Content uploaded by Andrew Havics
Author content
All content in this area was uploaded by Andrew Havics on Apr 06, 2020
Content may be subject to copyright.
Page1 COVID19Pt9 040520R3
©2020A.Havics
ALookatCOVID19inTermsof:9.UsingATP&theMycometer®forAssessing
CleaningCompleteness
AndrewA.“Tony”Havics,CIH,PE
pH2,LLC
5250EUSHighway36,Suite830
Avon,IN46123
(317)7218‐7020Office
(317)409‐3238Cell
Introduction
ThisisacontinuationofaseriesofpapersonCOVID19withrespecttohealth&safety.Itfocuseson
twospecifictestingmethodsthatmightbeusedtoevaluatetheefficacyofcleaningprocessesforCOVID
19.Liketheotherpapers(mostinpreparation),thispaperisintendedtoprovidethefactsandresearch
supportwhereavailable,andthendrawfromthataswellastheauthor’sexperiencetoprovide
recommendationsbasedontheweightingoftheevidence.Thedataprovidedhere,andthe
recommendations,cannotbemaintainedinavacuum,thusotherCOVID19topicalpapersareintended
tofollowthisone,buteachwillhopefullybesufficientlyself‐containedtobeusefulandreliable.The
intendedaudienceofthispaperisprofessionals.Thisincludesindustrialhygienists,occupationaland
publichealthprofessionals,healthandsafetypractitioners,andmedicalpersonnel.Itisnotintendedfor
thegeneralpublic,thoughmanyindividualsmaybenefitfromreadingit.
ATPReactionforTesting
AdenosineTriphosphate(ATP)isanenergycarryingmolecule(seeFigure1)inalllivingcells1andcanas
suchbetakenasindirectmeasureforcelldensity.VirusesdonotstoreATPandthusarenotabletobe
directlyevaluatedbyATPtests(ItisinterestingtonotethattheydohaveproteinmotorsthatactasATP
enzymes(4)).ATPforpurposeshereismeasuredasabioassay,wherealuciferaseenzyme(fromfirefly
Photinuspyralis)catalyzesanoxidationbyO2ofD‐luceferinusingATPasenergysource.Thus,reducing
AdenosineTriphosphatetoAdenosineDiphosphateandreleasingthefreedenergyaslight.
1Therearemanyinterestingdebatesoverwhethervirusesareliving(seeforinstance1 Forterre,P.:Tobeornotto
bealive:Howrecentdiscoverieschallengethetraditionaldefinitionsofvirusesandlife.StudiesinHistoryandPhilosophyof
SciencePartC:StudiesinHistoryandPhilosophyofBiologicalandBiomedicalSciences59:100‐108(2016),2 Brüssow,H.:The
notsouniversaltreeoflifeortheplaceofvirusesinthelivingworld.PhilosophicalTransactionsoftheRoyalSocietyB:
BiologicalSciences364(1527):2263‐2274(2009),3 Villarreal,L.P.:Arevirusesalive?ScientificAmerican291(6):100‐105
(2004).).Formypurposes,theydonotproduceATPandwillbeplacedinthenon‐livingcategoryforconvenience.
Page2 COVID19Pt9 040520R3
©2020A.Havics
Figure1.MolecularstructureofAdenosineTriphosphate(ATP)(afterCofitzen,2006)
Thelightfromthisreaction(seeFigure2)ismeasuredinaluminometer,typicallyasRelativeLightUnits
(RLU)andconvertedtoATPvaluesbyacalibrationcurvebasedonATPstandardsalt.Anumberof
commercialluminometersandreagent‐kitsexistonthemarked.Thesecanvarybyapplication,butall
includethefollowingsteps:a)additionofanextractionreagenttothesample,b)anextractionperiod,
c)additionoftheluciferase/luciferinreagents,d)anintegrationperiod.Themeasurementcanbe
usuallybeperformedinminutes.
Figure2.ATPluminecencereaction(afterCofitzen,2006).
TheATPvaluecannotbeconverteddirectlytonumberofbacteriaorfungi,sincetheATPcontentofthe
singlecelldependsuponbacteria/fungitypeanditsgrowthphase.However,withinaspecific
environment,pragmaticcorrelationscanbedrawn.
Mycometer®forBacteria
FortheMycometer®,twomethodsareused,oneforbacteriaandoneforfungi.IntheBactiQuant
TM
for
bacteriamethodabacterialenzymehydrolase(BH)isusedasindirectmeasureofcelldensity.A
substratecontainingthefluorescentcompound4‐MethylUmbelliferone(MU)(SeeFigure3)bindswith
thespecificenzyme,therebyreleasingtheMU‐ion,whichthencanbedetectedinafluorometer.The
resultisprovidedasrelativefluorescenceunits(FE).
Page3 COVID19Pt9 040520R3
©2020A.Havics
Figure3.Molecularstructureoffluorescent4‐methylumbelliferoneusedintheBactiQuantTMmethod(afterCorfitzen,2006)
AswiththeATPmethodtheresultcannotbedirectlyconvertedtoabacteriacount,asthecontentof
thespecificenzymedependsonbacteriastrainanditsgrowthstages.Itmustbecorrelatedundermore
specificconditions/applications.
Mycometer®forFungi
TheMycometer®Surfaceformoldmethoduseafluorescentsubstrate,4‐methylumbelliferylN‐acetyl‐b‐
D‐glucosaminide(MU‐NAG)(SeeFigure4)toassesstheenzymaticactivityofN‐acetylhexosaminidase
(NAHA)(SeeFigure5).Thefluorescentcompound(MU)releasecanbedetectedinafluorometer.The
resultisprovidedasrelativefluorescenceunits(FE).
Figure4.Thefluorescentcompound4‐methylumbelliferylN‐acetyl‐b‐D‐glucosaminide(MU‐NAG)usedinfungaldetection.
Page4 COVID19Pt9 040520R3
©2020A.Havics
Figure5.N‐acetylhexosaminidase[HexosaminidaseA](NAHA)usedtoassessfungalmass(Source:Wikipedia].
AswiththeATPmethodandtheMycometer®bacteriamethod,thefungalresultcannotbedirectly
convertedtoafungalcount,asthecontentofthespecificenzymedependsonfungaltaxaandits
growthstages.Itmustbecorrelatedundermorespecificconditions/applications.However,significant
correlationsbetweenNAHAandtotalsporecountswerefoundinairsamplesandindustgenerated
frombiomassinabiofuelplant(5,6).Strongcorrelationshavealsobeenfoundbetweenfungalbiomass
(gravimetricweight)andNAHAinfungalspeciesgrownonnutrientagarandbetweenergosteroland
NAHAactivityonmoldcontaminatedgypsumboards(7).AlinearcorrelationbetweenNAHAand
Aspergillusnigerbiomasshasalsobeenreported(8).ThesestudiesdemonstratethatNAHAcanbeused
asamarkerformoldcellbiomassundertheproperconditions.
ATPApplication
ATPtestingbyluminousreactionasahygienictoolhasbeenusedinthefood&beverageindustry(9‐12),
medicalfacilities(13‐17),offices(18),industrialwatertreatmentplants(19,20),manufacturing(21,22)and
schools(23,24).ATPhasbeenusedtoevaluatebacteria(9‐11,13‐17,19‐22,24),mold(7,9,12,21,25),andeven
viruses(18)underasurrogatebasis.Inonestudy(21)itwasfoundtohavealowerdetectionlimitthan
culturingofbacteriaandfungi.
Mycometer®Application
Usingspecificcellularcomponentsandafluorescentresponse,theMycometer®hasbeenusedtoassess
bacteria(19,20,23,26‐30)(viaandfluorescence),andmold(7,26,28,31‐36)(beta‐N‐acetylhexosaminidaseand
fluorescence).SimilartoATPithasbeenusedinfoodindustry(30),commercialofficespace(25,29,31,33),
industrialwatertreatmentplants(19,20,27),animalcarefacilities(32),andhomes(29,31,33‐35).The
manufacturehasrecommendedincreasedsurfaceareaforswabcollectionandusingalongerreaction
Page5 COVID19Pt9 040520R3
©2020A.Havics
timealongwithaloweredacceptablelimit(belowdetection)forthosewantingtoapplyittoCOVID
19(37).Thishasreportedresultedina10‐foldincreaseinsensitivity.
ApplicationforCOVID19
Asnotedabove,afewthingsareimportantcaveatsintheapplicationforATPandtheMycometer®to
determininglevelofcleanlinessforaCOVID19cleaningevaluation.ThefirstisthatneitherATPnorthe
Mycometer®directlydetermineviralloadinginanairborneenvironmentoronasurface.Theycan,
eachintheirownway,measureamixtureofbiologicalmaterialthatindicatehumancellularmaterial
(ATPonly),alongwiththatfromavarietyofbacteriaandfungi(24)(bothmethods).Suchmaterial
includesepitheliumfromupperrespiratorymucusmembranes(mouth,throat,nasalpassages)from
salivaandexudatesandassociatedmaterialfromcoughsandsneezesfrompersonswithviralaswellas
bacterialinfections.Becausevirusesareassociatedwithlivingcells(virusesneedthemtoreplicate)ATP
isanoverallgenericmarkerofbiologicalcontamination,anditallowsonetomonitorpotentialviral
contamination(fromviralinfections)indirectly(24).OnestudywithM‐2phage(virus)(18)foundthis
surrogateapproach(ATP)successful.Similarly,theMycometerprovidesawayofmonitoringbiological
load.Ingeneral,TheMycometer®ismorespecificandATPisbroaderinthescopeofbiologicindicators
beingmeasured.Becausebacteriaareorganismsmorelikelytocorrelatewiththepresenceofhuman
shedvirusesthanmoldwouldbe,theuseoftheMycometer®bacteriamethodismoreappropriatethan
thefungalmethodforassessingCOVID19cleaningprocesses.
Cautionarynotesareinorder.Thesemethodsassessbiologicalload,thiscanbebothaliveanddeadfor
ATP;itismostlyaliveforbacteriabytheMycometer®andacombinationofbothaliveanddeadfor
moldbytheMycometer®(37).Usingadisinfectantapplicationmethodthatisintendedtokillthese
organisms“oncontact”doesnotremovethemfromthesurfacenordoesitalterthe
chemical/molecularstructuresufficientlytoeliminatethemortheirconstituentparts.Oneshould
expecttofindresidueoftheseorganismsiftheyarenotphysicallyremovedfromasurface.Ifone
intendstouseATPortheMycometer®forassessmentofcleaning,oneshouldrequirephysicalcleaning.
OneshouldalsobeawarethatmanybiologicalsourceshaveATP,e.g.,wood,plants,insects,starchfrom
gloves,etc.Manysubstanceshavenaturalfluorescence:certainlivingorganisms,minerals,andeven
polymers.Thus,oneshouldrecognizethepotentialforfalsepositivesdependingonthesurface
contaminationakadirtanddebris).
Thesemethodsarebestappliedtoqualitativelyassessperformanceofcleaning,i.e.,don’tusethemto
showthatvirusesarepresent.Norshouldonestatethatapre‐cleaningfindingindicatesaknownrisk.
Thesetestsmay,ifproperlystructured,beabletoassessrelativecleaningeffectiveness(asopposedto
absolute),i.e.,pre:posteffects.Thesemethodsarecorrelatedbyprovidersofthekitsorinstrumentsfor
certaintypesofapplications,certainareasoftesting,andcertaintemperaturesandenvironmental
conditions.Notadheringtothesecorrelatingconditionswilllikelyresultinunusabledata.Onesample
isnotastatistic.Oneneedstocollectasufficientnumberofsamplestoproperlyassesstheexposure
and/orrisk.Theauthorhasfoundthatsomewherebetween5and20samplesfromahomogeneously
contaminatedandcleanedareaoftenprovidessufficientstatisticalpowertomakeinformed
decisions(38).Usersofthesetestsshouldprovideadequatesupportfortheirchoiceofnumberof
samplespriortosampling.
Inconclusion,bothATPandtheMycometer®Bactiquant®testingcanbeusedtoassessCOVID19
cleaningprocesscompletenessinasurrogatefashion,ifappliedproperlyandconsistently.Thesetests
Page6 COVID19Pt9 040520R3
©2020A.Havics
takelessthananhourtoperforminthefield.Thealternativeistoconductsamplingofsurfaceswith
swabsandhavethemshippedtoalabandanalyzedforparticularRNApatternsbyPCRthatwill
definitivelyidentifySars‐CoV‐22(COVID19)to5viralgenomeunitsperreaction–butthewaitis5‐7
days.
Disclaimers
TheauthorownsaMycometer®andhasuseditforevaluatingmoldandbacteria(includingMRSA),
performedtrialsonfoggingandsurfacecleaning,andhasperformedworkwithATPmeters.Theabove
doesnotconstituteanendorsementforeitherinstrumenttype,butratherapresentationofthedata
availabletotheauthor.Theauthorhasnotreceivedpayment,commission,orpreferentialservicefor
writingthispaper.TheauthordidcontactaMycometer®representativepriortocompletionofthis
papertoverifycertainclaimsmadebyothersabouttheirequipment.Usersshouldeducatethemselves
ontheirinstruments,theassumptionsandlimitationsoftheequipment,theenvironmentforsampling,
andthenmanagetheriskappropriately.
Acknowledgements
ThankstoSteveJahn,ScottArmour,andLisaRogersforquickreviewsofadraftofthispaper.Thanksto
MidwestRemediation,Indianapolis,Indiana,foruseoftheirfacilitiesandperformingmultiplecleaning
techniquesforassessmentbybothMycometer®andATPmeters.ThankstoAaronMankaforhishelp
onATPside‐by‐sidewithMycometerandBrianWilsonforhisworkregardingATPonjointprojects.
Also,DaveMedererforhishelpwithprojectworkusingtheMycometeronMRSA.
References
1 Forterre,P.:Tobeornottobealive:Howrecentdiscoverieschallengethetraditional
definitionsofvirusesandlife.StudiesinHistoryandPhilosophyofSciencePartC:StudiesinHistoryand
PhilosophyofBiologicalandBiomedicalSciences59:100‐108(2016).
2 Brüssow,H.:Thenotsouniversaltreeoflifeortheplaceofvirusesinthelivingworld.
PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences364(1527):2263‐2274(2009).
3 Villarreal,L.P.:Arevirusesalive?ScientificAmerican291(6):100‐105(2004).
4 Sun,S.,V.B.Rao,andM.G.Rossmann:Genomepackaginginviruses.Currentopinionin
structuralbiology20(1):114‐120(2010).
5 Madsen,A.:NAGaseactivityinairbornebiomassdustandrelationshipbetweenNAGase
concentrationsandfungalspores.Aerobiologia19(2):97‐105(2003).
6 Madsen,A.M.,V.Schlünssen,T.Olsen,T.Sigsgaard,andH.Avci:Airbornefungalandbacterial
componentsinPM1dustfrombiofuelplants.AnnalsofOccupationalHygiene53(7):749‐757(2009).
7 Reeslev,M.,M.Miller,andK.F.Nielsen:Quantifyingmoldbiomassongypsumboard:
comparisonofergosterolandbeta‐N‐acetylhexosaminidaseasmoldbiomassparameters.Appl.Environ.
Microbiol.69(7):3996‐3998(2003).
8 Konkol,N.,C.J.McNamara,andR.Mitchell:Fluorometricdetectionandestimationoffungal
biomassonculturalheritagematerials.JournalofMicrobiologicalMethods80(2):178‐182(2010).
2Withnohuman,othercoronavirus,orhumanmicroflorainterferences.
Page7 COVID19Pt9 040520R3
©2020A.Havics
9 Chen,F.‐C.,andS.L.Godwin:ComparisonofarapidATPbioluminescenceassayandstandard
platecountmethodsforassessingmicrobialcontaminationofconsumers'refrigerators.Journaloffood
protection69(10):2534‐2538(2006).
10 Costa,P.D.,N.J.d.Andrade,F.J.V.Passos,S.C.C.Brandão,andC.G.F.Rodrigues:ATP‐
bioluminescenceasatechniquetoevaluatethemicrobiologicalqualityofwaterinfoodindustry.
BrazilianArchivesofBiologyandTechnology47(3):399‐405(2004).
11 Larson,E.L.,A.E.Aiello,C.Gomez‐Duarte,S.X.Lin,L.Lee,P.Della‐Lattaetal.:Bioluminescence
ATPmonitoringasasurrogatemarkerformicrobialloadonhandsandsurfacesinthehome.Food
Microbiology20(6):735‐739(2003).
12 Ogden,K.:PracticalexperiencesofhygienecontrolusingATPbioluminescence.Journalofthe
InstituteofBrewing99(5):389‐393(1993).
13 Alfa,M.J.,C.Dueck,N.Olson,P.DeGagne,S.Papetti,A.Waldetal.:UV‐visiblemarker
confirmsthatenvironmentalpersistenceofClostridiumdifficilesporesintoiletsofpatientswithC.
difficile‐associateddiarrheaisassociatedwithlackofcompliancewithcleaningprotocol.BMCinfectious
diseases8(1):64(2008).
14 Amodio,E.,L.Cannova,M.R.Villafrate,A.M.Merendino,L.Aprea,andG.Calamusa:Analytical
performanceissues:comparisonofATPbioluminescenceandaerobicbacterialcountforevaluating
surfacecleanlinessinanItalianhospital.Journalofoccupationalandenvironmentalhygiene11(2):D23‐
D27(2014).
15 Aycicek,H.,U.Oguz,andK.Karci:ComparisonofresultsofATPbioluminescenceandtraditional
hygieneswabbingmethodsforthedeterminationofsurfacecleanlinessatahospitalkitchen.
InternationalJournalofHygieneandEnvironmentalHealth209(2):203‐206(2006).
16 Lewis,T.,C.Griffith,M.Gallo,andM.Weinbren:AmodifiedATPbenchmarkforevaluatingthe
cleaningofsomehospitalenvironmentalsurfaces.JournalofHospitalInfection69(2):156‐163(2008).
17 Wren,M.,M.Rollins,A.Jeanes,T.Hall,P.Coen,andV.Gant:Removingbacteriafromhospital
surfaces:alaboratorycomparisonofultramicrofibreandstandardcloths.JournalofHospitalInfection
70(3):265‐271(2008).
18 Sifuentes,L.Y.,S.L.Fankem,K.Reynolds,A.H.Tamimi,C.P.Gerba,andD.Koenig:UseofATP
ReadingstoPredictaSuccessfulHygieneInterventionintheWorkplacetoReducetheSpreadofViruses
onFomites.Foodandenvironmentalvirology9(1):14‐19(2017).
19 Vang,Ó.K.,C.B.Corfitzen,C.Smith,andH.‐J.Albrechtsen:EvaluationofATPmeasurementsto
detectmicrobialingressbywastewaterandsurfacewaterindrinkingwater.Waterresearch64:309‐320
(2014).
20 Corfitzen,C.B.,B.Ø.Andersen,M.Miller,C.Ursin,E.Arvin,andH.‐J.Albrechtsen:Rapid
methodsfordetectionofbacteria.NVK2006:139(2006).
21 Venkateswaran,K.,N.Hattori,M.T.LaDuc,andR.Kern:ATPasabiomarkerofviable
microorganismsinclean‐roomfacilities.JournalofMicrobiologicalMethods52(3):367‐377(2003).
22 Webster,A.R.,J.Lee,andR.A.Deininger:Rapidassessmentofmicrobialhazardsin
metalworkingfluids.Journalofoccupationalandenvironmentalhygiene2(4):213‐218(2005).
23 Lignell,U.,T.Meklin,T.Putus,A.Vepsaelaeinen,M.Roponen,E.Torvinenetal.:Microbial
exposure,symptomsandinflammatorymediatorsinnasallavagefluidofkitchenandclericalpersonnel
inschools.Internationaljournalofoccupationalmedicineandenvironmentalhealth18(2):139‐150
(2005).
24 Shaughnessy,R.J.,E.C.Cole,D.Moschandreas,andU.Haverinen‐Shaughnessy:ATPasa
markerforsurfacecontaminationofbiologicalorigininschoolsandasapotentialapproachtothe
measurementofcleaningeffectiveness.Journalofoccupationalandenvironmentalhygiene10(6):336‐
346(2013).
Page8 COVID19Pt9 040520R3
©2020A.Havics
25 Krause,J.D.,Y.Y.Hammad,andL.B.Ball:Applicationofafluorometricmethodforthedetection
ofmoldinindoorenvironments.AppliedOccupationalandEnvironmentalHygiene18(7):499‐503
(2003).
26 EPA:"RapidFungiandBacteriaDetectionTechnologies.EPA/600/S‐12/667".InEnvironmental
TechnologyVerificationProgramTechBrief,pp.2,2012.
27 Rylander,R.,andA.Calo:Enzymemeasurementsforriskevaluationsinsewagetreatment
plants(2012).
28 Schrock,M.,C.Riffle,A.Dindal,J.Mckernan,andJ.Enriquez:Mycometer®‐testRapidFungi
DetectionandBactiquant®‐testRapidBacteriaDetectionTechnologies(2011).
29 Reeslev,M.,J.Nielsen,andL.Rogers:Assessmentofthebacterialcontaminationand
remediationefficacyafterfloodingusingfluorometricdetection.InSurfaceandDermalSampling:ASTM
International,2011.
30 Pedersen,P.B.,M.vonAhnen,P.Fernandes,C.Naas,L.‐F.Pedersen,andJ.Dalsgaard:Particle
surfaceareaandbacterialactivityinrecirculatingaquaculturesystems.AquaculturalEngineering78:18‐
23(2017).
31 Rylander,R.,M.Reeslev,andT.Hulander:Airborneenzymemeasurementstodetectindoor
mouldexposure.JournalofEnvironmentalMonitoring12(11):2161‐2164(2010).
32 Rylander,R.,B.Foden,B.Ewaldsson,andM.Reeslev:TimeRelatedFungalContaminationof
AnimalCageBeddings.ScandinavianJournalofLaboratoryAnimalSciences36(2):133‐136(2009).
33 Krause,J.,andY.Hammad:Measuringtheefficacyofmoldremediationoncontaminated
ductwork.InProceedingsofthe9thInternationalConferenceonIndoorAirQualityandClimate:Indoor
Air,pp.360‐365,2002.
34 Adhikari,A.,T.Reponen,andR.Rylander:Airbornefungalcellfragmentsinhomesinrelation
tototalfungalbiomass.Indoorair23(2):142‐147(2013).
35 Baker,A.:Quaternaryammoniumcompound(QAC):casestudyofdisinfectantfieldapplication
methodologyandeffectivenessduringhurricanekatrinaflooding.Journalofoccupationaland
environmentalhygiene4(10):D95‐D102(2007).
36 Mve,M.‐J.B.B.,Y.Cloutier,N.Lacombe,J.Lavoie,M.Debia,andG.Marchand:Comparisonof
methodstoevaluatethefungalbiomassinheating,ventilation,andair‐conditioning(HVAC)dust.
Environmentalmonitoringandassessment189(1):8(2017).
37 Rogers,L.:Personalcommunication.,A.A.Havics(ed.),2020.
38 Havics,A.A.:"JustificationoftheNumberofSamplesforExposureCharacterization",pp.1‐18.
Avon,IN:pH2,LLC,2012(Unpublished).