Content uploaded by Yonatan Lupu
Author content
All content in this area was uploaded by Yonatan Lupu on Jul 13, 2020
Content may be subject to copyright.
Working(paper:(to(be(updated(
1
Hate%multiverse%spreads%malicious%COVID-19%content%online%%
beyond%individual%platform%control%
N.#Velásquez1,2,3,#R.#Leahy1,2,3,#N.#Johnson#Restrepo1,2,3,#Y.#Lupu4,3,#R.#Sear2,5,#N.#Gabriel2,#O.#Jha2,#B.#Goldberg6,#N.F.#Johnson1,2#
1Institute(for(Data,(Democracy(and(Politics,(George(Washington(University,(Washington(D.C.(20052(
2Physics(Department,(George(Washington(University,(Washington(D.C.(20052(
3ClustrX(LLC,(Washington(D.C.(
4Department(of(Political(Science,(George(Washington(University,(Washington(D.C.(20052(
5Department(of(Computer(Science,(George(Washington(University,(Washington(D.C.(20052(
6Google(LLC,(New(York(City,(NY(10011!
!
We!show!that!malicious!COVID-19!content,!including!hate!speech,!disinformation,!and!
misinformation,!exploits!the!multiverse!of!online!hate!to!spread!quickly!beyond!the!control!of!
any!individual!social!media!platform.!Machine!learning!topic!analysis!shows!quantitatively!how!
online!hate!communities!are!weaponizing!COVID-19,!with!topics!evolving!rapidly!and!content!
becoming!increasingly!coherent.!Our!mathematical!analysis!provides!a!generalized!form!of!the!
public!health!R0!predicting!the!tipping!point!for!multiverse-wide!viral!spreading,!which!
suggests!new!policy!options!to!mitigate!the!global!spread!of!malicious!COVID-19!content!
without!relying!on!future!coordination!between!all!online!platforms.!
!
Controlling!the!spread!of!COVID-19!misinformation!and!its!weaponization!against!certain!
demographics!(e.g.!anti-Asian)!--!in!particular,!by!the!online!hate!community!of!neo-Nazis!and!other!
extremists!--!is!now!an!urgent!problem![1-6].!In!addition!to!undermining!public!health!policies,!
malicious!COVID-19!narratives!are!already!translating!into!offline!violence![2,3].!Making!matters!
worse,!each!social!media!platform!is!effectively!its!own!universe,!i.e.!a!commercially!independent!entity!
subject!to!particular!legal!jurisdictions,!and!hence!can!at!best!only!control!content!in!its!universe![1,4].!
Moreover,!there!is!now!a!proliferation!of!other,!far!less!moderated!platforms!thanks!to!open-source!
software!enabling!decentralized!setups!across!locations.!
!
Winning!the!war!against!such!malicious!matter!will!require!an!understanding!of!the!entire!online!
battlefield!and*new!policing!approaches!that!do!not!rely!on!global!collaboration!between!social!media!
platforms.!Here!we!offer!such!a!combined!solution.!Specifically,!Figs.!1!and!2!show!how!COVID-19!
malicious!content!is!exploiting!the!existing!online!hate!network!to!spread!quickly!between!platforms!
and!hence!beyond!the!control!of!any!single!platform!(Fig.!1A,B).!Methods!and!Supplementary!
Information!(SI)!give!details!and!examples!of!this!material.!Links!between!distinct!platforms!(i.e.!
universes)!act!like!wormholes!to!create!a!huge,!decentralized!multiverse!that!connects!hate!
communities!(nodes!with!black!circles,!Fig.!1B)!to!the!mainstream!(nodes!without!black!circles,!Fig.!
1B).!Figure!1B!involves!~10,000,000!users!across!languages!and!continents!who!have!formed!
themselves!into!~6,000!inter-linked!public!clusters,!i.e.!online!communities!such!as!a!Facebook!page,!
VKontakte!group,!or!Telegram!channel,!each!represented!as!a!node!in!Figs.!1,2.!These!new!insights!
inform!the!policy!prescriptions!offered!in!Fig.!3.!!
!
Our!methodology![7,!8]!focuses!on!the!mesoscopic!scale!of!online!clusters!(i.e.!node!in!Fig.!1)!where!
each!cluster!is!an!interest-based!online!community!(e.g.!VKontakte!group).!It!is!known!that!such!
clusters!are!where!people!develop,!and!coordinate!around,!narratives![9]!--!in!contrast!to!platforms!
like!Twitter!that!have!no!pre-built!community!tool!and!are!instead!designed!for!broadcasting!short!
messages![7-9].!Each!link!is!an!online!hyperlink!that!appears!at!the!level!of!the!entire!cluster!(e.g.!Fig.!
2A).!Including!links!between!clusters!across!different!platforms!(see!Methods!and!SI)!then!enables!us!
to!map!the!broader,!global!online!ecology!at!the!entire!system!level.!
Working(paper:(to(be(updated(
2
!
Figure'1:'Spreading'across'Online'Hate'Multiverse.'A:'Time'evolution'of'birth'and'spread'of'malicious'COVID-19'
content'within'and'across'different'social'media'platforms'(i.e.'universes)'for'small'section'from'B.''
B:'Online'hate'multiverse'comprises'separate'social'media'platforms'(i.e.'universes)'that'interconnect'over'time'via'
dynamical'links'(i.e.'wormholes)'created'by'hyperlinks'from'clusters'on'one'platform'into'clusters'on'another'(e.g.'
Fig.'2A).'Links'shown'are'from'hate'clusters'(i.e.'online'communities'with'hateful'content,'shown'as'a'node'with'a'
black'ring)'to'all'other'clusters'including'mainstream'ones'(e.g.'football'fan'club)'which'it'can'then'influence.'Link'
color'denotes'the'platform'hosting'the'hate'cluster'from'which'link'originates.'Plot'aggregates'activity'from'June'1st'
2019'to'March'23rd,'2020.'The'observed'layout'is'spontaneous'(i.e.'not'built-in,'see'Methods).'Small'black'square'is'
a'Gab'cluster'analyzed'in'Fig.'2B.'C:'Model'features'dynamical'links'connecting'and'disconnecting'clusters'of'clusters'
(i.e.'coalescence'with'probability'
𝜈!"#$
,'fragmentation'with'probability'
𝜈%&#'
).'D:'Phase'diagram'shows'
generalization'of'public'health'R0'that'predicts'tipping'point'for'online'spreading.'E:'Output'from'model'in'C,D'
compared'to'empirical'data'from'A'(see'Methods'and'SI'for'details).'''
Working(paper:(to(be(updated(
3
'
Figure'2:'Multiverse'Pathways'and'Content.'A:'Example'pathway'for'a'piece'of'malicious'matter.'B:'Example'output'
from'our'machine'learning'topic'analysis'of'content'[10]'within'a'single'example'Gab'cluster'(see'small'black'circle'
in'Fig.'1B).'Even'though'COVID-19'topic'only'arose'in'December'2019,'it'quickly'evolved'from'featuring'a'large'
number'of'topics'with'a'relatively'low'average'coherence'score,'a'measure'of'semantic'similarity,'to'a'smaller'
number'of'topics'with'higher'average'coherence'scores'more'focused'around'COVID-19.'Reflecting'this,'we'note'that'
prior'to'COVID-19,'topics'featured'words'like'f***'and'n*****,'while'the'conversation'around'COVID-19'is'more'
focused'and'less'like'a'stereotypical'hate-speech'rant.'SI'shows'explicit'examples'of'this'content.!
Working(paper:(to(be(updated(
4
The!first!general!implication!of!our!findings!is!that!policies!to!curb!COVID-19!and!related!malicious!
matter!need!to!account!for!the!decentralized,!interconnected!nature!of!this!multiverse!(Fig.!1).!Links!
connecting!nodes!from!different!universes!(i.e.,!different!social!media!platforms)!provide!a!gateway!
that!can!pass!malicious!content!(and!supporters)!from!a!cluster!on!one!platform!to!a!cluster!on!
another!platform!that!may!be!very!distant!geographically,!linguistically,!and!culturally,!e.g.!from!
Facebook!to!VKontakte.!Figure!2A!shows!that!consecutive!use!of!these!links!allows!malicious!matter!to!
find!short!pathways!that!cross!the!entire!multiverse,!just!as!short!planks!of!wood!can!be!used!to!bridge!
adjacent!rocks!and!cross!a!wide!river.!Moreover!since!malicious!matter!frequently!carries!quotes!and!
imagery!from!different!moments!in!a!cluster’s!timeline,!these!inter-platform!links!not!only!
interconnect!information!from!disparate!points!in!space,!but!also!time!--!like!a!wormhole.!
!
A!second!implication!comes!from!our!machine-learning!topic!analysis!using!Latent!Dirichlet!Allocation!
to!identify!topics!discussed!in!the!online!hate!multiverse,!and!then!calculating!a!coherence!score!for!
different!topics![10]!(see!Fig.!2B!and!SI).!This!shows!that!clusters!in!the!global!online!hate!community!
are!coalescing!around!COVID-19,!with!topic!flavors!evolving!rapidly!and!their!coherence!scores!
increasing.!Examples!of!weaponized!content!(see!SI)!reveal!evolving!narratives!such!as!blaming!Jews!
and!immigrants!for!inventing!and!spreading!the!virus,!and!instances!of!neo-Nazis!planning!attacks!on!
emergency!responders!to!the!health!crisis.!While!these!topics!have!evolved!over!,!the!underlying!
structure!in!Fig.!1B!remains!rather!robust!which!suggests!that!our!implications!should!also!hold!in!the!
future.!
A!third!implication!is!that!malicious!activity!can!appear!isolated!and!largely!eradicated!on!a!given!
platform,!when!in!reality!it!has!moved!through!a!wormhole!to!another!universe.!There,!malicious!
content!can!thrive!beyond!that!platform’s!control,!be!further!honed,!and!later!reintroduced!into!the!
original!platform!using!a!wormhole!in!the!reverse!direction.!Moderators!reviewing!only!blue!clusters!
in!Fig.!1B!might!conclude!that!they!had!largely!rid!that!platform!of!hate!and!disconnected!hateful!pages!
from!one!another,!when!in!fact!these!same!clusters!remain!connected!via!other!universes.!Because!the!
number!of!independent!online!universes!(i.e.!social!media!platforms)!is!growing,!this!multiverse!will!
continue!to!grow!and!will!likely!be!deeply!interconnected!via!new!wormhole!links.!
!
Implication!4!is!that!this!multiverse!acts!like!a!global!funnel!that!can!suck!individuals!from!a!
mainstream!cluster!on!a!platform!that!invests!significant!resources!in!moderation,!into!less!moderated!
platforms!like!4Chan!or!Telegram,!simply!by!following!the!links!offered!to!them.!Critically,!an!innocent!
user!of!mainstream!social!media!communities,!including!a!child!connecting!with!other!online!game!
players!or!a!parent!seeking!information!about!COVID-19,!is!at!most!a!few!links!away!from!intensely!
hateful!content.!In!this!way,!the!rise!of!fear!and!misinformation!around!COVID-19!has!allowed!
promoters!of!malicious!matter!and!hate!to!engage!with!mainstream!audiences!around!a!common!topic!
of!interest,!and!potentially!push!them!toward!hateful!views.
!
Implication!5!is!that!it!is!highly!unlikely!that!the!multiverse!in!Fig.!1B!is,!or!could!be,!coordinated!by!a!
single!state!actor,!given!its!vast!decentralized!nature.!We!have!checked!for!signals!of!Russian-
sponsored!campaigns.!Since!many!hate!clusters!organize!around!the!topics!of!minorities!and!refugees,!
we!expected!to!find!frequent!links!to!Russian!media,!but!instead!only!found!a!small!portion!of!clusters!
linking!to!Kremlin-affiliated!domains.!These!links!accounted!for!<0.5%!of!all!posts!shared.!This!is!also!
consistent!with!the!notion!that!the!extended!nature!of!exchanges!in!a!cluster!(i.e.!online!community)!
enables!it!to!collectively!weed!out!unwanted!trolls!and!bot-like!members.!!
Working(paper:(to(be(updated(
5
!
Figure'3:'Wormhole'Engineering'to'Mitigate'Malicious'Content'Spreading.'A-B:'Typical'motifs'within'the'full'
multiverse'in'Fig.'1B.''
C:'Mathematical'prediction'for'motif'A,'showing'that'the'distribution'of'shortest'paths'(top'panel,'shown'
unnormalized)'for'transporting'malicious'matter'across'a'platform'(i.e.'universe'1)'can'be'shifted'to'larger'values'
(bottom'panel)'which'will'then'delay'spreading'and'will'increase'the'chance'that'the'malicious'matter'is'detected'
and'removed'[11,12].'This'is'achieved'by'manipulating'the'risk'that'the'hate'material'gets'detected'when'passing'via'
the'other'platform:'this'risk'represents'a'cost'for'the'hate'community'in'universe'1'when'using'the'blue'node(s).'
Same'mathematics'applies'irrespective'of'whether'each'blue'node'is'a'single'cluster'or'an'entire'platform,'and'
applies'when'both'blue'clusters'are'in'the'same'platform'or'are'in'different'platforms.'See'SI'for'case'B.''
D-F:'Mathematical'prediction'that'the'total'online'support'for'malicious'matter'can'be'manipulated'by'varying'the'
online'pool'size'of'potential'supporters'N(t)'and/or'their'heterogeneity'F(t).'E:'Empirical'outbreak'of'anti-U.S.'hate'
across'a'single'platform'(VKontakte)'produces'similar'shape'to'upper'curve'in'D.'F:'Empirical'outbreak'for'the'proxy'
system'of'predatory'‘buy’'algorithms'across'multiple'electronic'platforms'[13]'produces'similar'shape'to'lower'
curve'in'D.'(See'SI'for'details).''
'
!
Implication!6!addresses!the!key!issue!that!coordinated!moderation!between!all!platforms!--!while!
highly!desirable!--!may!not!be!possible.!To!bypass!this,!our!mathematical!predictions!suggest!that!
bilateral!wormhole!engineering!could!be!used!by!platforms!to!artificially!lengthen!the!pathways!that!
Working(paper:(to(be(updated(
6
malicious!matter!needs!to!take!between!clusters,!hence!increasing!the!chances!of!its!detection!by!
regulators!and!also!delaying!the!spread!of!time-sensitive!material!such!as!hate!manifestos!and!real-
time!streaming!of!attacks!(see!SI!for!details).!This!involves!the!following!repeated!process:!first,!pairs!
of!platforms!use!Fig.!1B!to!estimate!the!likely!numbers!of!wormholes!between!them.!Then!without!
having!to!exchange!any!sensitive!data,!each!can!then!use!our!mathematical!formulae!(see!SI)!to!
engineer!the!correct!cost!w!for!hate-spreaders!who!are!exploiting!their!platform!as!a!pathway,!e.g.!they!
focus!available!moderator!time!to!achieve!a!particular!detection!rate!for!hate!material!passing!through!
their!platform!and!hence!create!an!effective!cost!w!for!these!hate-spreaders!in!terms!of!detection!and!
removal.!While!Figs.!3A,B!show!common!situations!that!arise!in!Fig.!1B,!more!complex!combinations!
can!be!described!using!similar!calculations!(see!SI)!in!order!to!predict!how!the!path!lengths!for!hate!
material!can!be!artificially!extended!in!a!similar!way!to!Fig.!3C.
!
With!or!without!such!wormhole!engineering,!the!dynamics!of!how!malicious!matter!passes!across!the!
multiverse!in!Fig.!1B!is!highly!complex!since!there!are!wormholes!(and!hence!pathways)!opening!and!
closing!(or!getting!restricted)!in!real!time,!and!hence!subsets!of!clusters!effectively!coalescing!or!
fragmenting!as!in!Fig.!1C.!Despite!this!complexity,!we!can!provide!the!condition!that!needs!to!be!met!to!
prevent!multiverse-wide!spreading!of!a!particular!piece!of!malicious!matter!(see!SI!for!derivation!
[14]).!This!no-spreading!condition!is!R0
! "#!"#$%$
)/(
𝜈&'#(%%
)!<!1!where!
𝜈!"#$
!(
𝜈&'#(
)!is!the!average!rate!
at!which!subsets!of!clusters!coalesce!(fragment)!within!and!across!platforms;!
$
!is!the!average!rate!at!
which!a!single!cluster!shares!material!with!another!cluster;!
%
!is!the!average!rate!at!which!a!single!
cluster!becomes!inactive.!These!parameters!can!be!estimated!empirically!or!from!simulations.!
Conversely!the!condition!for!system-wide!spreading,!which!can!be!used!to!guide!dissemination!of!
counter-messaging,!is!R0>!1.!While!
$
!and!
%
!are!properties!related!to!a!single!average!cluster!and!likely!
harder!to!manipulate,!platform!engineers!can!use!the!tools!at!their!disposal!to!try!to!change!
𝜈!"#$
!and!
𝜈&'#(
!and!hence!engineer!the!value!of!!R0.!If!no!such!wormhole!engineering!can!be!arranged,!our!
predictions!(see!SI)!show!that!an!alternative!though!far!more!challenging!way!of!reducing!the!spread!
of!hate!material!is!by!manipulating!either!(1)!the!size!N!of!its!online!potential!supporters!(e.g.!by!
placing!a!cap!on!the!size!of!clusters)!and/or!(2)!their!heterogeneity!F!(e.g.!by!introducing!other!content!
that!effectively!dilutes!a!cluster’s!focus).!Figure!3D!shows!examples!of!the!resulting!time-evolution!of!
the!online!support,!given!by!
&
'1
( )
'*
)
2
*+
,
+
,-$
*
)
2
*+
,
+.
/
*
)
2
*+
,
+.!where!the!resulting!delayed!onset!
time!for!the!rise!in!support!is!
0"-./+ !,
2
*
!and!where!
)
!is!the!Lambert!function![15].!Figures!3E!and!F!
show!related!empirical!findings!which!are!remarkably!similar!to!Fig.!3D.!Figure!3F!is!a!proxy!system!
[13]!in!which!ultrafast!predatory!algorithms!began!operating!across!electronic!platforms!to!attack!a!
financial!market!order!book!in!subsecond!time!(see!Ref.!13).!Hence!Fig.!3F!also!serves!to!show!what!
might!happen!in!the!future!if!the!hate!multiverse!in!Fig.!1B!were!to!become!populated!by!such!
predatory!algorithms!whose!purpose!is!now!to!quickly!spread!malicious!matter.!Worryingly,!Fig.!3F!
shows!that!this!could!result!in!a!multiverse-wide!rise!in!malicious!matter!on!an!ultrafast!timescale!that!
lies!beyond!human!reaction!times![13].!!
!
This!analysis!of!course!requires!follow-up!work.!Our!mathematical!formulae!are,!like!any!model,!
imperfect!approximations.!However,!we!have!checked!that!they!agree!with!large-scale!numerical!
simulations![11-15]!and!follow!similar!thinking!to!other!key!models!in!the!literature![16-18].!Going!
forward,!other!forms!of!malicious!matter!and!messaging!platforms!need!to!be!included.!However,!our!
initial!analysis!suggests!similar!findings!for!any!platforms!that!allow!communities!(i.e.,!clusters)!to!form.!
We!should!also!further!our!analysis!of!the!time-evolution!of!cluster!content!using!the!machine-learning!
Local!Dirichlet!Allocation!approach!and!other!methods.!We!could!also!define!links!differently,!e.g.!
numbers!of!members!that!clusters!have!in!common.!However,!such!information!is!not!publicly!available!
for!some!platforms,!e.g.!Facebook.!Moreover,!our!prior!study!of!a!Facebook-like!platform!where!such!
information!was!available,!showed!low/high!numbers!of!common!members!reflects!the!
Working(paper:(to(be(updated(
7
absence/existence!of!a!cluster-level!link,!hence!these!quantities!indeed!behave!similarly!to!each!other.!
People!can!be!members!of!multiple!clusters.!However!our!prior!analyses!suggest!only!a!small!percentage!
are!active!members!of!multiple!clusters.!In!terms!of!how!people!react!to!intervention,!it!is!known!that!
some!may!avoid!opposing!views![19]!while!for!others!it!may!harden!beliefs![20].!However,!what!will!
actually!happen!in!practice!remains!an!empirical!question.!!
!
!
!
!
Methods!
Our!methodology!for!identifying!clusters!and!links!builds!on!Refs.!7,!8!and!includes!links!between!
clusters!across!multiple!platforms.!More!details!are!provided!in!the!SI.!The!clusters!are!interest-based!
online!communities!(e.g.,!VKontakte!group).!We!include!mainstream!platforms!like!Facebook,!
VKontakte,!and!Instagram,!that!have!and!enforce!policies!against!hate!speech,!as!well!as!fringe!
platforms!with!minimal!content!policies!like!Gab,!Telegram,!and!4Chan.!While!the!method!can!be!
replicated!for!any!topic,!Fig.!1B!focuses!on!hate!and!hate-speech!defined!as!either!(a)!content!that!
would!fall!under!the!provisions!of!the!United!States’!Code!regarding!hate!crimes!or!hate!speech!
according!to!Department!of!Justice’s!guidelines,!or!(b)!content!that!supports!or!promotes!Fascist!
ideologies!or!regime!types!(i.e.!extreme!nationalism!and/or!racial!identitarianism).!On-line!
communities!promoting!hate!have!become!prevalent!globally!and!are!being!linked!to!many!recent!
violent!real-world!attacks,!including!the!2019!Christchurch!shootings.!We!observe!many!different!
forms!of!hate!adopting!similar!cross-platform!tricks.!Our!method!focuses!on!clusters!at!the!mesoscale!
and!posts!at!the!microscale,!thus!the!only!data!from!individuals!it!captures!is!the!content!of!their!posts,!
just!as!information!about!a!specific!molecule!of!water!is!not!needed!to!describe!the!bubbles!(i.e.,!
clusters!of!correlated!molecules)!that!form!in!boiling!water.!We!define!a!cluster!(e.g.!Facebook!fan!
page,!VKontakte!club)!as!a!hate!cluster!if!at!least!2!out!of!20!of!its!most!recent!posts!at!the!time!of!
classification!align!with!the!above!definition!of!hate.!Whether!a!particular!cluster!is!strictly!a!hate!
philosophy,!or!simply!shows!material!with!tendencies!toward!hate,!does!not!alter!our!main!findings.!
Links!between!clusters!are!hyperlinks!(see!for!example,!Fig.!2A).!Our!network!analysis!for!Fig.!1B!
starts!from!a!given!hate!cluster!A!and!captures!any!cluster!B!to!which!hate!cluster!A!has!shared!an!
explicit!cluster-level!link.!We!developed!software!to!perform!this!process!automatically!and,!upon!
cross-checking!the!findings!with!our!manual!list,!were!able!to!obtain!approximately!90!percent!
consistency!between!manual!and!automated!versions.!Figure!2A!shows!an!example!of!clusters!and!
wormholes!between!them,!from!our!analysis.!Figure!1E!shows!typical!output!from!our!model!(Fig.!
1C,D)!with!
𝜈!"#$ !
0
1
95,!
𝜈&'#(
=0.05,!
$ !
0
1
05!for!all!four!panels.!For!4Chan!and!Telegram!
% !
0
1
01;!for!
Gab!and!Facebook!
% !
0
1
005.!All!four!fits!use!these!same!two!model!outputs!suitably!scaled.!Output!is!
smoothed!over!timepoints!like!the!empirical!data!which!is!collected!daily.!Better!fits!can!be!obtained!
by!optimizing!parameter!choice!but!our!purpose!here!is!just!to!show!that!typical!output!from!our!
model!captures!the!observed!features!of!the!empirical!spreading.!All!but!one!node!in!Fig.!1B!is!plotted!
using!the!ForceAtlas2!algorithm,!which!simulates!a!physical!system!where!nodes!(clusters)!repel!each!
other!while!links!act!as!springs,!and!nodes!that!are!connected!through!a!link!attract!each!other.!Hence!
nodes!(clusters)!closer!to!each!other!have!more!highly!interconnected!local!environments!while!those!
farther!apart!do!not.!The!exception!to!this!Force!Atlas2!layout!in!Fig.!1B!is!Gab!group!407*!(“Chinese!
Coronavirus”,!https://gab.com/groups/407*),!see!small!black!square!in!Fig.!1B)!which!was!manually!
placed!in!a!less!crowded!area!to!facilitate!its!visibility.!This!particular!cluster!was!created!in!early!2020!
with!a!focus!on!discussing!the!COVID19!pandemic!--!however,!it!immediately!mixed!hate!with!fake!
news!and!science,!as!well!as!conspiratorial!content.!
!
!
!
Working(paper:(to(be(updated(
8
References!
1.!R.!Iyengar.!The!coronavirus!is!stretching!Facebook!to!its!limits.!March!18,!2020.!See!!
https://www.cnn.com/2020/03/18/tech/zuckerberg-facebook-coronavirus-response/index.html!
2.!J.!Guy.!East!Asian!student!assaulted!in!'racist'!coronavirus!attack!in!London.!CNN,!March!3,!2020.!See!
www.cnn.com/2020/03/03/uk/coronavirus-assault-student-london-scli-intl-gbr/index.html;!!
H.!Yan.!What's!spreading!faster!than!coronavirus!in!the!US?!Racist!assaults!and!ignorant!attacks!
against!Asians.!CNN,!February!21,!2020:!see!
www.cnn.com/2020/02/20/us/coronavirus-racist-attacks-against-asian-americans/index.html;!!
M.!Rajagopalan.!Men!Yelling!“Chinese”!Tried!To!Punch!Her!Off!Her!Bike.!She’s!The!Latest!Victim!Of!
Racist!Attacks!Linked!To!Coronavirus.!Jiye!Seong-Yu’s!experience!in!the!Netherlands!is!being!
replicated!across!Europe!as!racist!attacks!linked!to!the!novel!coronavirus!spike.!
BuzzFeed!News,!March!4,!2020:!www.buzzfeednews.com/article/meghara/coronavirus-racism-
europe-covid-19!
3.!Coronavirus:!At!least!23!killed!in!Colombia!prison!unrest.!March!23,!2020.!See!
https://www.bbc.com/news/world-latin-america-51999594!
4.!S.!Frenkel,!D.!Alba!and!R.!Zhong.!Surge!of!Virus!Misinformation!Stumps!Facebook!and!Twitter.!The!
New!York!Times,!March!8,!2020:!www.nytimes.com/2020/03/08/technology/coronavirus-
misinformation-social-media.html!
5.!THE!U.K.!GOVERNMENT!RESPONSE!TO!THE!FOURTEENTH!REPORT!FROM!THE!HOME!AFFAIRS!
SELECT!COMMITTEE!SESSION!2016-17!HC!609:!“Hate!crime:!abuse,!hate!and!extremism!online”!
Presented!to!Parliament!by!the!Secretary!of!State!for!the!Home!Department,!Dec!2017.!Available!at!
https://www.parliament.uk/documents/commons-committees/home-affairs/Correspondence-17-
19/Hate-crime-abuse-hate-and%20extremism-online-Government-Response-to-Fourteenth-
Committee-Report-16-17.pdf!
6.!D.!Shepardson.!Facebook,!Google!defend!efforts!to!remove!hate!speech!before!Congress.!Reuters,!
April!9,!2019:!www.reuters.com/article/us-usa-congress-socialmedia/facebook-google-defend-
efforts-to-remove-hate-speech-before-congress-idUSKCN1RL2E0!
7.!N.F.!Johnson,!R.!Leahy,!N.!Johnson!Restrepo,!N.!Velasquez,!M.!Zheng,!P.!Manrique,!P.!and!S.!Wuchty.!
Hidden!resilience!and!adaptive!dynamics!of!the!global!online!hate!ecology.!Nature!573,!261!(2019)!!
8.!N.F.!Johnson,!M.!Zheng,!Y.!Vorobyeva,!A.!Gabriel,!H.!Qi,!N.!Velasquez,!P.!Manrique,!D.!Johnson,!E.!
Restrepo,!C.!Song,!S.!Wuchty.!New!online!ecology!of!adversarial!aggregates:!ISIS!and!beyond.!Science!
352,!1459!(2016)!
9.!T.!Ammari,!S.!Schoenebeck.!“Thanks!for!your!interest!in!our!Facebook!group,!but!it's!only!for!dads:”!
Social!Roles!of!Stay-at-Home!Dads.!CSCW!'16,!February!27-March!02,!2016,!San!Francisco,!CA,!USA.!
http://dx.doi.org/10.1145/2818048.2819927!
10.!D.M.!Blei,!A.Y.!Ng,!M.I.!Jordan.!Latent!Dirichlet!Allocation.!Journal!of!Machine!Learning!Research.!3,!
993–1022!(2003).!doi:10.1162/jmlr.2003.3.4-5.993!
11.!D.J.!Ashton,!T.C.!Jarrett!and!N.F.!Johnson.!Effect!of!Congestion!Costs!on!Shortest!Paths!Through!
Complex!Networks.!Phys.!Rev.!Lett.!94,!058701!(2005)!!
12.!T.C.!Jarrett,!D.J.!Ashton,!M.!Fricker!and!N.F.!Johnson.!Interplay!between!function!and!structure!in!
complex!networks.!Phys.!Rev.!E!74,!026116!(2006)!
13.!N.F.!Johnson.!To!slow!or!not?!Challenges!in!subsecond!networks.!Science!355,!801!(2017)!
14.!Z.!Zhao,!J.P.!Calderon,!C.!Xu,!G.!Zhao,!D.!Fenn,!D.!Sornette,!R.!Crane,!P.M.!Hui,!N.F.!Johnson.!Effect!of!
social!group!dynamics!on!contagion.!Phys.!Rev.!E!81,!056107!(2010)!!
15.!P.D.!Manrique,!M.Zheng,!Z.!Cao,!E.M.!Restrepo,!N.F.!Johnson!.!Generalized!gelation!theory!describes!
onset!of!online!extremist!support.!Phys.!Rev.!Lett.!121,!048301!(2018)!
16.!S.!Gavrilets.!Collective!action!and!the!collaborative!brain.!J.!R.!Soc.!Interface!12,!20141067!(2015)!
17.!S.!Havlin,!D.Y.!Kenett,!A.!Bashan,!J.!Gao,!H.E.!Stanley.!Vulnerability!of!network!of!networks.!The!
European!Physical!Journal!Special!Topics.!223,!2087!(2014)!
Working(paper:(to(be(updated(
9
18.!G.!Palla,!A.L.!Barabasi,!T.!Vicsek.!Quantifying!social!group!evolution.!Nature!446,!664!(2007)!!!
19.!J.A.!Frimer,!L.J.!Skitka,!M.!Motyl.!Liberals!and!conservatives!are!similarly!motivated!to!avoid!
exposure!to!one!another's!opinions.!Journal!of!Experimental!Social!Psychology,!72!(2017)!!
10.1016/j.jesp.2017.04.003!
20.!C.A.!Bail,!L.P.!Argyle,!T.W.!Brown,!J.P.!Bumpus,!H.!Chen,!M.B.!Fallin!Hunzaker,!J.!Lee,!M.!Mann,!F.!
Merhout,!A.!Volfovsky.!Exposure!to!opposing!views!on!social!media!can!increase!political!polarization.!
PNAS!115,!9216-9221!(2018)!https://doi.org/10.1073/pnas.1804840115!
!
!
!