A combined epidemic-demographic model is developed which models the spread of an infectious disease throughout a population of constant size. The model allows for births, deaths, temporary or permanent immunity, and immunization. The relationship of this model to previously studied epidemic and demographic models is illustrated. An advantage of this model is that all epidemic and demographic
... [Show full abstract] parameters may be estimated. The stability of the equilibrium point corresponding to the elimination of the disease is studied and a threshold value is found which indicates whether the disease will die out or remain endemic in the population. The application of the model to measles indicates that immunization levels needed to reduce the incidence to near zero may not be as high as previously predicted.