PresentationPDF Available

Current and future brain-computer interface applications

Authors:
  • g.tec medical engineering GmbH

Abstract

Presentation given on Day 1 of the BCI and Neurotechnology Spring School
CURRENT AND
FUTURE BRAIN-
COMPUTER
INTERFACES
Christoph Guger
g.tec medical engineering
3017 persons registered
Biggest BCI and Neurotechnology Meeting ever !!
Certificate available on Friday
Companies
Guger Technologies OG, Graz, Austria
g.tec medical engineering GmbH, Schiedlberg, Austria
g.tec medical engineering Spain SL, Barcelona, Spain
g.tec neurotechnology USA Inc., Albany, USA
g.tec neurotechnology Hong Kong Inc., HK
Research Projects
H2020 Eurostars: seizureAI epilepsy monitoring and deep learning
with EEG
H2020 Eurostars: ComaAid combination of EEG and fNIRS for DOC
patients
H2020 Eurostars: EEG-DDS combination of EEG with decision support
system
FFG: BrainGait combination of BCIs for rehabilitation with treadmills
H2020: MultiSense combination of DBS with physiology
FFG: recoveriX-Leg lower limb stroke rehabilitation with BCI
H2020: Rhumbo magnetic stimulation of the cortex
Research Projects
H2020: HOPE high frequency oscillation detection in epilepsy
H2020 ITN: Pro-Gait combination of BCIs with exoskeletons
H2020 ITN: DOCMA international training network for BCIs and
DOC
Marie-Curie: MoveAgain combination of recoveriX with TMS, tDCS
H2020: Astonish fNIRS and EEG
H2020 Eurostars: ComAlert coma prediction
EC Flagship: Graphene development of Graphene electrodes
BeMagic magnetic stimulation of the brain
BRAIN-COMPUTER INTERFACE
BRAIN-COMPUTER INTERFACE
BRAIN-COMPUTER INTERFACE
A system for controlling a device e.g. computer,
wheelchair or a neuroprostheses by human intention which
does not depend on the brain’s normal output pathways of
peripheral nerves and muscles” [Wolpaw et al., 2002].
Subject/
Patient
Brain-
Computer
Interface
Device
Feedback
EEG/
ECoG control signal
32/16/8 channel wireless EEG
3-axis accelerometer
24 Bit accuracy at 250/500 Hz
A new benchmark in usability
Active electrode technology
Waterproof device
Contactless charging
2.4 GHz digital transmission
BCI PRINCIPLES
- Slow cortical potentials (anticipation tasks)
- Steady-State Evoked potentials (SSVEP, SSSEP)
- Event-related, non-phase-locked changes of oscillatory activity
ERD/ERS (motor imagery tasks)
- Evoked potentials (focus on attention task)
- Code based Evoked potentials (focus on a code)
BRAIN-COMPUTER INTERFACE
BRAIN-COMPUTER INTERFACE
BRAIN-COMPUTER INTERFACE
BRAIN-COMPUTER INTERFACE
Physiological background
Imagination of hand movement causes an ERD which is used to classify the
side of movement. The desynchronization occurs in motor and related areas of
the brain.
Left hand
movement Right hand
movement
C4
GND
REF
RIGHT
C3
Rehabilitation Hospital of Iasi, Romania
Training video: recoveriX1
9 Hole Peg Test
Date:
2014
Left
hand
Falls Right
hand
Falls
24-06 31” 01’5’0
26-06 32” 054” 0
29-06 32” 045” 0
2-07 31” 042” 0
6-09 31” 042” 0
9-09 29” 038” 0
12-09 29” 034” 0
15-09 29” 030” 0
11-01 29” 030” 0
recoveriX Results
ID: S.E. Age: 62 Female Affected Side: Right Time since stroke: 12 months
recoveriX Results
ID: S.E. Age: 62 Female Affected Side: Right Time since stroke: 12 months
17,1
13,6 11,6
15,7
21,3
15,5
10,2
21,3
13,8 12,5 10 9,8 12,3 14,1 12,3
21,6
15,5
19,3 19,8
12,9
20,2
12,5
5 5
11,3 12,5
8,8
5
15
7,5 8,8 6,3 53,8
7,5 8,8
17,5
10 8,8
13,8
8,8 11,3
0
5
10
15
20
25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Mean Error Min. Error
Session 1 Session 13
After training:
clear left/right
difference
faster minimum
recoveriX Results
ID: S.E. Age: 62 Female Affected Side: Right Time since stroke: 12 months
Motor imagery works very well with right, left
hand and foot, but it is difficult to get more
degrees of freedom
Basic spectral changes with movement
credits: Kai Miller
Real-time representation of cortical
activity
Rapid Functional ECoG Mapping
P300 Approach (EEG)
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O PQ R
S T U V W X
YZ0 1 2 3
45 6 7 8 9
visual stimulation Time (ms)
Amplitude (µV)
78
Optic nerve
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
AB C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P QR
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
MN O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V WX
Y Z 0 1 2 3
4 5 6 7 8 9
www.gtec.at
The 6 x 6 matrix speller
Target:15
µV
Non-target: 1 µV
Letter W Presentation
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-10
-8
-6
-4
-2
0
2
4
6
8
10
time [s]
[µV]
P300
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V WX
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V WX
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
ABC D E F
GHI J K L
MNO P Q R
STU V W X
YZ0 1 2 3
456 7 8 9
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V WX
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
AB C D E F
GH I J K L
MN O P Q R
ST U V W X
YZ 0 1 2 3
45 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V WX
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
AB C D E F
GH I J K L
MN O P Q R
ST U V W X
YZ 0 1 2 3
45 6 7 8 9
P300
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V WX
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 0 1 2 3
4 5 6 7 8 9
P300
P300
Everybody achieved 100 % accuracy
17 subjects
4 tasks
Standard flashing
„Einstein“ (black/white)
„Einstein“ (color)
Face speller
FACE SPELLER
Disorders of Consciousness
Fact: 43% of patients diagnosed as vegetative are reclassified as (at least) minimally conscious
when investigated by expert teams
Disorders of Consciousness
Fact: 43% of patients diagnosed as vegetative are reclassified as (at least) minimally conscious
when investigated by expert teams
AUDITORY RESULTS
YES/NO ANSWERS
YES/NO ANSWERS
www.gtec.at
SSVEP
7 Hz
Steady-State-Evoked Potentials
Higher
Frequency
(e.g. 17 Hz)
Lower
Frequency
(e.g. 14 Hz)
EEG Power Spectrum EEG Power Spectrum
BCI interface with video overlay
11 subjects participated
LED stimulation: 91,36 %
Screen stimulation: 91,36 %
Code based screen: 98.18 %.
Average time to complete the tasks
222.57 s (code based BCI),
437.43 s (frequency LED)
573.43 s (frequency screen).
Robot control in VERE video
World of Warcraft
4 controls: Turn left, right, move forward, perform action
like grasping objects, attacking other objects
60 Hz LCD display with 15, 12, 10 and 8.75 Hz.
BCI overlay based on OpenGL
can be used with any graphics application
Video
World of Warcraft
VR/AR
Hand Movement Task
4 spatial filters per class
12 features for movement
discrimination
maximizing patterns minimizing patterns
1
-1
0
Hand Movement Task
Movement: Online classification accuracy
Imagination: Online classification accuracy
BCI-ECoG setup Classification accuracy
HUMANOID ROBOTS FOR
PHYSICAL EMBODIMENT
BCI control to grasp a Coke EuroNews DigInfo
Abderrahmane Kheddar, CNRS
HUMANOID ROBOTS FOR
PHYSICAL EMBODIMENT
BCI control to grasp a Coke EuroNews DigInfo
Abderrahmane Kheddar, CNRS
FOLLOW US ON INSTRAGRAM
@unicorn_brain_interface
www.unicorn-bi.com
FOLLOW US ON FACEBOOK
@gtecmedicalengineering
www.gtec.at
FOLLOW US ON TWITTER
@gtec_BCI
FOLLOW US ON YOUTUBE
youtube.com/c/gtecmedicalengineering
www.gtec.at
BIOSIGNAL
AMPLIFIERS
ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.