PreprintPDF Available

Gua Sha attenuates the pulmonary inflammation in mice infected with PR8 virus by balancing the ratio of Treg/Th17

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract

Background: Gua Sha, an ancient Chinese treatment which produces the pressure on the skin, is used to prevent and treat cold for thousands of years. There’re evidences to approve that it can activate immune response and reduce the inflammation. However, how it has the effect on T helper 17 cells (Th17) and regulatory T cells (Treg) is poorly understood. Here, this study aims at the relationship between the pressure-stoke in the skin and pulmonary Th17 as well as Treg in PR8-infected mice. Methods: ICR mice were randomly divided into five groups. The body weight and survival rates of all groups were monitored through the experiment. At the end of experiment, lung inflammation was detected by HE staining and the expression of Matrix metalloproteinase-9 (MMP-9) was measured by immunohistochemistry. Th17 and Treg from lung tissues was analyzed by flow cytometry. esults: Our results indicated that the survival rates of prophylactic and therapeutic group respectively showed 20% and 10% though Gua Sha treatment didn’t restore the weight-loss of PR8-infected mice. What’s more important, Gua Sha remarkably inhibited inflammatory infiltration and the expression of MMP-9 of lung tissues in infected mice ( p <0.05). Finally, the ratio of Treg/Th17 from lung tissues in PR8-infected mice was significantly increased as compared with control mice while Gua Sha treatment remarkably inhibited this enhancement. All these results indicated that Gua Sha has the efficacy on reducing the pulmonary inflammation in PR8-infected mice possibly via restoring the Treg/Th17 balance. Conclusions: Our findings for the first time suggest that Gua Sha exhibits a significant inhibition of inflammatory infiltration with down-regulation of MMP-9 in lung tissues from RR8-infected mice, which might be associated with the differentiation of Th17 and Treg. Further research will be carried toward how Gua Sha functions on maintaining the homeostasis of Th17 and Treg in the lungs.
1
Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.
GuaShaattenuatesthepulmonaryinflammationin
miceinfectedwithPR8virusbybalancingtheratioof
Treg/Th17
CURRENTSTATUS:POS TED
YalanLi
BeijingUniversityofChineseMedicine
YonganWang
BeijingUniversityofChineseMedicine
JingweiKong
BeijingUniversityofChineseMedicine
ZiruiLiu
BeijingUniversityofChineseMedicine
DongyuGe
BeijingUniversityofChineseMedicine
RuijuanDong
BeijingUniversityofChineseMedicine
GuiyingPeng
BeijingUniversityofChineseMedicine
penggy@bucm.edu.cnCorrespondingAuthor
DOI:
10.21203/rs.3.rs-20934/v1
SUBJECTAREAS
Virology InfectiousDiseases
KEYWORDS
GuaSha,Physicaltherapy,Influenza,Inflammation,Th17,Treg
2
Abstract
Background:GuaSha,anancientChinesetreatmentwhichproducesthepressureontheskin,isused
topreventandtreatcoldforthousandsofyears.There’reevidencestoapprovethatitcanactivate
immuneresponseandreducetheinflammation.However,howithastheeffectonThelper17cells
(Th17)andregulatoryTcells(Treg)ispoorlyunderstood.Here,thisstudyaimsattherelationship
betweenthepressure-stokeintheskinandpulmonaryTh17aswellasTreginPR8-infectedmice.
Methods:ICRmicewererandomlydividedintofivegroups.Thebodyweightandsurvivalratesofall
groupsweremonitoredthroughtheexperiment.Attheendofexperiment,lunginflammationwas
detectedbyHEstainingandtheexpressionofMatrixmetalloproteinase-9(MMP-9)wasmeasuredby
immunohistochemistry.Th17andTregfromlungtissueswasanalyzedbyflowcytometry.
esults:Ourresultsindicatedthatthesurvivalratesofprophylacticandtherapeuticgrouprespectively
showed20%and10%thoughGuaShatreatmentdidn’trestoretheweight-lossofPR8-infectedmice.
What’smoreimportant,GuaSharemarkablyinhibitedinflammatoryinfiltrationandtheexpressionof
MMP-9oflungtissuesininfectedmice(p0.05).Finally,theratioofTreg/Th17fromlungtissuesin
PR8-infectedmicewassignificantlyincreasedascomparedwithcontrolmicewhileGuaShatreatment
remarkablyinhibitedthisenhancement.AlltheseresultsindicatedthatGuaShahastheefficacyon
reducingthepulmonaryinflammationinPR8-infectedmicepossiblyviarestoringtheTreg/Th17
balance.
Conclusions:OurfindingsforthefirsttimesuggestthatGuaShaexhibitsasignificantinhibitionof
inflammatoryinfiltrationwithdown-regulationofMMP-9inlungtissuesfromRR8-infectedmice,which
mightbeassociatedwiththedifferentiationofTh17andTreg.Furtherresearchwillbecarriedtoward
howGuaShafunctionsonmaintainingthehomeostasisofTh17andTreginthelungs.
Background
Influenzaisaninfectiousrespiratorydiseasewhichusuallymanifestsasaseriesofclinicalsymptoms
suchascough,fever,headacheandweakness[1,2].TheInfluenzavirusthatisacommoncauseof
influenzabelongstotheorthomyxoviridaefamily,andtheviralgenomeisasingle-stranded(-)RNAin
sevenoreightfragments.Therearethreeviralserotypes,includingA,B,andC[3].TheinfluenzaA
3
virus(IAV),includingPR8,infectsawidevarietyofhosts,particularlymammalsandpoultry[4].
Accordingtopastresearch,multifariousinflammatorycellsinlung,aswellasbronchialepithelial
cells,fibroblasts,smoothmusclecells,couldincreasetheexpressionofMMP-9afterinfectionwith
influenzavirus[5].MMP-9degradescomponentsofthealveolarbasementmembranewhich
contributestothedestructionofstructureinthelung[6].Duringtheinfluenzavirusinfection,both
innateandadaptiveresponsesareinvolvedinhostdefense.Particularly,theratioofTreg/Th17
changesalotininfectedmodels[7],suggestingtheinterplayofTreg/Th17isessentialtoshape
immuneresponseaftervirusinfection.
GuaShaisaneffectivetherapyformanydiseasesintraditionalChinesemedicine.'Gua'means'to
scrapeorscratch',thusGuaShaisamethodtobring'Sha'tothebody'ssurfacebymeansof
scratchingorscraping[8].GuaShatherapyisatherapeuticmodalitythatinvolvesusingasmooth-
edgedinstrumentforskinfrictioningtointentionallycreatetransientredorpurplepetechiaeand
ecchymosis,whichnormallyfadesinafewdays[9].Thistherapyisgenerallywelltolerated,withlittle
ornodiscomfort.Itiswidelyusedandspreadbecauseofitssimpleoperationandavoidingoralside
effectsofmedications[10].AndresearchevidencereportedGuaShahastheeffectontreating
respiratorydiseases[11–13].
ResearchonGuaShatherapyismainlyfocusonclinicaltrialreportsandonlyafewstudiesdiscussed
itsphysiologicaleffectsandpotentialtherapeuticmechanisms[14–16].Somestudiesshowedthat
scrapingcanimprovetheimmunefunctionofthebody.AfteradministrationofGuaSha,thenumber
ofneutrophilsandmacrophagesincreased,andthenkeratinocytesreleasealargenumberof
inflammatorycytokineswhichcouldactivatethemigrationandaccumulationofimmunecells[17].
However,thesefindingslacktheexperimentofapplyingGuaShatherapyaloneandthemechanism
ofGuaShatherapyincontrollingrespiratoryinflammationremainsunclear.Inthepresentstudy,we
demonstrateviralpneumoniamodelcausesseveredamagetolungtissueininfectedmice.AndGua
4
ShatherapycouldattenuatethepulmonaryinflammationthroughdecreasingtheexpressionofMMP-
9andreversingtheimbalanceofTreg/Th17inlungtissues.
Methods
1. M ice,virusanddrugs
MaleICRmiceat6-8weeksofage,werepurchasedfromBeijingVitalRiverLaboratoryAnimal
TechnologyCompany(Beijing,China).Themicewererandomlydividedinto6groups:controlgroup,
modelgroup,prophylacticgroup,therapeuticgroup,shamgroupandribaviringroup.Micewere
monitoredforsurvival,weightloss,andclinicalsignsofillness(e.g.,inactivity,ruffledfur,hunched
posture,poorappetite,rapidshallowbreathingandaudiblecrackling)for14days.Theinfluenza
A/PR/8/H1N1viruswaskindlygiftedbyprofessorYuHaofromtheDepartmentofImmunologyand
Microbiology,BeijingUniversityofChineseMedicine(Beijing,China).TheLD50wasdeterminedin
miceafterserialdilutionofthestock.WechallengedICRmicewith5LD50A/PR8(25mL).Infection
wasestablishedbyintranasalinoculationinmiceafteranesthetizedbyisoflurane.Ribavirinwas
purchasedfromBiokinPharmaceutical(Sichuan,China).Theribaviringroupwasgivenribavirin
(100mg/kg),onceadayfor7days.Allexperimentalprocedureswereconductedaccordingtothe
NationalInstituteofHealthGuidefortheCareandUseofLaboratoryAnimals,andapprovedbythe
AnimalCareCommitteeofBeijingUniversityofChineseMedicine.
2. G u aShatreatmento n e x p e r i m e ntalmice
Micewereanesthetizedby5%isofluraneandmaintainedat1.5-2%.Intheprophylacticand
therapeuticgroups,GuaShawasperformedonthesideofthemouse'sbackbyusingabuffalo-horn
GuaShaplate,afterthehairwasshavedwithaclipperadaypriortotheexperiment.Theshavedskin
areawaswipedwith70%ethanolandlefttodry.Then,scrapetheback100-150times/minfromneck
totailinaunidirectionalmanner,withanangleofabout90°betweentheGuaShaplateandthe
mouse'sback.Theforceofscrapewasbasedontheappearanceofredspotsorfreckles.Meanwhile,
theshamgroupwasscrapingatthesamefrequencyandforceintheleftthighofthemouse.
5
3. P a thologicalanalysis
Attheendofexperiment,thewholelungsofthemicewereremoved,washedinphosphatebufferand
fixedin10%formaldehydeatroomtemperature.Thenlungtissuesweredehydratedingraded
concentrationofethanol,embeddedinparaffinandsliced.Tissuesectionsof4μmthicknesswere
stainedwithhematoxylin-eosin(HE).Thentwoexperiencedpathologistsblindedwithmicegroup
observedsectionsoflungtissueunderalightmicroscopeandscoredthelunginjurythroughthe
methodasdescribedbyMikawa[18]:(a)alveolarcongestion,(b)hemorrhage,(c)neutrophil
infiltrationinthealveolarandvascularwall,and(d)alveolarwallthickening/theformationofthe
hyalinemembrane.Eachoftheaboveitemswasgradedintofivelevels:0=nodamage,1=slight
damage,2=moderatedamage,3=severedamage,and4=extremelyseveredamage.Thesumofthe
fouritemswasthefinalscorewithamaximumof16.
4. I m munohistochemistr y
Immunohistochemistry(IHC)methodwasadoptedtodetecttheexpressionofMMP-9intheparaffin
sectionsofmouselungtissue.Afterbeingsliced,dewaxed,andhydrated,sectionswereplacedin3%
H2O2toincubatefor10min,thenrinsed5minthreetimeswithphosphate-bufferedsaline(PBS).
Thentheywereincubatedwith0.01Mcitratebufferfor15minin95℃waterandflushed5minthree
timeswithPBS.Forprimaryantibodyincubation,anti-mouseMMP-9antibody(fromBioLegend,Inc.,
SanDiego,CA)wasdilutedat1:1000withPBSandaddedintosectionsat4℃overnight.Horseradish
Peroxidase(HPR)-labeledsecondaryantibody(fromZsbioCommerceStore,Beijing,China)was
incubatedat37℃for20min.Peroxidaseactivitywasdetectedbyusing3,3-diaminobenzidine
tetrachloride(DAB;Beijingsolarbiosciencetechnologyco.,ltd.,Beijing,China).Sectionswere
counterstainedbyusinghematoxylinandthenobservedundermicroscope.Tenvisualfieldswere
randomlyselectedforeachgroup,andtheirintegralopticaldensity(OD)wasmeasuredbyuseof
ImageProsoftware,andthensemiquantitativeanalysiswasconductedbymeansofstatistical
software.
6
5. C e llisolationfromlungtis s u e s
Aftersacrificingonday6,lungtissuesfrommicewereasepticallycollected.Toisolatesinglecell
suspensionfromlungtissues,lungsweremincedanddigestedwith1mg/mltypeIVcollagenase
(Worthington)and50μg/mlDNaseI(Roche)for45minat37°Conarotator.Thendigestedtissues
liquidwerefilteredthrough70-μmcellstrainersandenrichedwith40%Percollgradientafterred
bloodcellswerelysed.Single-cellsuspensionsfromlungswereusedforsubsequentflowcytometry
staining.
6. F l o wcytometryanaly s i s
Forintracellularcytokinestaining,cellswerestimulatedwithCellStimulationCocktail(eBioscience)
andincubatedfor5hoursat37°C.Cellswerepreincubatedwithanti-mouseCD16/32(BioLegend)to
blockFcreceptorsandwashedbeforefurtherstaining.ThencellswerestainedwithFITCconjugated
anti-CD4(BioLegend)andPercPCy5.5conjugatedanti-CD25(BioLegend),followingbyfixingand
permeabilizingwithBDCytofix/Cytopermbuffer.Atlast,cellswerestainedwithPEconjugatedIL-17A
(BioLegend).Formeasurementoftranscriptionfactors,cellswerefixedandpermeabilizedwiththe
Foxp3/TranscriptionFactorStainingBufferSet(eBioscience)accordingtothemanufacturer's
instructionsandstainedwithantibodiesAPC-FoxP3(BioLegend).CellsweredetectedbyCantoⅡ(BD,
Biosciences)andanalyzedbyFlowJosoftware.
7. S t a tisticalanalysis
TheSPSS16.0Softwarewasusedtocompletethestatisticalanalysis.Student’st-testwasusedto
comparecontinuousvariablesbetweentwogroups,andANOVAwasusedtocomparecontinuous
variablesacrossmultiplegroups.Mantel-CoxtestwasusedforSurvivaldata.Ap-valuelessthan0.05
wasconsideredstatisticallysignificant.
Results
7
1. T h eeffectofskinscra p i n g o n s u r v ivalandbodyweigh t o f P R 8 - i n f e ctedmice.
ProtocolforexperimentalinfluenzainfectionandskinscrapingtreatmentwereshowedinFigure1a.
PR8-infectedmiceshowedthesignsofdehydration,greasyfur,andinactiveconditionfrom3days
afterinfection.RibavirinalleviatedtheconditionofdehydrationandrecoveredtheactivityinPR8-
infectedmice.NoobviousrecoveryinthebehavioralappearancewereobservedinGuaSha
prophylacticandtherapeuticgroups.Miceinmodelgroupshowedsignificantweightlossandsurvival
decreaseduringtheinfluenzainfection.Althoughthebodyweightinribaviringroupbegantolower
fromday3,ribavirinquicklyrecoveredtheirlossinPR8-infectedmicefromday4.Inaddition,
ribavirinprotectedinfectedmicefromdying(Fig.1bandc).It’sworthnotedthat20%and10%
survivalrateexistedrespectivelyinGuaShaprophylacticandtherapeuticgroupsthoughscraping
didn’tpreventthelossofbodyweightinPR8-infectedmice.
2. S k inscrapingattenua t e d p u l m o n a ryhyperemiaand l u n g i n f l a m m ationinPR8-
infectedmice.
TodetectthepulmonarydamagecausedbyPR8virusinfectioninmice,wemeasuredlung
histopathologyfromanatomicalobservationandH&Estainingoflungsections.Thecontrolgroup
showedanormallungappearancewithpinkcolorandnormalintactalveolistructures(Fig.2aand
b).PR8-infectedmicepossessedadarkredlungwithseverecongestiveedema.H&Estainingofthe
lungsectionsrevealedthatalargeamountofinflammatoryexudatewasbotharoundbronchusandin
thealveoliinterstitiuminPR8-infectedmice,whichcausedtheinterstitialthickeningofthelungand
broketheintegrityofalveolistructure.BothGuaShaprophylacticandtherapeuticgroupsindicated
red-palelungs,significantdecreasingofinflammationinfiltrationandamendmentofdamagefor
alveolistructure.Meanwhile,GuaShaadministrationamelioratedthelunginjuryobviouslyinPR8-
infectedmiceaccordingtoanalysisofpathologicalscores(Fig.2c).Theseresultsindicateskin
scrapinghaspreventiveandcurativeeffectonalleviatingpulmonaryinflammationinPR8-infected
mice.
8
3. S k inscrapingsuppre s s e d t h e e x p ressionofMMP-9in l u n g t i s s u e i n PR8-infectedmice
ThemainfunctionofMMP-9istodegradeIV,Vcollagenandgelatin,whicharethemostimportant
componentsintheextracellularmatrix[19].MMP-9issecretedbybronchialepithelialcells,
neutrophils,eosinophils,mastcellsandalveolarmacrophagessuggestingthatMMP-9canbe
expressedbothinnormallungandthelungtissueinfiltratedbyinflammatoryexudate[20,21].After
theinfectionofinfluenzavirus,remarkablyincreasedexpressionofMMP-9wasfrombothvarious
inflammatorycellsandparenchymalcells,whichwasdetectedbyimmunohistochemistrystaining
(Fig.3a)whileonlyshowninepithelialcellsofthecontrolgroup(p<0.01).GuaShaadministration
significantlyreducedtheexpressionofMMP-9inlungtissuefromPR8-infectedmice.What’smore,
thisexpressionofMMP-9wasrestrictedinlungparenchymacellsinGuaShaprophylacticand
therapeuticgroups.(Fig.3b,c).Theseresultssuggestthatskinscrapingsignificantlyinhibitsthe
expressionofMMP-9inlungtissuecellsfromPR8-infectedmice.
4. S k inscrapingrectified t h e r a t i o o f T r eg/Th17inPR8-infe c t e d m i c e .
Th17cellsareasubsetofpro-inflammatoryThelpercellsdefinedbytheirproductionofinterleukin17
(IL-17)andtheirmaineffectorcytokinesareIL-17A,IL-17F,IL-21,andIL-22.Theyplaytheroleofa
double-edgedswordduringinfluenzainfection[22,23].TregcellsareanotheruniqueTlymphocyte
subsetinthebodythatsecretesIL-10,andTGF-β,whichisregulatedbythetranscriptionalfactor
foxheadboxP3(FoxP3)[24,25].Tregcellssuppressactivityofavarietyofimmunecellsand
thereforeinhibitimmuneresponses,whicharecloselyrelatedtoinfluenza[26].ThenumbersofTregs
andTh17cellsfromlungtissuesweredetectedbyflowcytometrysoastoanalyzewhetherandhow
skinscrapinginfluencedthedifferentiationofThelpercellduringPR8infectioninmice.Onday6
afterinfection,singlecellsuspensionsfromlungtissuesofeverygroupwereobtained.Then
intracellularcytokinesstainingwasusedtodetectCD3+CD4+IL-17A+TcellsasTh17afterstimulation
ofPMAplusionomycinwhileTregwasdefinedasCD3+CD4+CD25+FoxP3+byflowcytometry.From
9
Figure4,themodelgroupshowedasignificantlyhigherproportionofTregandlowerTh17compared
withcontrolgroup.However,skinscrapingremarkablyinhibitedtheenhancementofTregand
promotedthedifferentiationofTh17.It’sinterestingthatribavirininducedthehighestproportionof
Th17inPR8-infectedmice.TheratioofTreg/Th17inPR8-infectedmicewas2.16:1,whilethisratioin
prophylacticandtherapeuticgroupwassignificantlylowerthanthatinmodelgroup.Alltheseresults
indicatedthatGuaShahastheefficacyonreducingthepulmonaryinflammationinPR8-infectedmice
possiblyviarestoringtheTreg/Th17balance.
Discussion
GuaShaisatraditionalChinesephysicaltherapy.Undertheguidanceofthetheoryofmeridiansand
acupointsoftraditionalChinesemedicine,redsplotchymarksappearontheskinthatlooklike
scrapesorlightbruising,butinactualityitisavascularresponsecalledtransitorytherapeutic
petechiaeafterGuaShatreatment[27].Weselectedtheerectorspinaemuscleonbothsidesofthe
backspineofthemouseinprophylacticandtherapeuticgroupforscraping,whichisnamed“Urinary
BladderMeridianofFoot-Taiyang”bytraditionalChinesemedicine(TCM),becauseitwasalwaysused
topreventandtreatpulmonarydiseasesinclinic[28].
Inourstudy,wefirstobservedtheeffectofscrapingonthesurvivalrateandbodyweightofinfluenza
mice.Itiswellknownthattheinfluenzavirusattachesairwayepithelialcellsthroughhemagglutinin
(HA)proteinonitssurface,causingdiseasebyalargenumberofreplicationsintheairwaysand
alveolarepithelium[22].Inourexperiments,thoughGuaShaasaphysicaltherapywhichinducedthe
moderateinflammatoryresponseandimmuneresponsesfailedtopreventweightlossandthe
decreasingofsurvivalrateininfectedmice,ithadthesignificantlyprotectiveeffectagainst
pulmonaryinflammatoryexudates.ThisdiscrepancymightbereasonablyexplainedthatGuashais
performedontheskinwhichdeliversitstherapeuticeffectonlung,accordingto“lunggoverningskin
andhair”.However,PR8virusesnotonlyinducedviralpneumoniabyintranasaladministration,but
alsoenteredthebloodandtriggeredsystemicfailure.
10
Inaddition,ImmunohistochemistryrevealedthatthesecretionamountofMMP-9inPR8-infectedmice
washigherthanothergroups.TheseresultstogethershowedthattheexpressionofMMP-9is
associatedwithlungpathologyinducedbyPR8infection.MMP-9,referredtoasazinc-binding
endopeptidasewhosemaincomponentsaretypeIV,Vcollagenandgelatin,whichcandegradea
varietyofextracellularmatrixmolecules,modulatestissueremodelinguponacutelunginjuryand
interstitiallungdisease[6,19].Whenthelungswereinfectedwithinfluenzavirus,MMP-9could
directlyactonthebasementmembraneofthealveolarcapillariestoincreaseitspermeability,andat
thesametimedestroyedtheconnectionofcadherintothevascularendothelialcellsandincreasethe
microvascularpermeability[29].PharmacologicalinhibitionofMMP-9alsohasbeenreportedto
partiallyreducelungpathologyinmicecausedbyinfluenzavirus,andMMP-9deficiencyprotectsmice
fromsevereinfluenzaAviralinfection[30,31].Aninvitrostudyshowedthatinfluenzavirusinfection
increasesMMP-9secretionandpromoteractivityinVerocells[33].Ourdatashowedthatanincrease
ofMMP-9inthelungimmunohistochemicalanalysisofthemodelandtheshamgrouponday6after
infection,andaremarkabledecreaseinGuaShatreatment.Recently,Joselynetal.showedthatthe
increasingpulmonaryadaptiveimmuneresponsetoIAV,withhigherCD4+Tlymphocytesandlower
frequenciesofanti-inflammatoryTregs,appearedinMMP-9-/-miceafterIAVinfection[31].AndMMP-
9mightdecreaseIL-17productioninthelungsbyselectivelyinhibitingIL-23expression[32].
Coincidentalwiththeirs,ourdatashowedthatMMP-9production,whichaffectedthebalanceof
regulatoryTcellandothereffectorCD4+Tlymphocytes,wascriticaltoseverelungpathologycaused
byinfluenzaAvirus.
Itisreportedthatvirus-inducedTregscanbecomeactivatedbyapathogen-derivedpeptideand
downregulateantigen-specificeffectorCD4+andCD8+Tcellaccumulationandcytokineproduction
correlatedwiththeirantigenspecificity,soastomodulateanantiviralimmuneresponseinPR8-
infectedmice[26,34].SomeresearchesdemonstratedthatTregcellslimitTh17cellinflammationby
servingasprincipalamplifiersofnegativeregulatorycircuitsoperatinginimmuneeffectorcells.
11
Interleukin-10(IL-10)signalinginregulatoryTcellsisrequiredforsuppressionofTh17cell-mediated
inflammationduringPR8infection[35,36].Inourstudy,thehigherratioofTreg/Th17emergedinPR8-
infectedmicecomparedwiththecontrolgroup.Meanwhile,thisdominantTregwashighlyrectified
andasignificantproportionofTh17wasinducedafterGuaShaorribavirintreatmentinPR8-infected
mice.Th17wasadouble-edgedswordduringinfluenzainfection.Althoughsomestudieshave
suggestedapathologicalroleforIL-17secretedbyTh17cellsinhostimmunitytoinfluenza,other
studieshavesuggestedaprotectivefunction.Forinstance,ithasbeendocumentedthatIL-17
depletionresultedinincreasedweightlossaswellasreducedsurvivalinmousemodelofinfluenza
[23,37].ThesehigherTh17cellsmightbenecessaryforclearingtheinfectionandpromotingtissue
repair.
Conclusions
Insummary,ourfindingsforthefirsttimesuggestthatGuaShaexhibitsasignificantinhibitionof
inflammatoryinfiltrationwithdown-regulationofMMP-9inlungtissuesfromRR8-infectedmice,which
mightbeassociatedwiththedifferentiationofTh17andTreg.Furtherresearchwillbecarriedtoward
howGuaShafunctionsonmaintainingthehomeostasisofTh17andTreginthelungs.
Abbreviations
Th17:Thelper17cells;Treg:RegulatoryTcells;MMP-9:Matrixmetalloproteinase-9;IAV:InfluenzaA
virus;PR8:A/PR/8/H1N1virus;HE:Hematoxylin-eosin;IHC:Immunohistochemistry;PBS:Phosphate-
bufferedsaline;HPR:HorseradishPeroxidase;OD:opticaldensity;TCM:TraditionalChinesemedicine;
HA:Hemagglutinin.
Declarations
Ethicsapprovalandconsenttoparticipate
AllprocedureswerecarriedoutinaccordancewiththerecommendationsoftheGuidefortheCare
andUseofLaboratoryAnimalsoftheNationalInstitutesofHealth.
Consentforpublication
Allauthorsagreetopublishthispaper.
Availabilityofdataandmaterials
Thedatasetsusedand/oranalyzedduringthecurrentstudyareavailablefromthecorresponding
12
authoronreasonablerequest.
Competinginterests
Theauthorsdeclarethattheyhavenocompetinginterests.
Funding
ThisresearchwasfundedbytheNationalNaturalScienceFoundationofChina(GrantNo.81473656)
andFundamentalResearchFundsforCentralUniversities(GrantNo.2019-JYB-TD014).
Authors’contributions
Eachauthorhascontributedsignificantlytothisstudy.GYP,YLLandJWKconceivedanddesignedthe
study.YLL,YAW,JWKandZRLperformedtheanimalexperimentsandflowcytometrydetection.DYG
andRJDperformedpathologicalandhistochemicalexperiments.YLLandYAWperformedthe
statisticalanalysis.GYP,YLL,YAW,JWKdraftedandrevisedthemanuscript.Allauthorsreadand
approvedthefinalmanuscript.
Acknowledgments
TheauthorswishtothankprofessorYuHaofromtheDepartmentofImmunologyandMicrobiology,
BeijingUniversityofChineseMedicine(Beijing,China)forthevirusstrain.
References
1.  R e idAH,FanningTG,H u l t i n J V . , T a u b enbergerJK.Origina n d e v o l u t i o n ofthe1918
Spanishinfluenzaviru s h e m a g glutiningene.ProcNa t l A c a d S c i U SA.
1999;96:1651–6.
2.  M ontoAS,GravensteinS , E l l i o t t M , C olopyM,SchweinleJ. C l i n i c a l s i g n s and
symptomspredicting i n f l u e n z a i n fection.ArchInternMe d . 2 0 0 0 ; 160:32437.
3.  T h angavelRR,Bouvier N M . A n i m almodelsforfluvirus p a t h o g e n e sis.JImmunol
Methods.2014;0:6 0 7 9 .
4.  P e rroneLA,PlowdenJK, G a r c í a - S a s treA,KatzJM,Tumpe y T M . H 5 N1and1918
pandemicinfluenzav i r u s i n f e c t i o n resultsinearlyandex c e s s i v e i n f i l t r ationof
macrophagesand n e u t r o p h i l s inthelungsofmice.PL o S P a t h o g .2008;4:e10001 1 5 .
13
5.  W angS,LeTQ,ChidaJ, C i s s e Y , Y a noM,KidoH.Mecha n i s m s o f m atrix
metalloproteinase-9u p r e g u l a t i o n andtissuedestruction i n v a r i o u s organsin
influenzaAvirusinfectio n . J M e d I n v estig.2010;57:26 3 4 .
6.  A t k insonJJ,SeniorRM.M a t r i x m e t a lloproteinase-9inlungr e m o d e l i n g .AmJRespir
CellMolBiol.2003;28 : 1 2 2 4 .
7.  S e hrawatS,RouseBT . I n t e r p l a y o fregulatoryTcelland T h 1 7 c e l l s duringinfectious
diseasesinhumansa n d a n i m a ls.FrontImmunol.20 1 7 ; 8 : 1 14.
8.  N i e lsenA.Guasha:ATra d i t i o n a l T e c hniqueforModernP r a c t i c e . 2 n ded..Churchill
Livingstone;2012.
9.  N i e lsenA,KliglerB,KollBS . S a f e t y p r otocolsforGuasha(p r e s s - s t r o k in g)and
Baguan(cupping).Co m p l e m e ntTherMed.2012; 2 0 : 3 4 0 4.
10.  Z h u W ,LiuY,ChengF,LiC, Y u C , W a n gQ,etal.Mechanism o f E x t e r n alTherapyof
TraditionalChineseMe d i c i n e f o r t h eTreatmentofAsthm a t h r o u g htheImmune
SystemandNeuralR e g u l a t i o n . JLiaoningUnivTCM.2 0 1 5 ; 1 7 : 7 57.
11.  A n H ,HuangM.ClinicalOb s e r v a t i o n o fScrapingTherapyin T r e a t m e ntofAllergic
RhinitisofDifferentSyn d r o m e s . J NanjingUnivTraditChin M e d . 2 0 16;32:53770.
12.  H u Q ,WangQ,DuanP,M e n g F , G o ngX,HuS,etal.Clinic a l o b s e r v a tionofpost-
infectiouscoughdiffere n t i a t e d a s wind-coldretentioninth e l u n g t r e a tedwith
scrapingtherapyand x u a n f e i z hisoudecoction.Zhong g u o Z h e n Jiu.2016;36:1257
62.
13.  C h a n gS,JiaJ,LouX.Comb i n a t i o n S c r a pping,MovingCupp i n g a n d C h iropracticon
thePreventionandTre a t m e n t o fBronchialAsthmafo r 3 0 C a s e s.ChineseMedMod
DistanceEducChina. 2 0 1 5 ; 1 3 :778.
14.  C h a n ST,YuenJW,GohelM D , C h u n g CP,WongHC,Kwong K K . G u a s ha-induced
hepatoprotectioninch r o n i c a c t i v e hepatitisB:Acasestu d y . C l i n C h i m
14
Acta.2011;412:1686–8.
15.  L e e M S,ChoiTY,KimJI,Cho i S M . U s i n g Guashatotreatmus c u l o s k e l e t a lpain:A
systematicreviewof c o n t r o l l e d c linicaltrials.ChinMed.2 0 1 0 ; 5 : 5 .
16.  L a u c heR,WübbelingK,Lü d t k e R , C r amerH,ChoiKE,Ra m p p T , e t al.Randomized
controlledpilotstudy:Pa i n i n t e n s i t y a ndpressurepainthr e s h o l d s i n p atientswith
neckandlowbackp a i n b e f o r e andaftertraditionale a s t A s i a n GuaShatherapy.
AmJChinMed.2012 ; 4 0 : 9 0 5 17.
17.  C h e n T,LiuN,LiuJ,ZhangX , H u a n g Z ,ZangY,etal.GuaS h a , a p r e s s-stroke
treatmentoftheskin, b o o s t s t h e immuneresponset o i n t r a d e r m alvaccination.PeerJ.
2016;4:e2451.
18.  M i k a waK,NishinaK,Taka o Y , O b a r aH.ONO-1714,aN i t r i c O x i d e S ynthaseInhibitor,
AttenuatesEndotoxin-In d u c e d A c u teLungInjuryinRabb i t s . A n e s t h A nalg.
2003;97:1751–5.
19.  Y a b l u chanskiyA,MaY,Iyer R P , H a l l M E,LindseyML.Matrix m e t a l l o p r oteinase-9:
Manyshadesoffun c t i o n i n c a r d iovasculardisease.Ph y s i o l o g y . 2 013;28:391403 .
20.  C h u r g A,ZhouS,WrightJL. M a t r i x m e talloproteinasesinCOP D . E u r R e spirJ.
2012;39:197–209.
21.  L i u Q , ZhouYH,YangZQ.T h e c y t o k i n estormofsevereinflu e n z a a n d developmentof
immunomodulatory t h e r a p y . C ellMolImmunol.201 6 ; 1 3 : 3 1 0.
22.  H e r o ldS,BeckerC,Ridge K M , B u d in gerGR.Influenzaviru s - i n d u c e d l u nginjury:
pathogenesisandim p l i c a t i o n s f o rtreatment.EurRes p i r J . 2 0 1 5 ;45:146378.
23.  H e m danNY,AbuEl-Saad A M , S a c k U.TheroleofThelp e r ( T H ) 1 7 cellsasadouble-
edgedswordinthein t e r p l a y o f infectionandautoimm u n i t y w i t h a focuson
xenobiotic-inducedimm u n o m o d ulation.ClinDevImmu n o l . 2 0 1 3 ;2013:374769.
24.  S h e v achEM.BiologicalFun c t i o n s o f R egulatoryTCells.Adv. I m m u n o l . 2011;112:137-
15
76
25.  S a k a guchiS,SakaguchiN , A s a n o M ,ItohM,TodaM.Im m u n o l o g i c self-tolerance
maintainedbyactivat e d T c e l l s e xpressingIL-2recepto r a l p h a - c h a ins(CD25).
Breakdownofasing l e m e c h a nismofself-tolerance c a u s e s v a riousautoimmune
diseases.JImmunol.A m A s s o c Immnol;1995;155 : 1 1 5 1 6 4.
26.  B e d o yaF,ChengGS,Leib o w A , Z a k haryN,WeisslerK,G a r c i a V , e t al.ViralAntigen
InducesDifferentiation o f F o x p 3 + NaturalRegulatory T C e l l s i n I n f l u enzaVirus
InfectedMice.JImmu n o l . 2 0 1 3 ;190:611525.
27.  W a n gY,ChenH,ZhangH , X u D , Y a ngL,YangJ.Effectso f G u a s h a TherapyonAnti-
OxidationandImmun i t y F u n c t i o n sofHealthyHuman B o d y . C h i n eseJInfTCM.
2018;25:32–4.
28.  W a n gL,LiangR,YangJ.R e c e n t S t a t u sofScrappingThera p y i n t h e T reatmentof
PulmonaryDiseases. C h i n e s e M edModDistanceEd u c C h i n a . 2 018;16:1524.
29.  A l e x a nderJS,ElrodJW.Extr a c e l l u l a r m atrix,junctionalintegritya n d m a t r i x
metalloproteinaseinte r a c t i o n s i n e ndothelialpermeability r e g u l a t i o n . JAnat.
2002;200:561–74.
30.  L e e Y H,LaiCL,HsiehSH,S h i e h C C , H uangLM,Wu-HsiehB A . I n f l u e n z aAvirus
inductionofoxidativest r e s s a n d M MP-9isassociatedw i t h s e v e r e lungpathologyina
mousemodel.Virus R e s . 2 0 1 3 ;178:41122.
31.  R o j a s -QuinteroJ,WangX,T i p p e r J , B u r kettPR,ZuñigaJ,Ashte k a r A R , e tal.Matrix
metalloproteinase-9d e f i c i e n c y p rotectsmicefromse v e r e i n f l u e n zaAviralinfection.
JCIInsight.2018;3:e99 0 2 2 .
32.  O r i s s TB,KrishnamoorthyN , R a u n d h alM,MorseC,Chak r a b o r t y K , KhareA,etal.
MMP-9InhibitsIL-23p1 9 E x p r e s sioninDendriticCellsBy T a r g e t i n g MembraneStem
CellFactorAffectingLu n g I L - 1 7 R e sponse.JImmunol.2 0 1 4 ; 1 9 2 :54715475.
16
33.  Y e o S J,KimSJ,KimJH,LeeH J , K o o k Y H .InfluenzaAvirusinfec t i o n m o d u latesthe
expressionoftypeIVc o l l a g e n a s e inepithelialcells.ArchV i r o l . 1 9 9 9 ; 144:136170.
34.  B e t t s RJ,PrabhuN,HoAW , L e w F C , HutchinsonPE,Rotzsch k e O , e t a l.InfluenzaA
VirusInfectionResultsin a R o b u s t , Antigen-Responsive,a n d W i d e l y Disseminated
Foxp3+Regulatory T C e l l R e s p onse.JVirol.2012;86 : 2 8 1 7 2 5.
35.  C h a u dhryA,SamsteinRM , T r e u t i n g P,LiangY,PilsMC,Hein r i c h J M , e t a l.Interleukin-
10SignalinginRegula t o r y T C e l l s IsRequiredforSuppr e s s i o n o f T h17Cell-Mediated
Inflammation.Immu n i t y . 2 0 1 1 ;34:56678.
36.  M c K i n stryKK1,StruttTM,B u c k A , C u r tisJD,DibbleJP,HustonG , e t a l . I L - 1 0
deficiencyunleashesa n i n f l u e n z a -specificTh17respon s e a n d e n hancessurvival
againsthighdosecha l l e n g e . J I m munol.2009;182:7 3 5 3 6 3 .
37.  H a m adaH,Garcia-Hern a n d e z M d eL,ReomeJB,Misra S K , S t r u t t TM,McKinstryKK,et
al.Tc17,aUniqueSu b s e t o f C D 8TCellsThatCanPro t e c t a g a i n s tLethalInfluenza
Challenge.JImmunol. 2 0 0 9 ; 1 8 2:346981.
Figures
17
Figure1
TheeffectofskinscrapingonsurvivalandbodyweightofPR8infectedmice.aThemicein
theprophylacticgroupbegantoscrape3daysbeforePR8infection,onceeveryotherday
for2times.Thetherapeuticgroupandtheshamgroupbegantoscrapeat2hoursafter
infection,onceeveryotherdayfor3times.Thecontrolgroupandtheribaviringroupwere
intragastricallyadministeredat2hoursafterinfection.Theribaviringroupwasgiven
ribavirin(100mg/kg)0.2ml/dayfor7days.Normaldietanddrinkingwaterinmice.bBody
weightwasmonitoredafterscraping.cSurvivalwasmonitoredafterPR8infection.n=10,
Mean±SD.****p0.0001comparedwiththecontrolgroup.ns:notsignificant.
18
Figure1
TheeffectofskinscrapingonsurvivalandbodyweightofPR8infectedmice.aThemicein
theprophylacticgroupbegantoscrape3daysbeforePR8infection,onceeveryotherday
for2times.Thetherapeuticgroupandtheshamgroupbegantoscrapeat2hoursafter
infection,onceeveryotherdayfor3times.Thecontrolgroupandtheribaviringroupwere
intragastricallyadministeredat2hoursafterinfection.Theribaviringroupwasgiven
ribavirin(100mg/kg)0.2ml/dayfor7days.Normaldietanddrinkingwaterinmice.bBody
weightwasmonitoredafterscraping.cSurvivalwasmonitoredafterPR8infection.n=10,
Mean±SD.****p0.0001comparedwiththecontrolgroup.ns:notsignificant.
19
Figure2
SkinscrapingattenuatespulmonaryhyperemiaandlunginflammationinPR8infectedmice.
aThemacroscopicpathologyoflungamongdifferentgroupswereshowedonday6after
PR8infection.bRepresentativepathologicalmicrographsoflungsections(HEstaining,
×200).cLunginjuryscoresofthemiceindifferentgroupsonday6afterPR8infection.
Mean±SD.n=3.***p0.001comparedwiththecontrolgroup.#p0.05,##p0.01
comparedwiththemodelgroup.
20
Figure2
SkinscrapingattenuatespulmonaryhyperemiaandlunginflammationinPR8infectedmice.
aThemacroscopicpathologyoflungamongdifferentgroupswereshowedonday6after
PR8infection.bRepresentativepathologicalmicrographsoflungsections(HEstaining,
×200).cLunginjuryscoresofthemiceindifferentgroupsonday6afterPR8infection.
Mean±SD.n=3.***p0.001comparedwiththecontrolgroup.#p0.05,##p0.01
comparedwiththemodelgroup.
21
Figure3
SkinscrapingcansuppresstheexpressionofMMP-9inlungtissue.aRepresentativeIHC
resultsforMMP-9inmicelungtissueofeachgrouponday6afterinfection(original
magnification,×200).b,cSemiquantitativeanalysisofIHCbythemethodoftheaverage
opticaldensity(AOD).Mean±SD.n=3.**p0.01,comparedwiththecontrolgroup.#p
0.05,##p0.01comparedwiththemodelgroup.
22
Figure3
SkinscrapingcansuppresstheexpressionofMMP-9inlungtissue.aRepresentativeIHC
resultsforMMP-9inmicelungtissueofeachgrouponday6afterinfection(original
magnification,×200).b,cSemiquantitativeanalysisofIHCbythemethodoftheaverage
opticaldensity(AOD).Mean±SD.n=3.**p0.01,comparedwiththecontrolgroup.#p
0.05,##p0.01comparedwiththemodelgroup.
23
Figure4
ChangesinTh17cellsandTregsininfluenzamicebyscraping.Singlecellsuspensionsfrom
lungtissuesofeverygroupwereobtained6dafterPR8infectioninmice.Representative
flowcytometrychartsillustratedpercentageofTh17cellsandFoxP3+regulatoryTcellsin
lungs.Thesewerepre-gatedfromCD3+CD4+cells.
24
Figure4
ChangesinTh17cellsandTregsininfluenzamicebyscraping.Singlecellsuspensionsfrom
lungtissuesofeverygroupwereobtained6dafterPR8infectioninmice.Representative
flowcytometrychartsillustratedpercentageofTh17cellsandFoxP3+regulatoryTcellsin
lungs.Thesewerepre-gatedfromCD3+CD4+cells.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
It is now clear that the outcome of an inflammatory process caused by infections depends on the balance of responses by several components of the immune system. Of particular relevance is the interplay between regulatory T cells (Tregs) and CD4+ T cells that produce IL-17 (Th17 cells) during immunoinflammatory events. In addition to discussing studies done in mice to highlight some unresolved issues in the biology of these cells, we emphasize the need to include outbred animals and humans in analyses. Achieving a balance between Treg and Th17 cells responses represents a powerful approach to control events during immunity and immunopathology.
Article
Full-text available
Objective The skin is an important immunological barrier of the body as well as an optimal route for vaccine administration. Gua Sha, which involves press-stroke treatment of the skin, is an effective folk therapy, widely accepted in East Asia, for various symptoms; however, the mechanisms underlying its therapeutic effects have not been clarified. We investigated the influence of Gua Sha on the immunological features of the skin. Methods Gua Sha was performed on BALB/c mice and the effects were evaluated using anatomical, histological, and cytometric methods as well as cytokine determination locally and systemically. The effect on intradermal vaccination was assessed with antigen-specific subtype antibody responses. Results Blood vessel expansion, erythrocyte extravasation, and increased ratios of immune active cells were observed in the skin tissue following the treatment. Pro-inflammatory cytokines were up-regulated, and immunosuppressive cytokines, down-regulated, in the treated and untreated skin and systemic circulation; no obvious variations were detected in case of anti-inflammatory cytokines. Interestingly, intradermal delivery of a model vaccine following Gua Sha induced about three-fold higher IgG titers with a more Th1-biased antibody subtype profile. Conclusion Gua Sha treatment can up-regulate the innate and adaptive immune functions of the skin and boost the response against intradermal antigens. Thus, Gua Sha may serve as a safe, inexpensive, and independent physical adjuvant for intradermal vaccination.
Article
Full-text available
Extensive research in recent years suggests that exposure to xenobiotic stimuli plays a critical role in autoimmunity induction and severity and that the resulting response would be exacerbated in individuals with an infection-aroused immune system. In this context, heavy metals constitute a prominent category of xenobiotic substances, known to alter divergent immune cell responses in accidentally and occupationally exposed individuals, thereby increasing the susceptibility to autoimmunity and cancer, especially when accompanied by inflammation-triggered persistent sensitization. This perception is learned from experimental models of infection and epidemiologic studies and clearly underscores the interplay of exposure to such immunomodulatory elements with pre- or postexposure infectious events. Further, the TH17 cell subset, known to be associated with a growing list of autoimmune manifestations, may be the "superstar" at the interface of xenobiotic exposure and autoimmunity. In this review, the most recently established links to this nomination are short-listed to create a framework to better understand new insights into TH17's contributions to autoimmunity.
Article
METHODS: Eighty patients were randomized into a combined therapy group and a Chinese herbal medicine group, 40 cases in each one. In the Chinese herbal medicine group, the oral administration of xuanfei zhisou decoction was used. The main ingredients included roasted herba ephedrae, amygdalus communis vas, rhizoma zingiberis recens, platycodon grandiflorum, flos farfarae, pinellia temata, radix stemonae, herba periliae, etc., one dose a day, twice a day. In the combined therapy group, on the basis of the treatment as the Chinese herbal medicine group, scraping therapy was added and applied to the bladder meridian of foot-taiyang, the lung meridian of hand-taiyin, the conception vessel and the governor vessel, focusing on Tiantu (CV 22), Baihui (GV 20), Dazhui (GV 14), Feishu (BL 13), Fengmen (BL 12), Taiyuan (LU 9), Lieque (LU 7) and Fengchi (GB 20), once a week and one-week treatment as one session. Totally, the continuous two sessions were required in the two groups. The cough symptom score, cough remission time, relapse, TCM syndrome score, the score of Leicester cough questionnaire (LCQ), SP concentration in the supernatant of the induced sputum before and after treatment as well as clinical efficacy were observed in the two groups.
Article
"Sometimes called coining, spooning or scraping, Gua sha is defined as instrument-assisted unidirectional press stroking of a lubricated area of the body surface that intentionally creates "transitory therapeutic petechiae" representing extravasation of blood in the subcutis." Gua sha has been used for centuries in Asia, in Asian immigrant communities and by acupuncturists and practitioners of traditional East Asian medicine worldwide. With the expansion of traditional East Asian medicine, Gua sha has been used over broad geographic areas and by millions of people. It is valuable in the treatment of pain and for functional problems with impaired movement, the prevention and treatment of acute infectious illness, upper respiratory and digestive problems, and many acute or chronic disorders. Research has demonstrated Gua sha radically increases surface microperfusion that stimulates immune and anti-inflammatory responses that persist for days after treatment. The second edition expands on the history of Gua sha and similar techniques used in early Western Medicine, detailing traditional theory, purpose and application and illuminated by science that focuses its relevance to modern clinical practice as well as scholarly inquiry. This book brings the technique alive for practitioners, with clear discussion of how to do it -including correct technique, appropriate application, individualization of treatment - and when to use it, with over 50 case examples, and superb color photographs and line drawings that demonstrate the technique.
Article
Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies.Cellular & Molecular Immunology advance online publication, 20 July 2015; doi:10.1038/cmi.2015.74.
Article
Approximately 10% of peripheral CD4+ cells and less than 1% of CD8+ cells in normal unimmunized adult mice express the IL-2 receptor a-chain (CD25++) molecules. When CD4+ cell suspensions prepared from BALB/c nu/+ mice lymph nodes and spleens were depleted of CD25++ cells by specific mAb and C, and then inoculated into BALB/c athymic nude (nu/nu) mice, all recipients spontaneously developed histologically and serologically evi dent autoimmune diseases (such as thyroiditis, gastritis, insulitis, sialoadenitis, adrenalitis, oophoritis, glomerulo nephritis, and polyarthritis); some mice also developed graft-vs-host-like wasting disease. Reconstitution of CD4+ cells within a limited period after transfer of CD4+ cells prevented these autoimmune de velopments in a dose-dependent fashion, whereas the reconstitution several days later, or inoculation of an equivalent dose of CD8+ cells, was far less efficient for the prevention. When nu/nu mice were transplanted with allogeneic skins or immunized with xenogeneic proteins at the time of CD25++ cell inoculation, they showed significantly heightened immune responses to the skins or proteins, and reconstitution of CD4+ cells normalized the responses. Taken together, these results indicate that CD4+ cells contribute to maintaining self-tolerance by down-regulating immune response to self and non-self Ags in an Ag-nonspecific manner, pre sumably at the T cell activation stage; elimination/reduction of CD4+ cells relieves this general suppres sion, thereby not only enhancing immune responses to non-self Ags, but also eliciting autoimmune responses to certain self-Ags. Abnormality of this T cell-mediated mechanism of peripheral tolerance can be a possible cause of various autoimmune diseases.
Article
The influenza viruses are some of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. In humans, infection of the lower respiratory tract of can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure. Influenza-mediated damage of the airway, alveolar epithelium and alveolar endothelium results from a combination of: 1) intrinsic viral pathogenicity, attributable to its tropism for host airway and alveolar epithelial cells; and 2) a robust host innate immune response, which, while contributing to viral clearance, can worsen the severity of lung injury. In this review, we summarise the molecular events at the virus-host interface during influenza virus infection, highlighting some of the important cellular responses. We discuss immune-mediated viral clearance, the mechanisms promoting or perpetuating lung injury, lung regeneration after influenza-induced injury, and recent advances in influenza prevention and therapy. Copyright ©ERS 2015.
Article
Matrix metalloproteinase (MMP)-9, one of the most widely investigated MMPs, regulates pathological remodeling processes that involve inflammation and fibrosis in cardiovascular disease. MMP-9 directly degrades extracellular matrix (ECM) proteins and activates cytokines and chemokines to regulate tissue remodeling. MMP-9 deletion or inhibition has proven overall beneficial in multiple animal models of cardiovascular disease. As such, MMP-9 expression and activity is a common end point measured. MMP-9 cell-specific overexpression, however, has also proven beneficial and highlights the fact that little information is available on the underlying mechanisms of MMP-9 function. In this review, we summarize our current understanding of MMP-9 physiology, including structure, regulation, activation, and downstream effects of increased MMP-9. We discuss MMP-9 roles during inflammation and fibrosis in cardiovascular disease. By concentrating on the substrates of MMP-9 and their roles in cardiovascular disease, we explore the overall function and discuss future directions on the translational potential of MMP-9 based therapies.
Article
Infection by different strains of influenza virus presents different pictures. Whether the pathogenicity of influenza virus is defined by the ability of the virus to induce differential immunopathlogical responses in the lungs still remains unclear. We compared the immunopathological response induced by influenza virus A/WSN/33 (H1N1) and that by A/Panama-like (H3N2) virus in C57BL/6 mice. WSN virus, in contrast to Panama-like virus, induced high mortality and severe lung pathology accompanied by massive Gr-1+ and CD11b+ cell infiltration and high levels of CXCL6/GCP-2, CCL2/MCP-1 and TIMP-1 production. Infection by WSN virus but not by Panama-like virus induced up-regulation of the active and latent forms of MMP-9 in the lungs and MMP-2/9 inhibitor partially reduced WSN virus-induced lung pathology. Both Gr-1+ and CD11b+ cells in WSN virus-infected lungs produced reactive oxygen and nitrogen species (ROS/RNS). While wild type mice infected by WSN virus had severe lung pathology and the presence of oxidized phospholipids and numerous MMP-9+ cells in the lungs, ncf1 deficiency ablated their expression and manifested less lung pathology. Employing a pulmonary mouse model we demonstrated in this study that infection by virulent influenza virus is characterized by a heavy cellular infiltration, severe lung pathology which is accompanied by oxidative stress and MMP-9 production.