0.0001 -0.001 -0.0003 -0.0009 -0.0017 -0.0005
Wake(%of
SPT) 0.0006 0.0019 0.0005 0.001 0.0024 0.0005
N1(%ofSPT) 0.0005 0.0016*0.0004*0.0018*0.0030*0.0007*
N2(%ofSPT) -0.0001 -0.0004 -0.0002 -0.0003 -0.0027 -0.0004
REM(%ofSPT) -0.0001 < 0.0001 -0.0003 -0.0014*-0.0012 -0.0004*
WASO(mins) 0.2924 0.7094 0.1976 0.1876 0.7309 0.11
AHI
(events/hour) 1.4414*2.3677*0.6746*2.0423*2.6475*0.7909*
Desaturations
index
(events/hour)
1.4971*2.4165*0.6904*2.1067*2.6857*0.8024*
Snoringindex
(events/hour) 10.4552*17.5522*4.5551*14.8561*18.7307*5.9572*
Arousalsindex
(events/hour) 0.2342*0.4529*0.1350*0.5117*0.9050*0.2279*
SE:Sleepefficiency;SPT:Sleepperiodtime;N1:Sleepstageone;N2:Sleepstagetwo;REM:Rapideyemovement
stage;WASO:Wakeaftersleeponset;AHI:Apneahypopneaindex;BMI:Bodymassindex;NC:Neck
circumference;WC:Waistcircumference.
*:thep-valueislessthan0.05
AccuracyPerformanceandparameterimportance
TheresultsoftheclassificationandvariableimportanceforeachmodelarepresentedinTable5.The
predictionaccuraciesfordifferentgroupswererangedfrom72.10–78.81%.TheAUCofROCwas
arrangedfrom76.80–81.61%.Forvariableimportance,theBMIcontributedthehighestimpact,of
38.10%inthemodelforyoungermales.However,themostimpactingfactorinothergroups,wasthe
waistcircumference:39.16%foreldermales,39.90%foryoungerfemales,and39.08%forelder
females.
Table5
Theclassificationresultsoftheage-dependentbodyprofilemodelonfoursubgroups.
CategoricalVariables Male ≤ 50y/o Male > 50y/o Female ≤ 50y/o Female > 50y/o
Casenumber(AHI ≥ 
15vsAHI < 15) 1676vs851 1548vs548 596vs190 603vs602
Sensitivity,% 66.84 ± 6.54 62.90 ± 13.21 83.96 ± 6.06 80.12 ± 5.87
Specificity,% 78.69 ± 3.62 76.01 ± 3.73 59.18 ± 14.97 65.67 ± 7.01
Accuracy,% 75.63 ± 3.22 74.72 ± 3.59 78.81 ± 5.77 72.10 ± 4.56
LR+ 3.14 ± 0.54 2.62 ± 0.56 2.06 ± 0.84 2.33 ± 0.43
LR- 0.42 ± 0.08 0.49 ± 0.14 0.27 ± 0.14 0.27 ± 0.12
AUC,% 81.61 ± 2.7 77.11 ± 3.01 79.30 ± 5.86 76.80 ± 4.19
Featureimportance
(100%)   
BMI(%) 38.10% 38.84% 33.71% 37.00%
Neckcircumference
(%) 24.87% 23.00% 26.39% 23.92%
Waistcircumference
(%) 37.03% 39.16% 39.90% 39.08%
Dataareexpressedasameanwithstandarddeviation
AHI:Apneahypopneaindex;LR+:Positivelikelihoodratio;LR-:Negativelikelihoodratio;AUC:Areaunderthe
curve.
Discussion
Inthisstudy,theassociationsbetweenPSGparametersandanthropometricfeatureshavebeen
13
determinedconsideringageandgendereffect.Thegenderandage-independentmodelsbasedon
theanthropometricfeatureswereestablishedsuccessfullytoassesstheriskofOSAS.Theapplicable
modelsweredemonstratedtopossesshighpredictionaccuracyforclassifyingAHIhigherorlower
than15,inparticularforHan-Taiwanesesubjects.Theanthropometricfeatureimportancefor
effectingOSASseveritywasobtainedforeachsubgroup.Thelarge-scalestatistics,includingHan-
Taiwaneseanthropometricfeatures,sleepstagedetailsandPSGresultswerealsoprovided.
Forbothgenders,betteraccuracycanbeobservedintheyoungergroups,andthewaist
circumferenceshowedthehighestimportanceforitsaffectsontheAHIexceptforthecaseof
youngermales.Itisknownthatvisceralfat,whichisatypeofbodyfatdepositedaroundinternal
organs,isrelatedtotheAHIandwaistcircumferenceisauniqueindicatorforindicatingvisceralfat
distribution.Similarly,apriorstudy,whichusedtraditionalstatisticalmethods,reportedthe
observationthatwaistcircumferencewasabetterpredictorfortheseverityofOSAScomparedwith
theBMIandneckcircumference(36).AnotherstudyrevealedthatOSASprevalencewasexacerbated
inmenopausalfemalesandwaistcircumferenceservedasthemainfactor(37).Additionally,theBMI
andwaistcircumferenceshowedsimilarimportanceforeffectingtheAHIinthemalesandelderly
femalegroups,butthereisadifferenceinyoungerfemales.Therewerestatisticallysignificant
correlationsbetweentheBMI,waistcircumferenceandsleepstagepercentage,forthemalesand
elderlyfemalegroups,butnotforyoungerfemales.Theseresultsmaybeinducedbythemenopause
effect.Thiseffectmaynotleadtoweightgaindirectly,butitmaybecorrelatedtothefatdistribution
changes.Inperimenopausefemales,theincreasedabdominaladipositydepositionanddecreased
leanbodymasswereobserved.Thischangeissimilartothefatdistributionofmaleswhichtendsto
developagreaterdegreeofupperbodyobesity.
Withrespecttoneckcircumference,whichisanindicatoroffatdistributionintheupperairway,there
arethesignificantcorrelationsbetweenthesnoringindexandarousalindex.Increasedneck
circumferencemaynarrowtheupperairwayandincreasetheturbulenceofairflow,therebycausing
snoring.Besides,thecollapsibleupperairwayandtheincreasedupperairwayresistancemay
increaseintherespiratoryeffortinordertokeepventilating.Thisisthemechanismbywhich
14
increasingrespiratoryeffortmaystimulatetransientarousalinanindividualandleadtosleep
fragmentation.Similarfindingsweredemonstratedinpreviousstudies.Largeneckcircumferencehas
beenreportedasafactorinsnoring(38).
Furthermore,forbothgenders,theyoungergroupsreportedbetteroverallsleepqualityandlower
sleepdisorderindices.Theseresultsmaybeduetothecollagenlossofupperairwayconnective
tissuewithageing.Withthedecreaseinneuromusculartension,theupperairwayeasilycollapses
duringsleep.Forelderlyfemales,thedecreasedhormonelevelsduringmenopausealsoresult
increasedsleepdisorderindexesandaffectsleepquality.Similarly,numerousstudieshaveshown
thatobstructioneventsandtheseverityofOSASaresignificantlymorelikelyinelderlypatients(39,
40).Collectively,theobservationsofthisstudyareconsistentwithpreviousstudiesdemonstrating
thattheriskofOSASwasaffectedbyage,gender,andbodyprofiles.
Therearesomelimitationstothisstudy,whichshouldbeaddressedinthefuture.Firstofall,inthis
study,thedatasetwaslimitedtoaSouth-EastAsianpopulation,withcraniofacialfactors,ratherthan
fromdiversebodyprofileswithawidergeographicaldistribution.Hencetheresultsofthispaper
shouldbeviewedwiththisinmind,sincecraniofacialfactors,whichalsoaffectssleep-disordered
breathingshouldbeconsideredaspredictors(41).Next,theclinicalstandardforclassifyingOSAS
severityrequiresaPSGtodeterminetheAHI.Thissleepexaminationisstillconductedbymanual
interpretation,andsincethePSGresultswerescoredbydifferenttechnologists,thescoringvariability
canaffecttheaccuracy(42).Althoughthedatawasderivedfromonesleepcenter,whichregularly
performedinter-scoringtraining,scoringvariabilitycouldstillhaveaffectedtheresults.Furthermore,
thefirstnighteffect,whichisaphenomenononthefirstnightoftestingcharacterizedbyanaltered
sleepcycleandimpactedsleepphysiology,canalsocauseinaccuraciesofPSGresults(43).To
minimizethiseffect,somePSGparameters,suchassleepefficiency,shouldbeusedtoruleout
subjectsandrearrangethePSGforavoidingthebias.
AnotherlimitationconcernsthelackofsomeinteractingfactorsofOSAS,whileOSAShasbeen
recognizedasmultifactorialsleep-disorderedbreathing.Somebehaviors,includingsmoking,alcohol
use,environmentalparameters,andmenopausalstatusarehighlyassociatedwithOSAS(44,45).To
15
understandinfluenceofbackgrounddetails,thequestionnairecanbeusedtoobtainpersonalhabits.
OSASalsoinfluencedbydifferentdiseases(44).Thesituationofcomorbidityalsoaffectstheresultsof
PSG.Thedisease-relatedparametersthatarealreadyavailablefromclinicalinformationcanbe
obtainedandserveassignificantvariablesforpreformingpre-screenclassification.
Infuturework,adatasetwithcomprehensivedimensions,whichincludepersonalhabits,personal
comorbidity,moreanthropometricfeatures,andbodycompositions,willbecollectedfortraininga
novelmodel.
Conclusion
GiventheconcernsgloballyabouttheimpactsofOSAS,thispapernotedtheneedforamethodof
measuringOSASgiventhelimitationsofcurrentmethods.Inordertodothis,OSASriskscreening
modelsfordifferentageandgendergroupsbasedonbodyprofilesweredevelopedbasedupondata
from6614participantsfromTaiwan.
ResultsindicatethathighBMI,neckcircumferenceandwaistcircumferencedecreasedthedurationof
slow-wavesleepandincreasedthesleepdisorderindicesandthepercentageofwakeandN1.
Additionally,predictionmodelsfordifferentgenderandageutilizinganthropometricfeaturesas
predictorsviaRFwereestablishedanddemonstratedtohavehighaccuracy.Featureimportancewas
explored,withwaistcircumferencethehighestcontributingfactorinfemalesandeldermales,
whereastheBMIwasthehighestcontributioninyoungermales.
TheauthorsrecommendtheuseofthepredictionmodelsforTaiwanandindeedforthosewithHan-
Taiwanesecraniofacialfeatures.
Abbreviations
OSAS:Obstructivesleepapneasyndrome;PSG:polysomnography;HST:HomeSleepTest;AHI:
Apnea-hypopneaindex;BMI:Bodymassindex;NC:Neckcircumference;WC:Waistcircumference;
SE:Sleepefficiency;SPT:Sleepperiodtime;N1:Sleepstageone;N2:Sleepstagetwo;REM:Rapid
eyemovementstage;WASO:Wakeaftersleeponset;AUC:Areaunderthecurve;RF:Randomforest
Declarations
Availabilityofdataandmaterials
Alldatageneratedoranalyzedduringthisstudyareincludedinthispublishedarticleand
16
supplementaryinformationfiles.
Ethicsapprovalandconsenttoparticipate
Ourstudyusedexistingrecordstoconductaretrospectivestudy.Allnecessaryapprovalsanda
waiverofinformedconsentwereobtainedfromtheEthicsCommitteeoftheTaipeiMedicalUniversity-
JointInstitutionalReviewBoard(SHH:N201911007).
Acknowledgments
Wewouldliketoappreciatealltheparticipantsfortheircontributiontothisresearch.
Authors’contributions
AMandWTLguidedthewholeresearchwork;CYTandWTLmadesubstantialcontributionsto
conceptionanddesignofthestudy;LYJL,YST,SMH,CCL,KL,YRC,andFCLcollectedandorganized
thedata;CYT,YTL,SYLandRHperformedtheanalysisandinterpretationofdata;CYTdraftedthe
article;WTL,AM,DW,HCL,CJW,andJNJrevisedthemanuscriptcriticallyforimportantintellectual
content.Allauthorshavereadandapprovedthefinalversionofthemanuscriptforpublication.
Funding
ThisstudywasfundedbytheMinistryofScienceandTechnologyofTaiwan(MOST108-2634-F-038-
003).Thefunderhadnoroleinthestudydesign,datacollectionandanalysis,orinwritingofthe
manuscript.
Consenttopublication
Notapplicable.
Competinginterest
Theauthorsdeclarethattheyhavenocompetinginterest.
References
1.  G i b sonG.Obstructivesleepapn o e a syndrome:underestimate d a n dundertreated.
Britishmedicalbulletin.2004 ; 7 2 (1):4964.
2.  P e ppardPE,YoungT,Barnet J H , P altaM,HagenEW,HlaKM . I n c r easedprevalenceof
sleep-disorderedbreathing i n a d ults.AmJEpidemiol.2013;1 7 7 (9):100614.
3.  G o nzagaC,BertolamiA,Berto l a m i M,AmodeoC,CalhounD.O b s t r uctivesleep
17
apnea,hypertensionandc a r d io vasculardiseases.JHumH y p e rtens.2015;29(12):705.
4.  B r ennerR,KivityS,PekerM,R e i n h ornD,Keinan-BokerL,Silver m a nB,etal.
Increasedriskforcancerin y o u n gpatientswithsevereobstr u c t i v e sleepapnea.
Respiration.2019;97(1):1 5 2 3.
5.  P e ter-DerexL,YammineP,Ba s t u j i H,CroisileB.SleepandAlzheim e r 's disease.Sleep
medicinereviews.2015;1 9 : 2 938.
6.  A l v arez-SabínJ,RomeroO,De l g a d oP,QuintanaM,Santamar i n a E ,FerréA,etal.
Obstructivesleepapneaan d s i l e ntcerebralinfarctioninhyper t e n s i v eindividuals.J
SleepRes.2018;27(2):2 3 2 9.
7.  B u rattiL,LuzziS,PetrelliC,Baldine l l i S , V it i c chiG,ProvincialiL,etal.Obstru c t i v e
sleepapneasyndrome:a n e m ergingriskfactorfordem e n t i a .CNS&Neurological
Disorders-DrugTargets(Fo r m e rlyCurrentDrugTargets-CN S & Neurological
Disorders).2016;15(6):6 7 8 82.
8.  K u shidaCA,LittnerMR,Morge n t h a le rT,AlessiCA,BaileyD,Colem a n J J r ,etal.
Practiceparametersforthe i n d ic ationsforpolysomnograph y a n drelatedprocedures:
anupdatefor2005.Slee p . 2 005;28(4):499523.
9.  A n coli-IsraelS,ColeR,AlessiC,Ch a m bersM,MoorcroftW,Pollak C P . Theroleof
actigraphyinthestudyofsle e p a ndcircadianrhythms.Sleep . 2 0 03;26(3):34292.
10. R o t e n bergBW,GeorgeCF,Sulliv a n K M,WongE.Waittimesfors l e e p apneacarein
Ontario:amultidisciplinaryas s e s s ment.Canadianrespiratory j o u r n al.
2010;17(4):170–4.
11. S t e w artSA,SkomroR,ReidJ,Pe n z E ,FentonM,GjevreJ,etal.Im p r o v ementin
obstructivesleepapneadia g n o s isandmanagementwait t i m e s:Aretrospective
analysisofahomemana g e m entpathwayforobstructive s l e e papnea.Canadian
respiratoryjournal.2015;2 2 ( 3 ):16770.
18
12. C o l l o p NA,AndersonWM,Boehle c k e B,ClamanD,GoldbergR,G o t t l i e bDJ,etal.
Clinicalguidelinesfortheuseo f u n a ttendedportablemonitors in t h e diagnosisof
obstructivesleepapneaina d u l t p atients.JClinSleepMed.200 7 ; 3 (7):73747.
13. K u n d elV,ShahN.Impactofport a b l e sleeptesting.SleepMedClin. 2 0 1 7;12(1):137
47.
14. M i r r a khimovAE,SooronbaevT, M i r r akhimovEM.Prevalenceo f o b structivesleep
apneainAsianadults:asys t e m aticreviewoftheliterature.B M C p ulmonary
medicine.2013;13(1):10 .
15. E l - S a y edIH.Comparisonoffour s l e e p questionnairesforscreening o b structivesleep
apnea.EgyptianJournalofC h e s tDiseasesTuberculosis.201 2 ; 6 1(4):43341.
16. B i x l e r EO,VgontzasAN,LinH-M,T e n H aveT,ReinJ,Vela-BuenoA, e t a l . Prevalence
ofsleep-disorderedbreathin g i n women:effectsofgender . A m JRespirCritCare
Med.2001;163(3):608–13.
17. A h b a bS,AtaoğluHE,TunaM,K a r a s uluL,ÇetinF,TemizL,etal.N e c k circumference,
metabolicsyndromeand o b s t r uctivesleepapneasyndrom e ; e valuationofpossible
linkage.Medicalsciencemo n i t o r :internationalmedicaljournal o f e x perimental
clinicalresearch.2013;19: 1 1 1 .
18. O n a t A,HergençG,YükselH,Ca n G , AyhanE,KayaZ,etal.Neck c i r c umferenceasa
measureofcentralobesity : a s s ociationswithmetabolicsynd r o m eandobstructive
sleepapneasyndromebe y o n dwaistcircumference.Clinica l n u t rition.2009;28(1):46
51.
19. U n a l Y,OzturkDA,TosunK,KutluG . A s s ociationbetweenobstructive s l e e p apnea
syndromeandwaist-to-heig h t r a tio.SleepBreathing.2019; 2 3 ( 2 ):5239.
20. T o m C,RoyB,VigR,KangDW, A y s o la RS,WooMA,etal.Correla t i o n s BetweenWaist
andNeckCircumferences a n d ObstructiveSleepApneaCh a r a cteristics.Sleep
19
vigilance.2018;2(2):111 8 .
21. S u t h e rlandK,LeeRW,CistulliPA.Ob e s i t y andcraniofacialstructurea s r i s k factors
forobstructivesleepapnoe a : i m pactofethnicity.Respirology. 2 0 12;17(2):21322.
22. B e r r yRB,BrooksR,Gamaldo C , H ardingSM,LloydRM,Quan S F , etal.AASMscoring
manualupdatesfor2017 ( v e rsion2.4).JClinSleepMed.2 0 1 7;13(05):6656.
23. F o r c e AAoSMT.Sleep-relatedbre a t h i n gdisordersinadults:recom m e ndationsfor
syndromedefinitionandm e a s urementtechniquesinclinicalr e s e a rch.Sleep.
1999;22:667–89.
24. K a p u rVK,BaldwinCM,ResnickH E , G ottliebDJ,NietoFJ.Sleepinessin p a ti e ntswith
moderatetoseveresleep- d i s o r deredbreathing.Sleep.20 0 5 ; 2 8(4):4728.
25. P o l o - K antolaP.Sleepandmenop a u s e .WomensHealth.2007 ; 3 ( 1 ): 99106.
26. S u n L M,ChiuH-W,ChuangCY,Liu L . A predictionmodelbasedon a n a rtificial
intelligencesystemformod e r a t e tosevereobstructivesleep a p n ea.SleepBreathing.
2011;15(3):317–23.
27. L i u W -T ,WuH-t,JuangJ-N,Wisniews k i A , LeeH-C,WuD,etal.Predictio n o f the
severityofobstructivesleep a p n e abyanthropometricfeatu r e s v iasupportvector
machine.PloSone.2017; 1 2 ( 5 ).
28. B r e i m anL.Randomforests.M a c h i n elearning.2001;45(1):5 3 2 .
29. Y a n g F,WangH-z,MiH,CaiW.- w . U singrandomforestforrelia b l e c la ssificationand
cost-sensitivelearningforme d i c a l diagnosis.BMCBioinform.2 0 0 9;10(1):22.
30. A l i c k o vicE,SubasiA.Medicaldecis i o n s u pportsystemfordiagnosis o f h eart
arrhythmiausingDWTand r a n domforestsclassifier.Journa l o f m edicalsystems.
2016;40(4):108.
31. X i a o M,YanH,SongJ,YangY,Ya n g X.Sleepstagesclassificationb a s e donheartrate
variabilityandrandomfore s t . B io medSignalProcessContro l. 2 0 13;8(6):62433.
20
32. M i t c h ellMW.BiasoftheRandom F o r estout-of-bag(OOB)errorfo r c e rtaininput
parameters.OpenJourna l o f S ta tistics.2011;1(03):205.
33. A l t m a nnA,ToloşiL,SanderO,Len g a u erT.Permutationimportan c e : a corrected
featureimportancemeas u r e . Bioinformatics.2010;26(1 0 ) : 1 3407.
34. A r c h e rKJ,KimesRV.Empiricalcha r a c terizationofrandomforestv a r i a b leimportance
measures.ComputStatD a t a A nal.2008;52(4):22496 0 .
35. P a l M .Randomforestclassifierfo r r e motesensingclassification.Int J R e m oteSens.
2005;26(1):217–22.
36. D a v i d sonTM,PatelMR.Waistcirc u m ferenceandsleepdisordere d b reathing.
Laryngoscope.2008;11 8 ( 2 ) :3 3947.
37. P o l e s e lDN,HirotsuC,NozoeKT,B o i n A C,BittencourtL,TufikS,etal.W a i s t
circumferenceandpostm e n o p ausestagesasthemaina s s o c iatedfactorsforsleep
apneainwomen:across - s e c t i o nalpopulation-basedstudy. M e n opause.
2015;22(8):835–44.
38. F a z l e eKibriaChowdhuryMd
BiswasR,RahmanM.Fa z l e e KibriaChowdhuryMd(201 8 ) R elationofSnoringHabits
withBodyMassIndexand N e c kCircumferenceamongA d u l t P opulation.JSleep
DisordTher.2018;7(293):2167-0277.1000293.
39. K i r a l N ,SalepçiB,FidanA,TorunE , C ö m ertS,SaraçG,etal.Relat i o n s h ip between
obstructivesleepapneasyn d r o meseverityandage.EurR e s p ir atorySoc;2011.
40. L e p p änenT,TöyräsJ,Mervaala E , P e nzelT,KulkasA.Severityofin d i v i d ual
obstructioneventsincreases w i t h ageinpatientswithobstructiv e s l e epapnea.Sleep
medicine.2017;37:327 .
41. L e e R W,VasudavanS,HuiDS, P r v a nT,PetoczP,DarendelilerMA , e t al.Differences
incraniofacialstructuresand o b e sityinCaucasianandChinese p a ti e ntswith
21
obstructivesleepapnea.Sle e p . 2010;33(8):107580.
42. C o l l o p NA.Scoringvariabilitybetwe e n p olysomnographytechnolog i s t s i n d ifferent
sleeplaboratories.Sleepm e d i c i n e.2002;3(1):437.
43. R i e d e lBW,WinfieldCF,LichsteinKL . F i r s t nighteffectandreversefirst n i g h teffect
inolderadultswithprimary in s o m nia:doesanxietyplayarole ? S l e epmedicine.
2001;2(2):125–33.
44. H ı z l ı Ö , ÖzcanM,ÜnalA.Evaluation o f c omorbiditiesinpatientswithO S A S and
simplesnoring.TheScientific W o r ld Journal.2013;2013.
45. V e l d i M ,AniR,VaherH,EllerT,Hio n T , AluojaA,etal.Obstructiveslee p a p nea
syndrome(OSAS):Pathop h y s i o lo gyinEstonians.Pathophysio lo g y . 2010;17(3):219
23.
SupplementaryInformation
Additionalfile1.TheDatasetfromSHHSleepCenter
Figures
Figure1
ThetrainingprocessofRFmodelwithbootstrappingtechniqueToincreasetheefficiency
andpreventtheoverfittinghappened,bootstrappingcanbeappliedtosamplethesubset
fromtheoriginaldataset.Thetechniqueistorepeatedlysampletoacquiresub-training
datawithreplacementfromtheoriginaldatasettogeneratemultipleseparatedatasetsfor
trainingeachclassificationandregressiontrees(CART).Abbreviations:RF,randomforests
22
SupplementaryFiles
Thisisalistofsupplementaryfilesassociatedwiththispreprint.Clicktodownload.
Additionalfile1.TheDatasetfromSHHSleepCenter.csv
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Purpose Obesity is among the known risk factors for obstructive sleep apnea syndrome (OSAS). In this study, our aim was to investigate the correlation of waist-to-height ratio, an indicator of central obesity, with presence and severity of OSAS; to compare the use of this ratio with the use of waist circumference and body mass index (BMI); and to determine OSAS-related cutoff values. Methods The patient records were retrospectively analyzed for whom a polysomnography was conducted at our sleep. Sex, age, Apnea-Hypopnea Index (AHI), waist circumference, height, and BMI values of those patients were recorded. AHI scores were used to classify severity of OSAS. Results The study included 437 OSAS patients and 72 control cases. Out of the patient group, OSAS was severe in 208 (47%) patients, moderate in 124 (28%), and mild in 105 (24%) of them. In the group of OSAS patients, waist-to-height ratio, waist circumference, and BMI were higher compared to the control group with a further difference of all three parameters among severe, moderate, mild OSAS, and controls both in males and females. Cutoff values for OSAS of females were 95.5 cm for waist circumference, 0.595 for waist-to-height ratio, and 27.75 for BMI whereas the cutoff values of males were 100.5 cm, 0.575, and 27.75, respectively. Conclusions A high value of waist circumference, waist-to-height ratio, and BMI is associated with the presence and severity of OSAS. We have determined the cutoff values of the studied anthropometric measurements in both sexes for OSAS and severe OSAS.
Article
Full-text available
Purpose: The body mass index (BMI), an estimate of body fat, provides a rather imprecise indication of risk for obstructive sleep apnea (OSA). We examined whether other measures, including waist and neck circumference, provide improved indicators of risk in treatment-naïve OSA subjects. Methods: We studied 59 OSA subjects [age, 48.8±10.0 years; BMI, 31.9±6.6 kg/m2; apnea-hypopnea-index (AHI), 38.5±23.0 events/hour; sleep efficiency index (SEI, n=52), 78.6±14.4%; lowest oxygen saturation (SaO2 nadir), 79.5±8.0%; systolic blood pressure (BP), 127.4±15.7 mmHg; diastolic BP, 80.1±9.1 mmHg; 43 male), and determined waist and neck circumferences (waist, 107.4±15.3 cm; neck, 41.8±4.7 cm), daytime sleepiness [Epworth sleepiness scale (ESS), 8.7±4.6], sleep quality [Pittsburgh sleep quality index (PSQI), 8.5±4.1], depression levels [Beck depression inventory II (BDI-II), 6.6±5.7), and anxiety levels [Beck anxiety inventory (BAI), 6.2±7.2]. We used partial correlation procedures (covariates, age and gender) to examine associations between BMI, waist, and neck circumferences vs. AHI, sleep, and neuropsychological variables. Results: BMI, waist, and neck circumferences were significantly correlated with SaO2 nadir (BMI; r=-0.423, p=0.001; waist; r=-0.457, p<0.001; neck; r=-0.263, p=0.048), AHI (BMI; r=0.349, p=0.008; waist; r=0.459, p<0.001; neck; r=0.276, p=0.038), and systolic BP (BMI; r=0.354, p=0.007; waist; r=0.321, p=0.015; neck; r=0.388, p=0.003). SEI was significantly correlated with waist circumference (r=0.28, p=0.049), but higher with BMI (r=0.291, p=0.04). Conclusions: No other significant waist or neck correlations emerged. This study suggests that waist and neck measures correlate better than BMI with select disease severity (SaO2 nadir and AHI) in OSA subjects. The findings offer an easily-measured, ancillary means to assess OSA risk.
Article
Full-text available
To develop an applicable prediction for obstructive sleep apnea (OSA) is still a challenge in clinical practice. We apply a modern machine learning method, the support vector machine to establish a predicting model for the severity of OSA. The support vector machine was applied to build up a prediction model based on three anthropometric features (neck circumference, waist circumference, and body mass index) and age on the first database. The established model was then valided independently on the second database. The anthropometric features and age were combined to generate powerful predictors for OSA. Following the common practice, we predict if a subject has the apnea-hypopnea index greater then 15 or not as well as 30 or not. Dividing by genders and age, for the AHI threhosld 15 (respectively 30), the cross validation and testing accuracy for the prediction were 85.3% and 76.7% (respectively 83.7% and 75.5%) in young female, while the negative likelihood ratio for the AHI threhosld 15 (respectively 30) for the cross validation and testing were 0.2 and 0.32 (respectively 0.06 and 0.1) in young female. The more accurate results with lower negative likelihood ratio in the younger patients, especially the female subgroup, reflect the potential of the proposed model for the screening purpose and the importance of approaching by different genders and the effects of aging.
Article
Background: Several studies in animal models and human with obstructive sleep apnea syndrome (OSAS) demonstrated an increase in cancer aggressiveness and mortality. However, there is a need for further clinical evidence supporting a correlation between OSAS and cancer incidence. Objectives: To reveal whether OSAS presence and severity is correlated with cancer incidence in a large homogenous patients' cohort. Methods: We analyzed a cohort of over 5,000 concurrently enrolled patients, age > 18, with suspected OSAS, from a tertiary medical academic center. Patients underwent whole night polysomnography, the gold standard diagnostic tool for OSAS, and were classified for severity according to the Apnea Hypopnea Index (AHI). Data on cancer incidence were obtained from the Israel National Cancer Registry. A multivariate Cox proportional-hazards analysis, adjusted for age, gender, and BMI, was performed to estimate the hazard-ratio of new cancer incidence. Results: Among 5,243 subjects with a median follow-up of 5.9 years, 265 were diagnosed with cancer. The most prevalent cancers were prostate (14.7%), hematological (12.8%), urothelial (9.4%), colorectal (9%), and breast (8.3%). In subjects who were diagnosed at age below 45 years (n = 1,533), a high AHI (> 57/h) was significantly associated with cancer (HR 3.7, CI 1.12-12.45, p = 0.008). Conclusions: Patients younger than 45 with severe OSAS have a significantly higher all-type cancer incidence than the general population. These results should encourage clinicians to detect and diagnose young patients with suspected OSAS and to recommend cancer screening methods in this high-risk population.
Article
Background Age is a risk factor of obstructive sleep apnea (OSA). It has been shown that OSA progresses over time, although conflicting results have been reported. However, the effect of age on the severity of OSA and individual obstruction events has not been investigated within different OSA severity categories by taking the most prominent confounding factors (ie, body mass index, gender, smoking, daytime sleepiness, snoring, hypertension, heart failure, and proportion of supine sleep) into account. Methods Polygraphic data of 1090 patients with apnea–hypopnea index (AHI) ≥5 were retrospectively reanalyzed. The effect of age on the severity of OSA and obstruction events was investigated in general, within different OSA categories, and between different age groups (age <40, 40 ≤age <50, 50 ≤age <60, and age ≥60 years). Results In the whole population, AHI and durations of apneas, hypopneas, and desaturations increased with increasing age (B≥0.108, p≤0.010). In more detailed analysis, AHI increased with age only in the moderate OSA category (B=0.075, p=0.022), although durations of apneas increased in mild and severe OSA categories (B≥0.076, p≤0.038). Furthermore, durations of hypopneas increased with age in mild and moderate OSA categories (B≥0.105, p≤0.038), and durations of desaturations (B≥0.120, p≤0.013) in all OSA severity categories. Conclusion AHI was not statistically significantly different between the age groups, although durations of obstruction events tended to increase towards older age groups. Therefore, as obstruction event severity was more strongly dependent on the age than it was dependent on AHI, considering the severity of obstruction events could be beneficial while estimating the long-term effects of the treatments and prognosticating the disease progression.
Article
Obstructive sleep apnea syndrome is very prevalent in hypertensive subjects. Moreover, obstructive sleep apnea syndrome activates multiple processes that might be associated with silent cerebral infarct independently of established risk factors. Our aim is to estimate the frequency of obstructive sleep apnea syndrome in hypertensive patients with and without silent cerebral infarct, and to determine whether obstructive sleep apnea syndrome is an independent risk factor of silent cerebral infarct and/or lacunar silent cerebral infarct in patients with hypertension. In this matched cross-sectional study performed in hypertensive subjects, each patient with silent cerebral infarct detected by magnetic resonance imaging was matched with two patients without silent cerebral infarct. Polysomnographic studies were performed, and the apnea-hypopnea index was calculated. Severe obstructive sleep apnea syndrome was considered in those with apnea-hypopnea index >30. One-hundred and eighty-three patients, 61 with silent cerebral infarct and 122 without silent cerebral infarct, were evaluated. The mean age was 64.1 ± 4.5 years, and 72.1% were men. The frequency of severe obstructive sleep apnea syndrome was 44.3% in patients with silent cerebral infarct and 38.5% in the control group. An adjusted conditional logistic regression model did not show a significant increased risk of silent cerebral infarct in patients with severe obstructive sleep apnea syndrome (odds ratio 1.362; 95% confidence interval: 0.659-2.813; P = 0.404). Forty-three patients (70.5%) of the silent cerebral infarct were lacunar. The presence of severe obstructive sleep apnea syndrome was significantly higher in lacunar silent cerebral infarct when compared with patients without lacunar infarcts (55.8% versus 35.7%, P = 0.019), being independently associated on an adjusted logistic regression model (odds ratio 2.177; 95% confidence interval: 1.058-4.479; P = 0.035). In conclusion, severe obstructive sleep apnea syndrome is highly prevalent among hypertensive subjects, and is independently associated with lacunar silent cerebral infarct.
Article
This article provides the current state of evidence on the socioeconomic impact of portable testing (PT) for sleep apnea. It seems the traditional in-laboratory polysomnography and the newer home-based PT model for sleep apnea diagnosis both have places in sleep medicine diagnostic algorithm. PT would be cost-effective in a selected group of patients as long as certain criteria, discussed in this article, are carefully considered.