Technical ReportPDF Available

A Look at COVID 19 in Terms of: 1. Respiratory Protection

Authors:

Abstract and Figures

Evaluation of Selection and Use, & Re-use of Surgical Masks & N95 Filtering Facepieces (FF) for SARs-CoV-2
Content may be subject to copyright.
Page1 COVID19Pt1 Rev6,0323020
©2020A.Havics
ALookatCOVID19inTermsof:1.RespiratoryProtection
AndrewA.“Tony”Havics,CIH,PE
pH2,LLC
5250EUSHighway36,Suite830
Avon,IN46123
(317)7218‐7020Office
(317)409‐3238Cell
Introduction
TheworldhasbeeninundatedwithvariousmessagesaboutprotectionandcontrolsforCOVID‐19(more
correctlySARs‐CoV‐2(1),buthereaftercalledCOVID‐19forpubliccontinuity’ssake).Aswithany
biologicalagent,themechanismsforprotectionfromdiseasevary.Oneofthemostprominentand
highlydiscussedisthatofrespiratoryprotection.Considerationofrespiratoryprotectionduring
outbreaksorpandemicshasbeendiscussedtovariousextents[(2‐14)]giventheoutbreaksofSARs,MERs,
H1N1,in2003,2012‐2015,and2009.ThecurrentoutbreakofCOVID‐19isnodifferent.Thispaperis
intendedtoprovidethefactsandresearchsupportwhereavailable,andthendrawfromthataswellas
theauthor’sexperiencetoproviderecommendationsbasedtheweightingoftheevidence.Thedata
providedhereandtherecommendationscannotbemaintainedinavacuum,thusotherCOVID19
topicalpapersareintendedtofollowthisone,buteachwillhopefullybesufficientlyself‐containedtobe
usefulandreliable.Theintendedaudienceofthispaperisprofessionals.Thisincludesindustrial
hygienists,occupationalandpublichealthprofessionals,healthandsafetypractitioners,andmedical
personnel.Itisnotintendedforthegeneralpublic,thoughmanyindividualsmaybenefitfromreading
it.
RespiratoryProtectionClassification
Itisimportanttounderstandthecapacityofvariousrespiratoryprotectiondevicestoprotectagainst
particulateingeneralandbiologicalagentsasspecificbioaerosols,suchasCOVID‐19.Beforedoingso,
oneshouldseparaterespiratoryprotectionintheformofthoseintendedforonetimeorlimiteduse
suchasSurgicalMasksandFilteringFacepieces(FFs)fromotherrepeatuserespiratorssuchashalf‐face
negativepressurerespirators(1/2‐faceNPRs),full‐facenegativepressurerespirators(full‐faceNPRs),
andpositivepressurePoweredAirPurifyingRespirators(PAPRs).Duetothelackofrealneedinhealth
caresettingsrespondingtoCOVID19forotherhigherlevelsofprotectionsuchassuppliedair
respirators(SARs)andSelf‐ContainedBreathingApparatus(SCBA),thesewillnotbediscussed.The
needtodifferentiatethetypesofrespiratoryprotectiontobeemployedintheresponsetoany
pandemicisthatthesehavedifferentmethodsofconstruction,operation,regulatorycontrols,and
intendeduse.Inaddition,oneshouldunderstandthatthepurposeofasurgicalmaskistoprotectthe
wearerfromfluids,largedroplets,splashes,orspraysandprotectthepatientfromthewearer’s
respiratoryemissions.Thisfluidresistanceisimportantforprotectionfromcoughingandsneezing.The
purposeofanN95FFistoreduceswearer’sexposuretoparticlesincludingsmallparticleaerosolsand
largedroplets.OnedoesnotperformausersealcheckonasurgicalmaskbutitisrequiredforanN95
Page2 COVID19Pt1 Rev6,0323020
©2020A.Havics
FF.AnN95isintendedtobeatleast95%onamassbasisunderlaboratorytestingofNaClparticleswith
countmediandiameterof0.075um(per42CFR84.181).Thisisapproximatelythemostpenetrating
size(seebelow).
RespiratorEfficiency
Tobegin,onecanevaluatethegeneralaerosolcontrolbyafilteringfacepieceorarespirator.One
considersanaerosolasasolidand/orliquidparticledispersedinagaseousmedium(air)(15).Forthe
varioustypesofrespiratoryprotection,oneobservesthattherearedifferencesinthecapacityto
removeunwantedaerosolsingeneral,andbioaerosolsmoreappropriately.Inthecaseofbioaerosols,
thesemaybemoldspores,bacteria,bacteriophage,viruses,parasites,biofluids,etc.Thesizesofthese
rangefromvirusesat0.02‐0.5μmtobacteriaat0.2‐10μmtofungiat1‐500μm.Thelikelihoodofa
biologicalagentbecomingandstayingairbornewillvaryandisthesubjectofanotherpaper(16).Suffice
tosaythatabsentbeingpresentduringdirectaerosolization(cough,sneeze,surgicalormedical
proceduraldisturbance,etc.),theriskofaerosoltransmissionisnotexpectedtobeaprimaryrouteof
concern(16,17).Thedifferenttypesofrespiratoryprotectionhavebeentestedonbothgeneralparticulate
andspecificbiologicalagentsasseeninTable1below.Onemustrememberthatdespitetypicalsize
differencesinagents,theytendtoaggregateorattachthemselvestootherparticlesmakingthemoften
largerthantheiroriginalsize.Thisisclearfromreviewsofnumerousstudies(18).Whileitistruethat
someagents(fungi,bacteria,insects)canmoreeasilybecomefragmentedandstillpresentallergic
responses,theprimaryconcernisagent‐specificinfectivity,whichisrelatedtoviability.Physical
penetrationisnotthesameasviabilityafterphysicalpenetration(19,20).
Theauthorhasheardanumberofindividualsindicatethattheyareconcernedthatvirusesaresmaller
than0.3μminsizeandthusHEPAfilterswillnotefficientlycapturethem.HEPAfilters,usedin
respiratorsandairfiltrationdevices,aretestedtobe99.97%efficiencyat0.3μmaerosolsizebecause
themostpenetrableparticleisintherangeof0.2‐0.45μm,dependingonthefiltermediacharacteristics
andtheflowrate.Theefficiencybelowandabovethatmostpenetrablepointisbetterbecausethere
aremultiplecapturemechanisms(interception,inertialimpaction,diffusion,gravitationalsettling,
electrostaticattraction)andeachhasitsowncaptureefficiency.Thesumoftheseproducesacapture
curvethathasashapelikethatinFigure1(figurefromHinds(21)).
Page3 COVID19Pt1 Rev6,0323020
©2020A.Havics
Figure1.Filtrationefficiencyandmostpenetratingparticlesizebycapturemechanism.FromHinds,1982.
N95Filteringfacepieces(N95FFs)tendtohaveamaximumpenetrationbetween0.040‐0.200μm(22‐28).
TheefficiencyalsoissimilartotheHEPAinthatitincreasesatlessthanormorethanthemost
penetratingparticlesize.Theweightoftheevidenceclearlyindicatespoorperformancebysurgical
masks,andyetgenerallysufficientforN95FFuseswhenwornproperly(seeTable1below).
Considerationofnewdata(29)regardingaerosolsizing(byPCRanalysisofairsamples)inWuhan
Hospitalsindicatespeakconcentrationof40and9copiesSARS‐CoV‐2aerosolspercubicmeterinthe
0.25to0.5μmand0.5to1.0μmsizeranges,respectively.
Thisaspectofbeingwornproperlyhasbeendemonstratedbythevariabilitybetweenusers(30),
difficultiesfittingandintentionalattemptsatleakagecreationonmanikins,andbyanyonewhohas
performedtestingusingaparticlecounter(suchasTSI’sPortacountA)whereminoradjustmentsinmask
fitcanbringaboutsignificantchangesinFitFactor.FitFactor(FtF)isaratiobetweentheconcentration
outsidetherespiratoryprotectivedevicedividedbytheconcentrationinsidethemaskduringafittest,
oftenmeasuredintermsofverysmallparticles,asseeninequation1.
Equation1.FtF=Coutside/Cinside
Onenotesthatfiltrationefficiencyis:
Equation2: %E=100(Coutside‐Cinside)/(Coutside)
Onecanrearrangetheseequationstoshowthat:
Equation3: %E=100([1–(1/FtF)]
AAUseoftradenames,products,orproductmanufacturerdoesnotrepresentanendorsement,butratherare
usedforfactualexamplesorhypotheticalexamples.
Page4 COVID19Pt1 Rev6,0323020
©2020A.Havics
OnecancontinueandsolveforFtFintermsof%Etoarriveat:
Equation4: FtF= 1_____
[1(%E/100)]
So,anoverallFitFactorof500isequivalenttoanoverallnominalefficiencyof99.8%whereasaFtFof
100isequivalenttoanefficiencyof99%.Similarly,anefficiencyof95%equatestoaFtFof20.When
performedinthefieldreal‐time,theFtFratioisreferredtoasaWorkplaceProtectionFactor(WPF).FtF
evaluatestherespiratoryprotectivedeviceundercontrolledlabconditionswhereasaWPFrepresents
real‐worldconditions.Toaccountfordifferencesbetweenlabtesting(FtF)aswellasvariabilityinactual
workplaces(asrepresentedbyWPF),onerequiresaFitFactorthatresultsinahigherefficiencythanthe
statednominalfilterefficiencyofarespiratoryprotectivedeviceinordertobeconsiderasuccessfulfit
test,e.g.,a100FtFforaN95FF.
Table1.Lab&FieldEfficiencyTestingofN95FF,SurgicalMasks,andImpromptuClothMasks
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
SurgicalMask SM2Virus 15‐98 Balazy,2006a(31)
SurgicalMask M.Luteus(0.9‐1.8μm) 61.2‐75.3 Anon,1997
(restricted)
SurgicalMask B.subtilis(0.75‐2.5μm) 74.2‐90.6 Anon,1997
(restricted)
SurgicalMask Bacteriophage(0.06‐0.15
μm)†
21.8‐58.7 Anon,1997
(restricted)
SurgicalMaskw
Leakage
M.Luteus(0.9‐1.8μm) 31‐47.4 Anon,1997
(restricted)
SurgicalMaskw
Leakage
B.subtilis(0.75‐2.5μm) 4.7‐40.6 Anon,1997
(restricted)
SurgicalMaskw
Leakage
Bacteriophage(0.06‐0.15
μm)†
2.4‐6 Anon,1997
(restricted)
SurgicalMasks B.anthracis(1‐1.5x1‐8μm) 45‐65 Davidson,2006(32,33)
SurgicalMask Ambientparticles 66.7 Derrick,2006
SurgicalMask Ambientparticles ~51 Grinsphun,2009(34)
SurgicalMask BSubtilis(0.7‐0.8x1.5‐1.8
μm)
67 Johnson,1994(35)
SurgicalMask Ambientparticles 41.1‐80.8 Lee,2008(22)
SurgicalMask Mycobacteriumabcsesus
(0.3‐0.5x1‐4μm)
~0.5 McCullough,1997(36)
SurgicalMask Staphylococcusepidermis
(0.5‐1.5μm)
~0.6 McCullough,1997(36)
SurgicalMask Bsubtilis(0.5‐0.8x2‐3μm) ~7.5 McCullough,1997(36)
SurgicalMask Mycobacteriumabcsesus
(0.3‐0.5x1‐4μm)
8‐95.8 McCullough,1996
Page5 COVID19Pt1 Rev6,0323020
©2020A.Havics
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
SurgicalMask Staphylococcusepidermis
(0.5‐1.5μm)
8‐94.4 McCullough,1996
SurgicalMask Bsubtilis(0.5‐0.8x2‐3μm) 12‐97.4 McCullough,1996
SurgicalMasks Ambientparticles 1Mask63.0
2Masks73.7
3Masks78.3
5Masks81.8
Derrick,2005(37)
SurgicalMask NaCl(0.3μm)
LatexSpheres(0.8μm)
LatexSpheres(2μm)
LatexSpheres(3μm)
9.8‐96.04
18.3‐99.96
22.8‐99.99
32.6‐99.98
Oberg,2008(38)
SurgicalMask LatexSpheres(0.03,0.1,0.5,
1,2.5μm)
78‐94 Shakya,2017
SurgicalMask Cornoil(0.02‐1μm) 0‐80 Weber,1993(39)
SurgicalMask A.baumannii,E.faecalis,
andB.subtilis
98.4‐98.6 Tseng,2016(40)
Surgicalmask Mycobacteriumabcsesus 76.9GM Brousseau,1997(41)
SurgicalMask Ambienthomehealthcare 50‐88.89 Elmashae,2017(42)
SurgicalMask NaCl(0.02‐0.50μm) 89‐93% He,2014(43)
SurgicalMask MS2phage 91.7‐92.0 Eninger,2009(44)
SurgicalMask NaClparticles 0‐98.5 Guha,2017(45)
SurgicalMask Staphylococcusepidermidis
(0.93μm)
~86‐99 Jeong,2019(46)
SurgicalMask Escherichiacoli(0.82μm) ~82‐98 Jeong,2019(46)
SurgicalMask Steptococcussalivarus(0.8‐
1μm)
~90 Willeke,1996(47)
SurgicalMask Psuedomonasfluorescens
(0.3‐0.5x1.0‐1.5μm)
~92 Willeke,1996(47)
SurgicalMask CornOil ~69 Willeke,1996(47)
SurgicalMask Bacillusalcalophilus(0.7‐0.9
x3‐4μm)
~94 Willeke,1996(47)
SurgicalMask Bacillusmagetherium(1.2‐
1.5x2‐5μm)
~95.8 Willeke,1996(47)
SurgicalMask NaClParticles(0.02‐1μm) 8‐92 Rengasamy,2009b(48)
SurgicalMask NaClParticles(0.04‐0.60
μm)
90.96‐99.25 Rengasamy,2013(49)
SurgicalMask LatexParticles 0.5μm47.78‐51
1.0μm71.06‐84.22
2.0μm69.76‐85.26
Sanchez,2010(50)
SurgicalMask,
Unsealed
LatexParticles,1um 0.5μm3.83‐43.81
1.0μm58.3‐75.58
2.0μm58.87‐79.67
Sanchez,2010(50)
SurgicalMask MS2phagedroplets(0.54‐
100μm)
78.69‐80.43 Vo,2012(51)
Page6 COVID19Pt1 Rev6,0323020
©2020A.Havics
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
SurgicalMask M.Luteus(0.9‐1.8μm) 17.2‐99.64 Wake,1997(52)
SurgicalMask B.subtilis(0.7‐0.8x2‐3μm) 30.4‐>99.9 Wake,1997(52)
SurgicalMask P.alcaligens(0.5x2‐3μm) 75‐85 Wake,1997(52)
SurgicalMask Cornoil(0.1‐4μm) 0‐80 Weber,1993(39)
SurgicalMask NotSpecified 0‐80 Willeke,1994(53)
ClothMask LatexSpheres(0.03,0.1,0.5,
1,2.5μm)
15‐57(countbasis)
13‐40(massbasis)
Shakya,2017
T‐shirts,scarvesand
clothmasks
NaCl(0.020‐1μm) 10‐60 Rengasamy,2010(54)
Shirt
Towel
Handkerchief
Nylonhosiery
DOP 4
14
2
67
Cooper,1983(55)
GFFilterSheet Mycobacteriumchelonae
(0.65‐0.22μm)
86,1Layer*
99.9,2Layers
99.95,3Layers
99.999,4Layers
Brousseau,1994(56)
DM Mycobacteriumabcsesus 96.3GM Brousseau,1997(41)
DMF Mycobacteriumabcsesus 99.39GM Brousseau,1997(41)
FF Cornoil 25‐>99 Chen,1992(57)
N95FF SM2Virus 94.5‐99.5 Balazy,2006a(31)
N95FF 0.02‐0.2μmNaClPM 94‐99.9 Balazy,2006b(58)
N95FF 0.02‐0.2μmNaClPM 95‐98.5 Brochot,2015(59)
N95FF B.anthracis(1‐1.5x1‐8μm) 49‐62 Davidson,2006(32,33)
N95FF Ambientparticles 99.03 Derrick,2006
N95FF MS2Bacteriophagevirus 98.2‐98.3 Eninger,2008(19)
N95FF MS2Bacteriophage ~96.5 Eninger,2008(60)
N95FF Bsubtilisphage ~98.1 Eninger,2008(60)
N95FF T4Phage ~99.1 Eninger,2008(60)
N95FF Ambientparticles ~91 Grinsphun,2009(34)
N95FF NaCl(0.006‐220μm) 97.5‐99.5 IRSST,2013(23)
N95FF Ambientparticles ~91‐96 Lee,200822)
N95FF Culturablebacteria ~64‐98 Lee,200622)
N95FF Culturablefungi ~87.5‐99.7 Lee,200622)
N95FF TotalFungi ~62‐99.7 Lee,200622)
N95FF Bsubtilis(0.7‐0.8x2‐3μm) 99.5+ Qian,1998(61)
N95FF Mycobacteriumtuberculosis
(0.3‐0.6x1‐4μm)
99.5+ Qian,1998(61)
N95FF BMegatherium(1.2‐1.5x2‐
5μm)
99.5+ Qian,1998(61)
N95FF NaCl 94.9‐97.2 Ramirez,2015(24)
N95FF NaCL(0.02‐1μm) 94.8‐98.6 Rengasamy,2011(25)
N95FF NaCl(0.2μm) 96.2‐96.8 Willeke,1998(62)
N95FF BSubtilis(0.8μm) >99.5 Willeke,1998(62)
Page7 COVID19Pt1 Rev6,0323020
©2020A.Havics
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
N95FF NaCl(0.020‐1μm) 99.88 
N95FF Ambientparticles 96‐99+ Bergman,2015(63)
N95FF Ambienthomehealthcare 96.55‐97.5 Elmashae,2017(42)
N95FF MS2phage 98.9‐99.9+ Gardner,2013(64)
N95FF MS2phage 99.28‐99.30 Eninger,2009(44)
N95FF LatexSpheres 79.2‐99.3 Eshbaugh,2008(26)
N95FF NaClparticles ~99.75 Han,2012(27)
N95FF LatexSpheres 99.17‐99.995 Harnish,2016(28)
N95FF H1N1Virus 99.26‐99.997 Harnish,2016(28)
N95FF H1N1Virus 98.56‐99.996 Harnish,2013(65)
N95FF LatexSpheres 98.37‐99.999 Harnish,2013(65)
N95FF NaCl(0.02‐0.50μm) 99‐99.6% He,2014(43)
N95FF Ambientparticles(IV
treatment&Woundcare)
99.42‐99.91% Hauge,2012(66)
N95FF Staphylococcusepidermidis
(0.93μm)
Avg99.6 Jeong,2019(46)
N95FF Escherichiacoli(0.82μm) Min90.5
Avg99.1
Jeong,2019(46)
N95FF NaCl(0.02‐0.4μm) 99.435‐99.99 Rengasamy(67),2009a
N95FF SilverParticles(0.004‐0.02
μm)
81.9‐99.98 Rengasamy,2008(68)
N95FF NaClParticles(0.04‐0.60
μm)
99.386‐99.986 Rengasamy,2013(49)
N95FF NaClParticles(0.02‐0.4μm) 98.76‐99.39 Rengasamy,2007(69)
N95FF LatexParticles(0.025‐0.099
μm)
~95.3‐96@65nm Hurata,2008(70)
N95FF MS2phagedroplets(0.54‐
100μm)
96.17‐98.18 Vo,2012(51)
N95FF InfluenzaA 99.6‐99.7 Zhou,2018(71)
N95FF Rhinovirustype14 99.6‐99.9 Zhou,2018(71)
N95FF BacteriophageΦΧ174, 99.5‐>99.9 Zhou,2018(71)
N95FF Staphylococcusaureus 99.7‐>99.9+ Zhou,2018(71)
N95FF Paraffinoil >99.3 Zhou,2018(71)
N95FF NaClParticulate >99.3 Zhou,2018(71)
N95FF NaClParticulate(0.02‐2μm) 99.26‐99.36 Zhuang,2013(72)
N95FF NaClParticulate(0.04‐0.06
μm)
99.27 Zhuang,2013
N95FF Humanadenovirusserotype
1(0.048‐0.052μm)
95.27‐98.15§
Physical
Zuo,2013(73)
N95FF swineinfluenzaH3N2virus
(0.048‐0.052μm)
94.76‐97.04§
Physical
Zuo,2013(73)
N95FF M2phage 99.949‐99.984
ViralRNA
99.976‐99.992
Zuo,2015(20)
Page8 COVID19Pt1 Rev6,0323020
©2020A.Havics
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
Viable
N95FF&½‐faceN95 Endotoxininfield 99.64 Cho,2011(74)
N95FF&½‐faceN95 Fungiinfield 97.45 Cho,2011(74)
N95FF&½‐faceN95 1‐3‐β‐D‐Glucaninfield 97.11 Cho,2011(74)
*OnemightexpectaHEPAfiltertohave10layers
†Notindividual,butextractedE.Coli
§LowestefficiencyfromaN95FFthatisnotNIOSHcertified
Onequestionthatoftencomesupinconsiderationforfiltrationefficiencyishowlongcanamasksit
aroundbeforeitsfiltrationefficiencydegradesbeyondacceptable.Rottach(10)foundthatstraptension
capacitywasreducedovertimefor1of2modelsofN95FFwhenevaluatingthemafter1‐10yearsof
storage.Fitfactoreffectwasnotevaluated.Robergemeasuredtherestorativeforcesofstrapsforfive
simulateddonningsandreportedreductioninthestraploadforeachsuccessivedonningwiththe
majorityofthereductionoccurringafterthefirstdonning(75).However,theN95FFmodelwiththe
lowestrestorativestrapperformanceloadwasstillabletopassfit‐testing(anychangeinfitfactorwas
notreported).Viscusi(76)assessed21modelsofN95FFsrespiratorsthathadbeenstoredintheir
originalpackagingforaperiodofatleast6yearsinresearchlaboratoriesanddrywarehousefacilities,
rangingintemperaturebetween15.8Cand32.8CandRHbetween20%and80%.Ofthese,19of21had
minimumefficiencies>95%(96‐98.99),theothertwowereat94.17and94.51%.Theredidnotappear
tobeanycorrelationbetweenthelengthofstorageandfailuretopassthefiltrationtest.
Thereareseveralstudiesthatsupporttheuseofanykindofrespiratoryprotectiontoreduceriskof
disease.ThisincludesInfluenzaA(4,7,8,13)&B(13),TB(77),pH1N1(78),adenoviruses,human
metapneumovirus,coronavirus229E⁄NL63,parainfluenzaviruses1,2or3,influenzavirusesAorB,
respiratorysyncytialvirusAorB,rhinovirusA⁄BandcoronavirusOC43⁄HKU1(79),Streptococcus
pneumoniae,Bordetellapertussis,Chlamydiapneumoniae,MycoplasmapneumoniaeorHaemophilus
influenzatypeB(80),andgeneralinfectioncontrolatahospital(81).MacIntyre(82)hasperformedameta‐
analysisofmanyoftheseanddemonstratedthevalueofrespiratoryprotection.
Althoughrespiratoryprotectionisbeneficialforreducingpotentialinhalationexposure,itmaybecome
contaminatedwithbiologicalaerosols(seebelow).Threeaspectsofthiscontaminationneedtobe
addressedwhenconsideringappropriatenessfordeployment.Thefirstisre‐aerosolizationfromthe
devicebackintothepotentialbreathingzoneofothers.Thesecondiscontactcontaminationbetween
thedeviceandhands,fingers,forearms,orfomites(cellphones,pens,paper,tags,keys,etc.)(83‐85)ofthe
wearer.Thethirdisdecontaminationofthedeviceifpossibleorpreferred.
Thesecondaspect,contactcontamination,canbeaddressedbyclassicaltime‐distance‐shielding
protectivecontrols:appropriatehygienetechniques,limitingthetimeofuseandreuse,proper
selectionfortheseparametersgivenamountandfrequencyofusecombinedwithpotentialfor
exposure.Theseprotectivecontrolsarenottreatedfurtherinthispaper.Detailsonhygieneaspects
willbeprovidedinanotherpaper(86).Thethirdaspect,decontaminationwillbereviewedafterRPD
selectionundertheheadingDecontaminationofRespiratoryProtectionDevices.
Page9 COVID19Pt1 Rev6,0323020
©2020A.Havics
ContaminationPotential
Thepremiseforconsiderationofcontaminationmustfirstbeacceptedbeforetransferisevaluated.
Fisheretal.(87)modeledthecontaminationofN95FFandSurgicalMasks(SMs)usingtheNicas‐Jones(88)
model.Forthesimulatedaerosolcontaminationscenarios,estimatedfacemaskcontaminationranged
from19to202,549virusesandfrom13to182,477virusesforFFsandSMs,respectively.They
demonstratedcontaminationbydropletsprayproducedbyadirectcoughwouldleadto19viruses
becomingtrappedontheFForSM,givenadistanceof0.6m,aconcentrationof355virus/cough,a
particlespreadof3,800cm2,andanFilteringFacepieceareaof200cm2.Heimbuch(89)investigated52
N95FFswornbyhospitalstaffduringapproximately20minutecleaningofroomswhosepatientshad
beendischarged.Thesewereanalyzedandfoundtocontainanaverageloadingofmicrobesranged
from6.2×102to4.8×103CFU/mask.Approximately97%ofthecontaminationwasfoundonthe
externallayer.Mostoftheisolatesrecoveredwerecoagulase‐negative,Gram‐positivestaphylococci
andMicrococcusspp.Additionaldata(90)fromthissamestudyrevealedloadingofupto24.15CFU/cm2
and3.33CFU/cm2forthetwotypesofN95FFsused.Jackowicz(91)evaluatedsurvivalonFFsbyanalyzing
in‐field(15‐120minusage)FFsfromagriculturalusageandthesameFFmaterialunderlabtreatments
for3bacteriaE.Coli,B.subtilis,B.subtilis,andtwofungi,C.albicans,andA.niger.Airsamplingduring
activitieswas7.5x103to7.2x104CFU/m3culturablebacteriacountand3.9x103to1.7x104CFU/m3
culturablefungalcount.FungionFFsrangedfrom10,000to~315,000CFU/cm2whereasbacteria
rangedfrom~30,000‐200,000CFU/cm2.Inlabtesting,E.Coliincreasedwithinthefirst24hoursthen
heldsteadyuntildecreasingafter72hours.B.subtilisincreased3ordersofmagnitudewithinthefirst
24hoursthenheldsteadyuntildecreasingafter72hours.B.subtilisstayedconsistentlythesame
throughthelengthofthetest(120hours).C.albicansincreasedslightlywithinthefirst24hoursthen
heldsteadyuntildecreasingafter96hours,andA.nigerstayedconsistentlythesamethroughthe
lengthofthetest(120hours).
Aspartofdesigningatestmethodology,Fisher(92)aerosolizedMS2phageontoN95FFcoupons.The
N95shadthreelayers.Outerandmiddlelayerdepositionvariedbymediumusedbutrangedfrom20‐
80%,whereastheinnerlayer(closesttoawearer)had<2%deposition.Tseng(40)directlyapplieddrops,
usedaspraybottle,andanebulizertoapplA.baumannii,E.faecalis,andB.subtilistosurgicalmasksat
10E3to10E8CFU/m3.Filtrationefficienciesforall3taxawerefoundtobe98.4‐98.6%.Thesemasks
werethentestingusingNaClparticlesandfoundtobe77.6‐79.4%efficient.
Inastudyatastudenthealthcenter,12participantswereassessedforinfluenzavirusexposureover12
days.Only3of127airsampleswerepositive,2of483surfacesamplesandnoneofthe54surgical
maskswerefoundtohaveviralcomponents(byPCR)(11).
Clearly,thepotentialforexternalcontaminationofsurgicalmasksandN95FFsexists.
AlthoughnotofrelevancetoCOVID19exposureoutsidethemask,butrelevantforsharingof
respiratoryprotection,inonestudy(93)self‐contaminationfrom1hourusageon3menrevealed7.8x104
to2.8x106CFU/maskonhalf‐facerespirators.Inthefacecontactarea,therewasa75%reductiontoa
50%increaseafter1dayofstorageinaplasticbagwith2of25testsshowinganincrease.Onthe
exhalationvaluearea,therewasa98%reductiontoa31%increaseafter1dayofstorageinaplastic
bag;with3of25testsshowinganincrease.Similarly,anotherstudybyHigami(94)revealedself‐
contaminationfrom1hourusageatlevelsof100‐4,000CFUbacteriapermlofwashing.Johnson(95)also
discoveredenvironmentalbacterialcontaminationontheinsideofN95FFsafter1dayofuse.
Page10 COVID19Pt1 Rev6,0323020
©2020A.Havics
AerosolizationPreventionbyRPD
Asmentionedearliersurgicalmaskspreventinhalationoflargeraerosols,whereasanN95FFprevents
bothlargeandveryfineaerosols.Anotherdesignaspectofsurgicalmasksistopreventthepatientfrom
exposuretothewearer’srespiratoryemissions.OnequestionishowwelldosurgicalmasksandN95FF
preventtransmissionfromthewearer.
Firstoneexaminesthenatureofcoughing&sneezing.OnemightexpectaTBpatienttocough2.6‐26
timesperhour(96).AlthoughWilliamsmeasuredthemediancoughfrequencyat466per24hour(19.4
cough/hr).Twoparticipantsproducedgreaterthan2000coughsoverthe24hoursamplingperiod(83.3
coughs/hr),nearly20‐foldmorethanthelowestvalueof39(1.625coughs/hr).Loudon(97)found12
cough/hratthe40%percentileinpneumoniapatients.Socoughingisfrequentenough,giventhe
aerosolamountsreleased.ForatypicalsneezeseeFigure2belowfromJennison.
Figure2.Imageofaerosolsgeneratedduringasneeze.(fromJennison,1942)
Nextonecanassessthetypesofaerosolsproduced.Nicas(98)modeledaerosolproductionbasedon
threestudies:Druett(99),Loudon(100),andPapineni(101).Thepattenisadispersedonewithlargerand
smallersizefractionsthat,obviously,reactdifferentlyaerodynamically.Otherauthors,suchas
Morawska(102),Lee(103),havefoundsimilardistributionsforcoughsandsneezeswithverificationof
microorganismsaswell(104).
Regardingcoughs,Nishimura(105)showedthatduringthefirst0.08s,thevelocityoftheparticleslocated
atthedistalend(i.e.,75–80cmfromthemouth)washighestinthemistcloud,andthereafter,
deceleratedtobecomeslowerthantheparticlesfoundattheinnerpartofthemistmass,andfinally
almostlostvelocityby0.15s,about85cmfromthemouth.Similarresultsweredocumentedby
Bouriub(106),Jennison(107),andVansciver(108).Tang(109)showedvisually,usingschlierenimaging,theeffect
ofamaskonreducing(butnoteliminating)emissionsfromcoughing(seeFigure3).
Page11 COVID19Pt1 Rev6,0323020
©2020A.Havics
Figure3.Cough(fromTang,2008)
Usinganoldtechnique
(110)
,Williams
(111)
evaluated24hospitalizedpatientswithnewlydiagnosed
pulmonaryTBwhoworeFFP1masks(Britishfilteringfacepiecedesignation)foronehouroutofevery
threefor24hours.AerosolwascapturedinagelatinefilterprocessedforM.tuberculosisquantitation
byPCR.Serialsputumwascollectedandobjectivecoughfrequencymonitoringperformedoverthe
sameperiod.M.tuberculosiswasdetectedin86.5%of192masksamplesand20.7%of38assessable
sputumsamplesobtainedfromthecohort.Williams
(112)
continuedthisworkwithanother37patients
showingsimilarresults.
Lindsley
(113)
evaluatedtheefficacyoffaceshieldsincoughtransmissionprotection.Duringtestingofan
influenzaladencoughaerosolwithavolumemediandiameter(VMD)of8.5μm,wearingafaceshield
reducedtheinhalationalexposureoftheworkerby96%intheperiodimmediatelyaftera
cough.Thefaceshieldalsoreducedthesurfacecontaminationofarespiratorby97%.Whenasmaller
coughaerosolwasused(VMD=3.4μm),thefaceshieldwaslesseffective,blockingonly68%ofthe
coughand76%ofthesurfacecontamination.Intheperiodfrom1to30minutesafteracough,during
whichtheaerosolhaddispersedthroughouttheroomandlargerparticleshadsettled,thefaceshield
reducedaerosolinhalationbyonly23%.Increasingthedistancebetweenthepatientandworkerto183
cm(6ft)reducedtheexposuretoinfluenzathatoccurredimmediatelyafteracoughby92%.Hencethe
6ftofsocialdistancing.
Wood
(114)
evaluatedsurgicalmasksforpreventionofaerosolizationofPseudomonasaeruginosain
dropletnucleiduringcoughsfrom25adultswithcysticfibrosis.Atotal19of25(76%)participants
producedaerosolscontainingP.aeruginosa.TherewasareductioninaerosolP.aeruginosaloadduring
coughingwithasurgicalmask(2of25),coughingwithanN95mask(4of24),andcoughetiquette
(coughingintothehandorarm),comparedwithuncoveredcoughing.Asimilarreductionintotalcolony
formingunitswasobservedforbothmasksduringcoughing;yet,participantsratedthesurgicalmasksas
morecomfortable.Coughetiquetteprovidedapproximatelyhalfthereductionofviableaerosolsofthe
maskinterventionsduringvoluntarycoughing(13of25patients).Talkingwasalowviableaerosol–
producingactivity(only1in24patientsrevealedemissionsoutsideamask).Thevisualeffectoftheuse
ofasurgicalmask(albeitaveryoldstyle)isseeninFigure4below.
Page12 COVID19Pt1 Rev6,0323020
©2020A.Havics
Figure4.Sneezethroughasurgicalmask(fromJennison,1942)
Lai(115)evaluated(non‐specified)FFssealedindifferentwaysonamanikinandfoundemission
reductionsof33‐100%.Milton(116)measuredexhaledviralparticlesemittedwithandwithoutsurgical
masks.Fineparticles(≤5μmdia)contained8.8foldmoreviralcopiesthandidcoarseparticles(>5
μm).Surgicalmasksreducedviralcopynumbersinthefinefractionby2.8foldandinthecoarsefraction
by25fold(e.g.,captureefficienciesof~64.3%and96%,respectively.Overall,masksproduceda3.4fold
reduction(e.g.,captureefficiencyof~70.6%).reductioninviralaerosolshedding.
Diaz(117)evaluatedN95FFsonbothsymptomaticperson(manikin)andreceiver(manikin)aswellasa90
degreeheadturnusingparticlegeneratorandparticlemeasurementsystems.UsinganN95FFonthe
symptomaticpersononlyresultedina~46.5%effectivecollectionefficiency.UsinganN95FFonthe
receiveronlyresultedina~50%effectivecollection(prevention)efficiency.UsinganN95FFonthe
symptomaticpersonandhavingthepersonturn90degreestothesideresultedinonly~14.5%
effectivecollectionefficiency.Interestingly,usinganN95FFwithaVaseline®sealonthesymptomatic
persononlyresultedina~93.8%effectivecollectionefficiency.UsinganN95FFonthereceiveronly
withaVaseline®sealresultedina~99%effectivecollection(prevention)efficiency.

ThebottomlineisthatsurgicalandN95FFssignificantlyreducesourceemissions,asdoesafaceshield.
Thenextquestionisonthereductionofexternalemissionsfromcapturedbioaerosolsonmasksand
FFs.
Release/Reaerosolization
Afewstudieshaveevaluatedthepotentialreleaseofagentsfromrespiratoryprotectivedevices(RPDs)
forpotentialinhalationtothoseinthenear‐bodyarea.Theseagentsincludelatexpaticles(118,119),M2
phage(85,120),polystyrenespheres(121),andB.subtilis(62,122).Inanevaluationofreleasingmicrospheres
(0.59‐1.9μm)fromdroppingarespirator,only6in100,000particleswasreleased(118).Insimilarworkby
Page13 COVID19Pt1 Rev6,0323020
©2020A.Havics
thesameauthor,inanevaluationofreleasingmicrospheres(0.59‐1.9μm)frommockremovalofaFF,
only1.5‐2particlesin100,000particleswasreleased(119).Kennedy(121)alsolookedatmicrosphere
releasefromdroppingN95FFsataheightof3feetandfound160‐290in100,000particleswas
released.Fisher(120)demonstratedreleaseof0.08‐0.21%(8to21particlesin1,000)fromdropletnuclei
and<0.0001%(<1in10,000)fromdropletsfromaN95FFduringsimulatedcoughing(120).Qian(122)used
B.subtilissporestosimulateM.tuberculosisandB.megatheriumwhileattemptingtoreaerosolizethese
at22%RHfromaN95duringasimulatedsneeze.HealsousedNaClparticlesandlatexspheres.The
resultsshowedthatthelargerparticleshadmoreaerosolizationpotentialof0.01,0.025,and0.04%(1,
2.5,and4particlesin100,000)forNaCL,B.subtilis,andB.megatherium,respectively.Wileke(62)usedB.
subtilistoevaluatereaerosolizastionfromN95FFs.Nobacteriawerereaerosolizedduringnormal
exhalation.Somereaerosolization(0.022‐0.025%orless[22‐25in100,000])wasobservedonlyatlow
humidityandextremelyhighairflowthroughtherespirator,correspondingtoviolentcoughingor
sneezing.LowerRHandlowerflowproducednodetectablebacteria.Theweightoftheevidence
suggestslittleopportunitytoreaerosolizesignificantbioaerosols.
SurvivabilityonFilterMaterial
Brousseau,etal.testedtheabilityforbacteria(MabscessusandSepidermis)togrowonfilters5days
aftercaptureatroomtemperatureand85%RH(123).Almostallfiltersrevealedculturablebacteriaafter
capture,butonly20%offiltersrevealedculturableMabscessusafter5daysand61%Sepidermis.
CouilletefoundthatMS2coliphagepersistedafter48hoursonN95FFandviruspH1N1wasviableafter
6days(124).FishershowedthatforM2Phage,Atleast10%oftheinitialMS2loadwasabletosurvivefor
4daysontheFFRandallsampleshaddetectablelevelsafter10days(125).Johnson(95)testedseveral
respiratoryprotectivedevicesforsurvivabilityofH37Raandfoundthattherewasasharpdropoffafter
day3withonly1of6showinganydetectableH37Raafter28days.
CoulliettedistributedpH1N1ontoN95couponsandextractedthevirusesbyavortex‐centrifugation‐
filtrationprocesstoanalyzebyELISAforsurvivalovera6dayperiodat20%RH(126).Reductionsin
pH1N1were40%,70%,and82%at12,72,and144hours,respectively.Fisherappliedbacteriophage
MS2toN95FFcouponsasanaerosolorliquiddropsandstoredat22°Cand30%RH(125).Viabilityofthe
viruswasmonitoredevery24hoursfrom1to5daysandthenagainonday10.Dropletsshowedless
reductionthandropletnucleiwith10dayvaluesat22%and99.97%,respectively.Asignificantdecrease
indropletnucleididnotoccuruntilafterday4.Koevaluatedthesurvivalofmycobacteria(M.chelonae,
MTBH37Ra,andMTBH37Rv)onHEPAfiltersbothwithoutandwithairflow(127).Miaskiewicz‐Peska(128)
tested4typesofFFmaterialswithchallengesfromaerosolizedStaphylococcushominisbacteria.In
untreatedfiltersthenumberofbacteriaincreased100‐foldandreached1.3×105cfu/cm2within8h.
Rengasamy(129)evaluatedMS2phageonN95FFcouponsat22Cand30%RHat8and12hourspost
inoculation.Theresultsshowedan~54%decreaseafter8hoursand~84%after20hours.Rengasamy
alsoevaluatedMS2phageonN95FFcouponsat37Cand80%RHat8and12hourspostinoculation.
Theresultsshowedan~90%decreaseafter8hoursand~99.68%after20hours.Reponen(130)usedM.
smegmatistotestsurvivabilityonN95FFat37Cand85%RH.Theyevaluatednutrientloading,no
nutrients,andsaliva,fordays1‐6.Withoutnutrients,theresultswere>99%reductionafter24hours,
withsaliva~99.74%reductionat24hoursand>~99.87%at72hours,withnutrients~85.5%reduction
after24hoursand~98.2%at72hoursand~99.6at6days.Wang(131)studiedPseudomonasfluorescens
andB.subtilissurvivalonN95filtersat37Cand85%RHforBsubtilisand28Cand85%RHfor
Pseudomonasfluorescens.Theyweretestedwithnutrients,withoutnutrients,sandwithsaliva.
Page14 COVID19Pt1 Rev6,0323020
©2020A.Havics
Culturalbacteriacountsdroppedbelowdetectionafter3days.ResultsforAll3conditionsrevealed>
99.92%decreasein3days.
Majchrycka(132)investigatedthesurvivalofEscherichiacoli,Candidaalbicans,andAspergillusnigerin
dust‐loadedpolypropylenenonwovens(atypicalouterlayermaterialofN95FFs).Materialsweredust
loadedfromvariousindustrytypes,inoculatedandthenheldat80%RHandatatemperatureof30Cfor
7days.Controlsurvivalsrangedfrom228to5,692%whereasdustloadedsurvivalwas261–150,946%.
Thedustcreatedbothincreasesandsuppressioncomparedtocontrols.TheresultsforCandidaalbicans
andAspergillusnigerweresimilarinthatthedustcreatedbothincreasesandsuppressioncomparedto
controls.Majchrycka(133)inanotherstudyinvestigatedEscherichiacoli,Staphylococcusaureus,Bacillus
subtilis,CandidaalbicansandAspergillusnigersurvivabilityonFFfabricsatmoisturecontentsof4‐,80,
and200%.Evaluationsweremadeat0,8,24,48,72and120hours.B.subtilissurvivedthebeston
filtermaterialswith40%–200%moisturecontent.AdecreaseinsurvivabilitywasobservedforE.Coli
andC.albicanswhenmasshumiditydecreased.TheyfoundthatB.subtilisandA.nigerproliferatedfor
48–72hofincubationandthendiedregardlessofthemoisturecontent.Inyetathirdstudyby
Majchrycka(134),E.Coli,B.subtilis,B.subtilisbacteria;andC.albicansyeastandA.nigermoldwere
testedonsamplesofnonwovensforFFs.Evaluationsweremadeat0,4,8,24,48,72,and96h.The
testswerecarriedoutinaccordancewiththeAATCC100‐1998method.Survivaldependedstronglyon
microorganismspecies.E.ColiandB.subtilisbacteriagrewthemostonallnonwovenstested.The
structuralparametersofthenonwovenstested(massperunitareaandthickness)andcontactangledid
notsignificantlyaffectmicroorganismsurvival.
AlthoughHEPAfiltersareconstructeddifferentlythanFFs,thereshouldbesomeparallelsin
performance.Ko(127)foundthatanRHof75%resultedinafasterdecreaseofsurvivableM.chleonae
beginningat2hoursthrough24hourswithfinalvaluesof0.05survivalfor75%RHversus0.5for55%
RH.Withoutairflow,H37RaandH37Rvshowedsurvivalratesof10and17%after24hoursandratesof
1.1and1%after72hours.SurvivalratesofH37Raafter24hoursaerosolizedontoaHEPAfollowedby
airflowwere~0.6%.Lin(135)evaluatedthesurvivabilityofB.subtilisandE.ColionN95FFsupto96
hoursatRHsof40,60,and95%,andwithsalivaandartificialperspiration.ResultsatallRHsshowan
increaseinthefirst24hoursfollowedbydeclines.Salivaclearlyenhancedsurvival.ForB.subtilisat
37Csurvivalratesofapproximately23,36,and39%wereobservedat40,60,and95%RHat24hours.
ForB.subtilis25Csurvivalratesofapproximately13,16,and16%wereobservedat40,60,and95%RH
at24hours.ForB.subtilis25Csurvivalratesofapproximately2,2,and4%wereobservedat40,60,and
95%RHat96hours.ForB.subtilis25Csurvivalratesofapproximately6,8,and7%wereobservedat
40,60,and95%RHwithsalivaat96hours.ForE.Colisurvivalrateswereconsistentlybelow10%.At
37Cand95%RH,B.subtilisincreased300%in24hourswithartificialperspiration.
Theweightoftheevidenceindicatesthatbioaerosolswillgrowonfilteringfacepieces,andthatsalivais
animportantfactorinsurvivability.
MicrobialTransferfromRespiratoryProtection
GiventhatN095FFsandSurgicalmaskshavethepotentialtoacquireandgrowmicrobesonthem,a
wearercanexpecttocontactandtransfersomeofthesetoeitherfingers,hands,clothing(pockets),etc.
Thisprovidesanopportunityforspreadofcontaminationtoselfandothers.Inaddition,itlimits
potentialextendeduseandlimitspotentialreuseunlesscleaned.
Page15 COVID19Pt1 Rev6,0323020
©2020A.Havics
BradyinvestigatedtransferofM2phagefromcontaminatedFFandfoundtransfertohandsat7.6‐
15.4%and2.2‐2.7%fordropletanddropletnuclei,respectively(85).Asexpected,Bradyalsofound
improperdoffingandreusetoresultinahighertransferthanimproperdoffingalone.Cassanova
evaluatedtransferofM2phageby10volunteersfromprecontaminatedgowns,N95FF,goggles,and
dominanthandpalm(136).Transfertoother(initiallynon‐contaminatedsites)werenondominantglove
(80%),righthandskin(90%),lefthandskin(70%),scrubshirt(100%),scrubpants(75%),andface(0%).
Rebmann(137)studiedN95FFextendeduseandfoundthatduringtwo12‐hrshiftsthenumberof
touchesperpersontotheface,eye,N95,undertheN95,N95adjustmentswere3.6‐5.8,0‐0.8,6.6‐14.6,
0‐0.8,and3.2‐6.6(rangefromday1&2).
Theauthorhasusedfluorescenttracers(powders,liquids,creams)toevaluatebothtransferofagents
anddecontaminationprocedurestoremovecontaminants.DuringatrainingexercisewiththeNCID
Bioterrorismresponseteam(in2003duringtheSARsoutbreak)involvingthecollectionofa
contaminatedenvelope(withpowderedtracer),evenafter3successivedecontaminationsequences,
thetransfertohands,head,andotherbodypartswasstillevident.Others(85,138)havealsousedthese
tracers.Cassanova(136)didindicatethevirusesmaynotcorrelatedwithfluorescenttracer.
SuggestedSelectionMatrix
Selectionoftheappropriatelevelofrespiratoryprotectionshouldbetiedtominimizingexposurebythe
inhalationroutebasedonthemostprobablerisk.Nicas(88)estimatedtheriskofinfectionassociated
with4pathwaysofexposureforinfluenza(assumingthatdepositioninthelowerrespiratorytractto
upperrespiratorytractwas3200:1Bandassuming0.5ACHintheroomC):(1)virus‐contaminatedhand
contactwithfacialmembranes,(2)inhalationofrespirable(<10μm)coughparticles,(3)inhalationof
inspirable(10μm<da<100μm)coughparticles,and(4)sprayofcoughdropletsontofacial
membranes.Therelativeriskofinfectionbypathwaywas31%,17%,0.52%,and52%,respectively.
Thus,thebulkoftheriskisassociatedwithshort‐termcoughingdirectlyonorimmediatelyadjacentto
theinfectedpersonversusfromsmallrespirableaerosolscontinuingtocirculateintheroom.Nicas
estimatedthatmorethan99.9%oftheemittedvirusarenon‐respirableparticles(baseduponcough
studies).Watanabe(139)prepareddose‐responsecurvesforoftheSARS‐CoV(asimilartothecurrent
SARS‐CoV‐2)withcorrespondingto10%and50%responses(illness)estimatedat43and280PFU
[PlaqueFormingUnits],respectively.Theyindicatedthatitsestimatedinfectivitywascomparableto
thatofHCoV‐229E,knownasanagentofhumancommoncold,andalsosimilartothoseofsomeanimal
coronavirusesbelongingtothesamegeneticgroup.Nicas(140)modeledinfectionriskreductionafforded
bytheuseofrespiratoryprotectionwithhalf‐face,full‐face,andPAPRrespirators.Basedonthe
filtrationcapacityoftheN95FF,itwouldfallbetweennoprotectionandahalf‐face,butstillprovidean
orderofmagnitudereductioninrisk.Basedonthisandreviewofaerosoltransmission,risk,andreuse&
cleaningpotential,amatrixofrespiratoryprotectionselectionisprovidedinTable2.Alsoin
considerationisthatwhensurveyed,reusablerespiratorsweresignificantlymorelikely(oddsratios2.3‐
BIftheratiowas1:1,thenhandcontactwoulddominate.
CThisisaresidentialrate.Hospitalswouldbeexpectedtobeinthe4‐15ACHdependingontheusageandageof
construction.
Page16 COVID19Pt1 Rev6,0323020
©2020A.Havics
7.7)tobepreferredoverN95filteringfacepiecerespiratorsinhigherriskscenarioscomparedto“usual
circumstance”scenarios(141).
Table2.RespiratoryProtectionSelectionMatrix
Class Population WorkingExample Recommended
Respiratory
Protection
RecommendedUse
&Hygiene
Practices
1 IndividualsinDirect
ContactwithInfected
Persons
CDCHighRisk=Level
1HealthCarewith
routinehandson
contact
1APreferred½‐face
1BPreferredsplash
resistantN95‡
1CAcceptableN95
SeeHavics(86)1A
SeeHavics(86)1B
SeeHavics(86)1C
2 Individualinrooms
adjacenttoInfected
Persons
CDCMediumRisk=
Level2HeathCare
withoutroutinehands
oncontact
N95 Personalhygiene
(seeHavics(86)Class
2).
Hygieneprotocols
forsurfacesare
necessary.
3 Individualswith
IndirectRisk
CDCLowRisk=Level3
GeneralBusinesswith
occasionofcasual
contactwith
symptomaticperson
None Personalhygiene
(seeHavics(86)Class
3).
Cleaningofsurfaces
isrequired
promptlyand
thoroughly
4 GeneralPublic CDCVeryLowRisk=
Level4General
Businesswith
occasionofcasual
contactwith
asymptomaticpersons
None Personalhygiene
(seeHavicsClass4)
‡Forexample,TBapprovedRPD
RisklevelstoparallelCDC,InterimUSGuidanceforRiskAssessmentandPublicHealthManagementofPersons
withPotentialCoronavirusDisease2019(COVID‐19)Exposures:GeographicRiskandContactsofLaboratory‐
confirmedCases,March22,2020
Onenotesthatunlessthereisdirectcontact,anN95FFisnotrecommended.Asre‐statedbythe
NationalAcademyofSciencespanel(83),CDCestimatesthatintheeventofasevereinfluenzapandemic,
atleast1.5billionmedicalmaskswouldbeneededbythehealthcaresectorandanadditional1.1billion
wouldbeneededbythepublic.DemandforN95respiratorsbythehealthcaresectorcouldexceed90
millionfora42‐dayoutbreak.N95sshouldbereservedformedicalpersonnel(142)engageddirectlywith
symptomaticpersonssoastoprovidesufficientresourcesforthosemostatriskofinfection.
Inordertoworkeffectively,oneneedstofittestanN95FF.ThisauthordisagreeswiththeFDA’s
policy(143)onhavingaminimumcriteriaforpublichealthemergencyrespiratorsofaminimumFitFactor
Page17 COVID19Pt1 Rev6,0323020
©2020A.Havics
of2.Wecanandshoulddobetterthanthat,becauseitmeansweacceptonly50%efficiencyfor
healthcarepersonnelwhenatdirectriskofinfection‐justonapolicybasis.Aspointedoutby
Janssen(144),onewouldexpectaNIOSHcertifiedN95toeasilyexceedthatvalue,buttheregulatory
policyitselfsendsapoormessage.Thatsaid,trainingandinstructionareimportantforproperfitting
anduse.ThefindingsofBrosseau(145)pointtothis,wherewithoutinstructionalmostabout3%didnot
properlyplacetherespiratorontheirface(i.e.,rightsideup,overthechin,andcoveringthenoseand
mouth)andabout3%didnotproperlyformthenosecliptothenose.Theauthor’sownexperience
testingothersandhimselfareaconstantreminderofaneedfortesting.Similarly,andnotsurprisingly,
Lam(146)andFrost(147),bothrevealedsignificantfailingsoftheUserSealCheckwithFilteringFacepieces.
Itshouldbeconsideredaminimumscreeningtool,notoneofabsolutereliance.Italsocreatesan
opportunityforcontaminationofthehandsduringextendeduseorreuse.Inthepasttheauthorhas
suggestedapossiblealternativeistouseaplasticsandwichbagoverthehandtolimitcontamination
duringreuse.AsforfittestingN95FFs,qualitativefittestshavelimits(148,149),butshouldbeconsidereda
minimuminunderstandingwhatagoodfitisandhelpingtoachievethat,whereasquantitativefit
testingisabetterpracticeandprovidesmorerealtimeinsightintohowwellaFFworks(ornot).
DecontaminationofRespiratoryProtectionDevices
InrecognitionofthefactthatRPDsareexpectedtobecomecontaminatedatsomepoint,andthat
suppliesonN95sarelikelylimited,onehastoconsiderextendeduse(usingforawholeday/shiftand
notjustwhenvisitingasymptomaticpersonfollowedbydisposal)andreuse(morethanoneday).
CDC(150)definesextendedasthepracticeofwearingthesameN95respiratorforrepeatedclosecontact
encounterswithseveralpatients,withoutremovingtherespiratorbetweenpatientencounters.
Extendedusemaybeimplementedwhenmultiplepatientsareinfectedwiththesamerespiratory
pathogenandpatientsareplacedtogetherindedicatedwaitingroomsorhospitalwards.Reuserefers
tothepracticeofusingthesameN95respiratorformultipleencounterswithpatientsbutremovingit
(‘donning’)aftereachencounter.Therespiratorisstoredinbetweenencounterstobeputonagain
(‘donned’)priortothenextencounterwithapatient.
Thereareafewstudiesthathaveassessedreuseandextendeduse.Rebmann(137)evaluatedlong‐term
dailywearofN95FFsfortwo12‐hrshiftson10nursesandfound90%tolerance(1nurseworethe
maskfor30minutesandthenwithdrewfromthestudy).Noclinicaleffects,norsubjectiveperceptions
werenotedafter1hourofsurgicalmaskwearing(151).Tensubjectsworehalf‐maskrespiratorswhile
exercisingfor1hourandshowedonlyaslightdecreaseinbreathingratethatwaswelltolerated(152).
Bergman(153)studiedmultipleconsecutiveuseonN95FFsbytestingFitFactorsaftermultipleuses.No
statisticaldifferencewasfoundafter5re‐donnings,butthereafterthereweremorefailurestowards
achievingthedesiredFitFactorof100.ThiseffectwasN95FFmodeldependentbutwas53‐75%across
allmodelsbydonnings16‐20.
Vuma(154)studiedtheeffectonFitFactorofmultipleconsecutivedonninganddoffingofN95FFsby25
persons.After3doffings,6individualsshowedasignificantdeclineinFtFresults.After6doffings,7
individualsshowedasignificantdeclineinFtFresults.Resultssuggestthatproperadjustmentmustbe
carriedoutforeachsequenceofdonning.Suen(155)evaluatedN95FFreuseon120nursesperforming
10minsofsuctioning&NGtubeinsertionwithpreandpostprocedurefittesting.Theaveragefitfactor
droppedsignificantlyafternursingprocedures(184.85vs134.71)asdetectedbythequantitativefit
testing.One‐thirdofFtFsfellbelow100(40of120nurses)afteruse.Kim(156)assessedworkplace
protectionfactorsduringvariousscenarios:1)checkbloodpressure,raise‐lowerstretcher,cleanhands,
Page18 COVID19Pt1 Rev6,0323020
©2020A.Havics
2)Upperairwaysuction,notifyaspirator,knockchestsandputongloves,raise/lowerstretcher,
performaspirator,3)AdministerIV,injection,cleanwithalcohol,tietourniquet,pushIVmed,
raise/lowerstretcher.Fittestingbeforehandrevealed73.5%passrate(FtF>100)withaGMFtFof
256.3forhosepassingand37.0forthosefailing.Duringworkplaceusage(Scenarios1,2,3)thefactors
forthosewhopassedthefittestwas68.8(GM)andthosewhofailedwas39.6(GM).Sothosewho
passeddeclinedinprotectionduringtasksandthosewhofailedremainedthesame–stillfailing.
Sietsma(157)studiedfitfactorsfortheshorttasksofcardiopulmonaryresuscitation(CPR),ultrasound
examination,andmakingahospitalbed.Fitfactorsrangedfrom58‐1,368(98.3‐99.93%efficiency)with
anaverageof285(99.65%).Inanalternativeway,Zhuang(158)lookedatFitFactorson10subjectsat
week0,2,and4,toevaluategeneralchangesovertimeinfit.Thecoefficientofvariationassociated
withbetweenvisitsandbetweensubjectswas2.4‐7.7%.Thisisrelevantinthatoneneedstoshowa
smallvariationinnon‐reusesituationswithfittestingtobeabletodetectchangesduringreuse.
Severalstudieshavelookedatdecontamination.Bessesen(159)evaluated21personsandfoundthat12
ofthemmadeatleastoneerrorinthedisinfectionprocesswhilecleaningahalf‐facerespirator.This
clearlyindicatestheneedfortrainingandsupervision.
Bergman(160)evaluatedtheparticlepenetrationonN95FFmaterialafter3‐cyclesofvarioustreatments:
ultravioletgermicidalirradiation,ethyleneoxide,hydrogenperoxidegasplasma,hydrogenperoxide
vapor,microwave‐oven‐generatedsteam,bleach,liquidhydrogenperoxide,andmoistheatincubation
(pasteurization).Onlythehydrogenperoxidegasplasmaprocessingcausedlevelshigherthanexpected
ofinitialaerosolpenetration(>5%)in9of36(25%)samples.Bergman(161)alsotestedN95FFsafter
multipleapplicationsofultravioletgermicidalirradiation(UVGI),moistheatincubation(MHI),or
microwave‐generatedsteam(MGS).After3cyclesoftreatment,nostatisticaldifferenceswerefound
betweentheuntestedresultsandthatafterthethirdcycleontentestsubjects.Fisher(162)conducted
testsonUV‐Cdecontamination.Circularcoupons,excisedfromtheFFRs,wereexposedtoaerosolized
particlescontainingMS2coliphageandtreatedwithIFM‐specificUV‐Cdosesrangingfrom38to4707J/
m2.ModelsexposedtoaminimumIFMdoseof1000J/m2demonstratedatleasta3logreduction
(LR)inviableMS2.Model‐specificexposuretimestoachievethisIFMdoserangedfrom2to266min.
Fisher(92)alsotestedtreatmentsonN95FFcouponsinoculatedwithaerosolizedMS2phage.Sodium
hypochlorite(bleach)concentrationof0.6%andsteamtreatmentsof45secondsandlongerresultedin
logreductions(>4log)whichreachedthedetectionlimitsforbothlevelsofprotectivefactors.
Fisher(163)againevaluatedtheuseoftwocommerciallyavailablesteambags,marketedtothepublicfor
disinfectinginfantfeedingequipment,forFFdecontamination.TheFFs(surgicalN95andN95)were
decontaminatedwithmicrowavegeneratedsteamfollowingthemanufacturers’instructionsthen
evaluatedforfiltrationefficiencyforuptothreesteamexposures.ThesteamhadlittleeffectonFFR
performanceasfiltrationefficiencyofthetreatedFFsremainedabove95%.Thedecontamination
efficacyofthesteambagwasassessedusingbacteriophageMS2asasurrogateforapathogenicvirus.
Thetestedsteambagswerefoundtobe99.9%effectiveforinactivatingMS2onFFs.
Fisher(164)testedtheefficiencyof3cyclesofdecontaminationbymicrowavegeneratedsteamandUVGI
underartificialsoilloading(protein).Microwave‐generatedsteamdecontaminationefficacywassimilar
forallthreecyclesregardlessofthesoilaccumulation(p=0.34)[thelogreductionwaspractically
speakingverysimilarforbothtreatmentsandallthreecycles].UVGIdecontaminationdemonstrateda
differenceinefficacyamongthecyclesofboththelowandhighsoilloadsamplesets(p<0.01)and
performedanorderofmagnitudepoorerinreductiongoingfromcycles1to3.
Page19 COVID19Pt1 Rev6,0323020
©2020A.Havics
Heimbuch(2)assessedsixcommerciallyavailableFFmodelsthatwerecontaminatedwithH1N1influenza
virusasaerosolsordropletsthatarerepresentativeofhumanrespiratorysecretions.Asubsetofthe
FFRswastreatedwithmicrowave‐generatedsteam(2min),warmmoistheat(30min),andultraviolet
germicidalirradiation(5min)at254nmtodecontaminateH1N1influenzavirus.All3decontamination
technologiesprovidedgreaterthan4‐logreductionofviableH1N1virus.In93%oftheexperiments,the
viruswasreducedtolevelsbelowthelimitofdetectionofthemethodused.
Heimbuch(165)assessed3modelsofsurgicalN95FFscontaminatedwithaerosolsofmucinorviable
Staphylococcusaureus.Thesewerecleanedwithhypochlorite(OCL),benzalkoniumchloride(BAC),or
on(inert)antimicrobialwipes.Eachofthe3testedFFswaswiped3timesinturnwith4facesofafresh
wipeproductfoldedovertwice.TotalcleaningtimeperFFwas~30seconds.Aftercleaning,FFswere
separatedintocomponents(nosepad,fabrics,andperforatedstrip),andcontaminantswereextracted
andquantified.Mucinremovalwas<1logforallwipeproductsonallcomponents.Inertwipesachieved
~1logattenuationinviableSaureusonfabricsfromallFFRmodelsremovalwaslesseffectivefromnose
padsandperforatededges.Bothantimicrobialwipesachieved3‐5logattenuationonmost
components,withsmallerreductionsonnosepadsandgreaterreductionsonperforatedstrips.Particle
penetrationfollowingcleaningyieldedmeanvalues<5%.Resultsofparticlefiltrationefficiencywere
~95.8‐98%forBAC,~98.3‐99.6%forOCL,and~87.5‐99.85%.Thehighestpenetrationswereobservedin
FFscleanedwithbenzalkoniumchloridewipe.Theseresultsshouldbeplacedincontext.All3are
surgicalFFRswithfluidresistantexteriorsurfaces,whichisnotcommontotypicalindustrialN95FFs.
ImmersionofFFsin10%householdbleachoxidizedmetalandleftanodor.
Lin(166)investigatedtheeffectsoffivedecontaminationmethodsonthefilterqualityofthree
commerciallyavailableelectretmasks,aN95,GauzeandSpunlacenonwovenmasks.Penetrationof
0.0156‐0.594μmlatexsphereswereusedtoassesstheeffectsonthedecontamination.The
decontaminationmethodswere1)physicaldecontaminationusingatraditionalelectricricecookerthat
wasmadeinTaiwantoprovidedryheat(3min),2)physicaldecontaminationusinganautoclave(15
min)toprovidemoistheat,andlowtemperaturechemicaldecontaminationusing3)70%ethanol(10
minsoak),4)isopropanol(10minsoak)and5)bleach(0.5%sodiumhypochlorite,10minsoak).The
bleachdestroyedtheGauzemask.Afterdecontaminationthericecookerrevealed~24%efficiencyfor
thespunlace,~76%forGauze,and~97%fortheN95FF.Afterdecontaminationtheautoclaverevealed
~19%efficiencyforthespunlace,~50%forGauze,and~97%fortheN95FF.Afterdecontaminationthe
ethanolrevealed~19%efficiencyforthespunlace,39%forGauze,and~71%fortheN95FF.After
decontaminationthebleachrevealed~12%efficiencyforthespunlace,0%forGauze(destroyed),and
~82%fortheN95FF.AfterdecontaminationtheIPArevealed32%forGauzeand~30%fortheN95FF.
Lin(167)alsodeterminedtherelativesurvivalofBsubtilissporesloadedonanN95filteringfacepiece
respirator(FFR)afterdecontaminationbyfivemethodsunderworst‐caseconditions.Relativesurvival
wasobtainedbytestingafterdecontaminationandafterstoringtheFFsat37°Cand95%RHfor24
hours.Thedecontaminationmethodsinvolvedethanol,bleach,ultravioletirradiation(UVA365nm,UVC
254nm),anautoclave,andatraditionalelectricricecooker(TERC)thatwasmadeinTaiwan.Without
decontamination,59±8%oftheloadedsporessurvivedfor24hours.When70%ethanolwasaddedto
theN95FFatapackingdensityof0.23,thesurvivalwas73%initiallyanddecayedto22%in24hours.
Relativesurvivalremainedabove20%after20minutesofUVAirradiation.Theotherfour
decontaminationmeasuresachieved99%‐100%reduction.
Lindsley(168)exposedbothsidesofmaterialcouponsandrespiratorstrapsfromfourmodelsofN95FFs
toUVgermicidalirradiation(UVGI)dosesfrom120–950J/cm2.UVGIresultedinasmalldecreasein
Page20 COVID19Pt1 Rev6,0323020
©2020A.Havics
efficiency(1.25%)andnochangeinairflow.UVGIdidreducestrengthofthefiltermaterial(upto90%).
HigherUVGIdose(2,360J/cm2)resultedin20‐51%strengthreductioninstraps.Ingeneral,thefindings
indicatethatevenlowdosesofUVGIwillresultinaminimumof10%reductioninstrapstrength.
Lore(169)examinedH1N1appliedasanaerosolto2modelsonN95FFs.Theeffectivenessofthree
energeticdecontaminationmethods[ultravioletgermicidalirradiation(UVGI),microwave‐generated
steam,andmoistheat]ontwoNIOSH‐certifiedN95FFs.UVGIconsistedof15‐WUV‐C(254‐nm
wavelength)at25cmfor15min(dose18kJ/m2).A1250‐W(2450MHz)commerciallyavailable
microwaveovenwasusedalongwithaplasticboxfilledwith50mlofroomtemperaturetapwater.A
perforatedsystemallowsteamtotreattheFFsfor2miatfullpower.Formoistheat,a6‐lsealable
containerwasfilledwith1loftapwater,placedinanovenandheatedto65"Cfor3h.AsallFFs
displayed>95%efficiencyby300‐nmparticles,withnoprofoundreductioninfiltrationperformance.
Mills(170)tooktwelvesampleseachof15N95FFmodelsandcontaminatedthemwithH1N1influenza
(facepieceandstrap),thencoveredwithasoilingagent—artificialsalivaorartificialskinoil.Foreach
soilingagent,3contaminatedFFsweretreatedwith1J/cm2UVGIforapproximately1minute,whereas
3othercontaminatedFFsremaineduntreated.Allcontaminatedsurfaceswerecutoutandviruses
extracted.Theresultsrevealedsignificantreductions(≥3log)ininfluenzaviabilityforbothsoiling
conditionsonfacepiecesfrom12of15FFmodelsandstrapsfrom7of15FFmodels.
Salter(171,172)evaluated8decontaminationtechniques:1)UVirradiation(2547302nm@~2.7E5J/m2),
2)vaporizedhydrogenperoxide(VHP),3)3%hydrogenperoxide,4)dilutedhouseholdbleach(0.6%
hypochlorite),5)Moistheat(65Cand85%RH),6)mixedoxidants(10%oxone,6%sodiumchloride,5%
sodiumbicarbonate)7)Dimethyldioxirane(DMDO)(10%oxone,105acetone,5%sodiumbicarbonate),
8)ethyleneOxide(EtO).Peroxidetechniques(VHP&3%)andUVresultedinnosignificantoff‐gassingor
residue.Bleachoxidizedmetalandleftastrongodor.DMDOandmixedoxidantsalsocausedissues
withcorrosion.EtOtreatmentofFFsproduced2‐hydroxyethylacetate,(ahazardouschemicalby‐
product),possiblyformedbyareactionofEtOwithrubberpartsoftherespirator.Additionally,EtO
requiresalongoff‐gassingperiodthatwilllimitthroughput.ThroughputisalsoaproblemfortheVHP
technology—theauthorsindicatedtestingwiththeVHPsterilizerwasasterilizationcycleabortionif
morethansixFFRswereloadedinthechamberduringtheone‐hoursterilizationcycle.Also,itisknown
thatcellulosicmaterialwillabsorbperoxide.
Viscusi(173)testedtwomodelsofFFRs(oneN95andoneP100)withseveraldecontaminationprocesses
attwoconditionseach.Theseincluded:1)submergingthetestrespiratorsintapwaterfor30minutes,
2)Liquidchemicaldecontamination[hydrogenperoxide;Fisher30%stabilizedH2O2,Bleach;Fisher
5.25%SodiumHypochlorite(NaOCl)with0.20%SodiumHydroxide(NaOH);HenrySheinIsopropyl
alcohol(IPA),70%;Ivorybarsoap,1g/L,shavedfromthebaranddilutedintapwater]3)Ultraviolet
radiation(0.24mW/cm2)bothsides,4)dryheat(oven),5)Microwave26mW/cm3(750W/ft3)for2‐4
min,5)Autoclave121°C(15psi),6)EtOforonehourfollowedbyafour‐houraerationinterval,7)
VaporizedHydrogenPeroxide(VHP).Thestandarddryingtimewas72hoursforeach.Filtration
performanceofthetreatedrespiratorsplustwocontrolswasassessedusingapoly‐dispersedsodium
chlorideaerosoltestmethodsimilartothatusedbytheNIOSHforrespiratorcertification.
Decontaminationusinganautoclave,160⁰Cdryheat,70%isopropylalcohol,andsoapandwater(20
minutesoak)causedsignificantfilterdegradationtobothN95andP100FFs.Theparticlepenetration
levelsweregreaterthanallowedforNIOSHcertification.Filtrationperformanceafterdecontamination
usingbleach,ethyleneoxide,andamicrowaveovenwasdegradedforbothrespiratormodels,although
particlepenetrationlevelswerestilllessthantheNIOSHcertificationcriteria.Thedecontamination
Page21 COVID19Pt1 Rev6,0323020
©2020A.Havics
methodsthathadtheleasteffectonparticlepenetrationinvolvedhydrogenperoxide(vaporizedand
liquidforms)andUVradiation.
Viscusi(174)evaluatedfivedecontaminationmethods:1)ultravioletgermicidalirradiation(UVGI)40‐W
UV‐Clight(averageUVintensityexperimentallymeasuredtorangefrom0.18to0.20mW/cm2)2)
ethyleneoxide(EtOexposurefor1hfollowedby4hofaeration),3)vaporizedhydrogenperoxide
(VHP),4)microwaveovenirradiation(750W/ft3experimentallymeasured;2‐mintotalexposure;1min
eachsideofFF;papertowelwasplacedontherevolvingglassplateforinsulationtoprotecttheFFRs
frommeltingontotheglassplate),and5)bleach(30minutessubmersionin0.6%).Theyusednine
modelsofNIOSH‐certifiedrespirators(threemodelseachofN95FFRs,surgicalN95respirators,and
P100FFRs).MicrowaveovenirradiationmeltedsamplesfromtwoFFmodels.TheremainderoftheFF
samplesthathadbeendecontaminatedhadexpectedlevelsoffilteraerosolpenetrationandfilter
airflowresistance.Thepoorestresultshowedaleast98.14%efficiency.Thescentofbleachremained
noticeablefollowingovernightdryingandlowlevelsofchlorinegaswerefoundtooff‐gasfrombleach‐
decontaminatedFFswhenrehydratedwithdeionizedwater.Thechlorineoff‐gasconcentrationwas
initially2‐12ppmbutdroppedto~0.05ppmovernight.TheOSHAPELforChlorineis1ppmasaCeiling
limit.TheACGIHTLVis0.1ppmasan8‐hourlimitand0.4ppmasaSTEL.Rinsingafter30min
submersiondidnotappeartochangetheoff‐gassing.Perhapsthemosttellingwasthatefficiencies
declinedafterovenheattreatmentover100⁰C.Thisindicatesacriticaltemperaturetoavoid.
Viscusi(175)againevaluatedultravioletgermicidalirradiation(UVGI),moistheatincubation(MHI),or
microwave‐generatedsteam(MGS)decontaminationaffectsthefittingcharacteristics,odor,comfort,or
donningeaseofsixN95filteringfacepiecemodels(seepreviousstudiesbythisauthorfirdetailsonthe
decontaminationprocedures).Fiton10subjectswerefittestedusingaparticlecountingmethod.
Interestingly,testtechniciansdidnotreportanyunusualorstrongodorfromFFRsfollowinganyofthe
decontaminationmethods.WhilefiveofthesixFFRmodelsincludedinthisstudycontainedmetallic
nosepieces,nosparkingoccurredfrommicrowavingduringtheMGSprocessing.Therewasnomelting
ofanFFRoranyofitscomponents.Onesubjectcomplainedofintolerableodorissuesafter
decontaminationcycles4&5byUVGI.Therewerealsoanumberofheadstrapbreakages.Allmodels
underalldecontaminationprocedurescontinuedtomeet100FitFactor.
Vo(51)usedMS2coliphagewasusedasasurrogateforpathogenicviruses.Aviraldroplettestsystem
wasconstructed,andthesizedistributionofviraldropletsloadeddirectlyontorespiratorswas
characterizedusinganaerodynamicparticlesizer.Thesizesrangedfrom0.5to15μm.Relative
efficienciesofdecontaminationofsodiumhypochlorite(bleach)andUVirradiationwereassessed.
Sodiumhypochloritedosesof2.75to5.50mg/literwitha10‐mindecontaminationperiodresultedin
approximately3‐to4‐logreductionsinthelevelofMS2coliphage(99.90‐99.99%decrease).When
highersodiumhypochloritedoses(>8.25mg/liter)wereusedwiththesamecontacttimethatwasused
forthedilutesolutionscontaining2.75to5.50mg/liter,allMS2wasinactivated.ForUV
decontaminationatawavelengthof254nm,anapproximately3‐logreductioninthelevelofMS2virus
wasachievedwithdoseof4.32J/cm2(3hoursofcontacttimewithaUVintensityof0.4mW/cm2),while
withhigherdosesofUVirradiation(>7.20J/cm2;UVintensity,0.4mW/cm2;contacttimes,>5hours),all
MS2wasinactivated.
Moyer(176)tooknewN‐95respiratorsfromthreedifferentmanufacturersandloadedthemwith5mgof
sodiumchlorideaerosolonedayaweek,overaperiodofweekswhilestorageinanoffice.Results
showedthatsomeofthemanufacturers’modelshadpenetrationsofgreaterthan5percentwhen
intermittentlyexposedtosodiumchlorideaerosol.Itisconcludedthatintermittent,low‐levelsodium
Page22 COVID19Pt1 Rev6,0323020
©2020A.Havics
chlorideaerosolloadingofN‐95respiratorshasadegradingeffectonfilterefficiency.Thisreductionin
filterefficiencywasnotaccompaniedbyasignificantincreaseinbreathingresistancethatwouldsignal
theuserthatthefilterneedstobereplaced.However,itwasn’tuntilday40(4applications)that5%
penetrationwasreachedbyoneofthemanufacturer’sfilters.Thissuggestssometolerancetochloride.
Moyeralsodeterminedtheeffectduetowater,acomparisonwasdonebetweennewfiltersandnew
filterswhichweredippedfor15secondsinabeakerofdistilledwater.Thewater‐dippedfilterswere
allowedtoairdryovernightbeforetesting.Boththenewfiltersandthewater‐dippedfiltersweretested
forfilterpenetration.Thewatertreatmentwasperformedtoascertainwhat,ifany,effectitwouldhave
ontheseN‐95serieselectrostaticfilters.TheeffectofthewaterdipwasminimalformanufacturersB’s
andC’sfilters.ThereappearstobeanincreaseinthefilterpenetrationvaluesforthemanufacturerA
filterswhencomparingthenewtothewater‐dippedpenetrationvalues.Practicallyspeakinghowever,
themanufacturerA’sfilterswerestillat96.48%efficientafter20days,thuswashinginwateris
tolerable.
OnenotesthatOSHA[29CFR1910.134AppendixB‐2]hasamandatoryRespiratorCleaningProcedure
asfollows:
“A.Removefilters,cartridges,orcanisters.Disassemblefacepiecesbyremovingspeaking
diaphragms,demandandpressure‐demandvalveassemblies,hoses,oranycomponents
recommendedbythemanufacturer.Discardorrepairanydefectiveparts.
B.Washcomponentsinwarm(43deg.C[110deg.F]maximum)waterwithamilddetergentor
withacleanerrecommendedbythemanufacturer.Astiffbristle(notwire)brushmaybeused
tofacilitatetheremovalofdirt.
C.Rinsecomponentsthoroughlyinclean,warm(43deg.C[110deg.F]maximum),preferably
runningwater.Drain.
D.Whenthecleaneruseddoesnotcontainadisinfectingagent,respiratorcomponentsshould
beimmersedfortwominutesinoneofthefollowing:
1.Hypochloritesolution(50ppmofchlorine)madebyaddingapproximatelyone
milliliteroflaundrybleachtooneliterofwaterat43deg.C(110deg.F);or,
2.Aqueoussolutionofiodine(50ppmiodine)madebyaddingapproximately0.8
millilitersoftinctureofiodine(6‐8gramsammoniumand/orpotassiumiodide/100ccof
45%alcohol)tooneliterofwaterat43deg.C(110deg.F);or,
3.Othercommerciallyavailablecleansersofequivalentdisinfectantqualitywhenused
asdirected,iftheiruseisrecommendedorapprovedbytherespiratormanufacturer.
E.Rinsecomponentsthoroughlyinclean,warm(43deg.C[110deg.F]maximum),preferably
runningwater.Drain.Theimportanceofthoroughrinsingcannotbeoveremphasized.
Detergentsordisinfectantsthatdryonfacepiecesmayresultindermatitis.Inaddition,some
disinfectantsmaycausedeteriorationofrubberorcorrosionofmetalpartsifnotcompletely
removed.
F.Componentsshouldbehand‐driedwithacleanlint‐freeclothorair‐dried.
G.Reassemblefacepiece,replacingfilters,cartridges,andcanisterswherenecessary.
H.Testtherespiratortoensurethatallcomponentsworkproperly.”
Havingreviewedthefindingsofvarioustests,itisclearthatextendeduseandre‐usearecertainly
possibleandworthwhileprovidedgoodhygienetechniques,andproperstorage(cleandryplaceoutside
facingup)areusedforextendeduseanddecontaminationisperformedwhensignificantandknown
bioaerosolshavebeenencountered.Thisisnotbestpracticebutratheranacceptablepracticegiven
resourcelimitations.Thethreetechniquesmostuseablearebleach,UVGI,andsteam.Howevercareful
Page23 COVID19Pt1 Rev6,0323020
©2020A.Havics
attentiontotheconditionofmaterialsofconstruction(straps,edges)mustbetakenseriously.See
attachedAppendixforexamplesofeach.
ConcernoverSodiumHypochloriteUsage
Variousauthorshaveraisedconcernsregardingpotentialskinandvaporexposureduringthe
decontaminationofRespiratoryProtectivedevices.Thevapordataabovesuggested0.05ppmafter
dryingisoneconcern(174).Onemightexpectatriplerinseaftertreatmentorextendeddryingwould
reducethisrisk.Ignoringforthetimedifferencesinconcentrationresponse,onenotesthattopical
hypochloriteat0.05%appliedtobothsidesofthethoraxofdogswerewell‐toleratedwithoutsignsof
skinirritation(177,178).
HazeltonLaboratoriesexamined1.1%sodiumhypochloritesolutionusingastandardtestforpredicting
sensitizationorallergicreactions,theGuineaPigMaximizationTestwithnosensitization(179).Twotests
byAmuchinaonhumansubjectsat0.11%and0.1%revealednosensitizationandnosignificant
irritation(179).InanotherhumanprimaryirritationpatchtestbyBillhimerinaclinicalexaminationofthe
irritationpotentialofsodiumhypochloriteeachtestsubjectwasexposedtothreeconsecutive24‐hour
applicationsof0.11%sodiumhypochloritesolutionwithobservationstakenaftereachapplication.Only
transient,slighttomoderateirritationwasobservedduringthestudy(179).
Giventhewidespreaduseofsodiumhypochlorite,itisapositivesignthattherearelimitedreportsof
variouseffectssuchasurticariatohypochloriteinthepoolwater(180),andacoupleofcasesofbleach
usage(181),andacaseinvolvingatheatretechnician(182).Hostynek(183)suggestedthatanon‐irritant
concentrationfordiagnosticpatchtestingforallergiccontactdermatitisusing17ulto20ultestvolume,
couldbeashighasI%NaOCI.
Thesestudiesdiscussedabovedemonstratethatsodiumhypochloriteisnotaskinirritant,nora
sensitizeratlessthan1%.
Somekeyfindings:
1. N95FilteringFacepiecesworkfairlywellagainstbiologicalaerosols.
2. Surgicalmasksdonotworkwellagainstbiologicalaerosols.Handkerchiefs,clothmasks,etc.do
notworkwellagainstbiologicalaerosols.
3. Veryfewvirusesorbiologicalmaterialencompassingviralmaterialisexpectedtobereleased
fromtheoutsideofN95FF.
4. Variousbiologicalagentshavepotentialtogrowonfiltrationmediaoncedepositedthere(with
orwithoutdustadded).
5. BiologicalagentshavepotentialtogrowontheinsideinRPDstoo.
6. ProperhygienepracticesandproperPPE(RPDandotherapparel)doffingisamust.
7. BestpracticeistoproperlyremoveandthendisposeofanN95afterone‐timeuse.
Page24 COVID19Pt1 Rev6,0323020
©2020A.Havics
8. AcceptablepracticeistouseanN95forextendeduseprovidedtheN95FFishandledwithcare
(includesaggressivetrainingbytheauthorityhavingjurisdiction,andstoringproperlyinaclean
dryplaceoutsidefacingup).
9. Riskassessmentindicatesvaryinglevelsofrespiratorycontroldependingonthewearerand
his/heractivities.
10. Thehighestriskisforthoseindirectcontactandinrangeofcoughing/sneezingsymptomatic
persons.
11. Althoughnotbestpractice,extendeduseofN95FFsisacceptableprovidedproperhygiene
practicesandproperPPEdonning/doffingisperformed.
12. Althoughnotbestpractice,norevengoodpractice,re‐useofN95FFsisacceptableprovided
properhygienepractices,properPPEdonning/doffing,anddecontaminationisperformed
(includesaggressivetrainingbytheauthorityhavingjurisdiction,performancedemonstrationof
sanitizationpracticesbythedevicewearer,andstoringproperlyinacleandryplaceoutside
facingup,andjudicioussupervision).
13. TheuseofsurgicalmasksorN95FFsonsymptomaticpatientsisbeneficial.
Acknowledgements
ThankstoElsevier,Springer,andthosepublisherswhohavemademanyrelevantarticlesavailablefree.
AldothankstoPurdueUniversity,IUPUI,andIUSchoolofMedicinewhohaveallowedmethrough
variousadjunctfacultyandlecturingpositionsaccesstoanumberofthearticlescitedherein.Also,a
heartyshoutouttoSteveJahnandScottArmourfortheirencouragementtowritethisandtheirreview
ofthetext.Finally,thankstomybetterhalfTami,whoindulgesmeinmyscientificendeavors.
References
1 Gorbalenya,A.,S.Baker,andR.Baric:ThespeciesSevereacuterespiratorysyndrome‐related
coronavirus:classifying2019‐nCoVandnamingitSARS‐CoV‐2.NatureMicrobiology(2020).
2 Heimbuch,B.K.,W.H.Wallace,K.Kinney,A.E.Lumley,C.‐Y.Wu,M.‐H.Wooetal.:Apandemic
influenzapreparednessstudy:useofenergeticmethodstodecontaminatefilteringfacepiecerespirators
contaminatedwithH1N1aerosolsanddroplets.Americanjournalofinfectioncontrol39(1):e1‐e9
(2011).
3 Rubino,I.,andH.‐J.Choi:Respiratoryprotectionagainstpandemicandepidemicdiseases.
Trendsinbiotechnology35(10):907‐910(2017).
4 Süß,T.,C.Remschmidt,S.Schink,M.Luchtenberg,W.Haas,G.Krauseetal.:Facemasksand
intensifiedhandhygieneinaGermanhouseholdtrialduringthe2009/2010influenzaA(H1N1)
pandemic:adherenceandtolerabilityinchildrenandadults.Epidemiology&Infection139(12):1895‐
1901(2011).
5 Bergman,M.,Z.Zhuang,E.Brochu,andA.Palmiero:FitassessmentofN95filtering‐facepiece
respiratorsintheUSCentersforDiseaseControlandPreventionStrategicNationalStockpile.Journalof
theInternationalSocietyforRespiratoryProtection32(2):50(2015).
Page25 COVID19Pt1 Rev6,0323020
©2020A.Havics
6 Chia,S.,D.Koh,K.Takahashi,Y.Li,T.Imai,W.Lietal.:Appropriateuseofpersonalprotective
equipmentamonghealthcareworkersinSingapore,China,andJapanhospitalsduringtheSARS
outbreak.JOURNAL‐INTERNATIONALSOCIETYFORRESPIRATORYPROTECTION23(3/4):67(2006).
7 MacIntyre,C.R.,S.Cauchemez,D.E.Dwyer,H.Seale,P.Cheung,G.Browneetal.:Facemask
useandcontrolofrespiratoryvirustransmissioninhouseholds.Emerginginfectiousdiseases15(2):233
(2009).
8 Loeb,M.,N.Dafoe,J.Mahony,M.John,A.Sarabia,V.Glavinetal.:SurgicalmaskvsN95
respiratorforpreventinginfluenzaamonghealthcareworkers:arandomizedtrial.Jama302(17):1865‐
1871(2009).
9 Shine,K.I.,B.Rogers,andL.R.Goldfrank:NovelH1N1influenzaandrespiratoryprotectionfor
healthcareworkers.NewEnglandJournalofMedicine361(19):1823‐1825(2009).
10 Rottach,D.R.,andZ.Lei:StockpiledN95filteringfacepiecerespiratorpolyisoprenestrap
performance.JournaloftheInternationalSocietyforRespiratoryProtection34(2):69(2017).
11 Ahrenholz,S.H.,S.E.Brueck,A.M.Rule,J.D.Noti,B.Noorbakhsh,F.M.Blachereetal.:
Assessmentofenvironmentalandsurgicalmaskcontaminationatastudenthealthcenter—2012–2013
influenzaseason.Journalofoccupationalandenvironmentalhygiene15(9):664‐675(2018).
12 Anon:Anon,InterimguidanceonICmeasuresfor2009H1N1influenzainhealthcaresettings,
includingprotofhealthcarepersonnel.MississippiRN71(4):13‐18(2010).
13 Canini,L.,L.Andréoletti,P.Ferrari,R.D'Angelo,T.Blanchon,M.Lemaitreetal.:Surgicalmask
topreventinfluenzatransmissioninhouseholds:aclusterrandomizedtrial.PloSone5(11)(2010).
14 Cowling,B.J.,K.‐H.Chan,V.J.Fang,C.K.Cheng,R.O.Fung,W.Waietal.:Facemasksandhand
hygienetopreventinfluenzatransmissioninhouseholds:aclusterrandomizedtrial.Annalsofinternal
medicine151(7):437‐446(2009).
15 Eide,M.,andD.R.Lillquist:Chapter14.Samplingandsizingofairborneparticles.InThe
OccupationalEnvironment:ItsEvaluationControlandManagement,D.H.Anna(ed.),pp.330‐355:
Fairfax,Va.:AIHAPress,2011.
16 Havics,A.A.:ALookatCOVID19intermsof:4.AerosolTransmission,InPreparation.
17 Havics,A.A.:ALookatCOVID19intermsof:5.Risk,InPreparation.
18 Clauß,M.:Particlesizedistributionofairbornemicro‐organismsintheenvironment—Areview.
LandbauforschApplAgricForestryRes65(2):77‐100(2015).
19 Eninger,R.M.,A.Adhikari,T.Reponen,andS.A.Grinshpun:Differentiatingbetweenphysical
andviablepenetrationswhenchallengingrespiratorfilterswithbioaerosols.CLEAN–Soil,Air,Water
36(7):615‐621(2008).
20 Zuo,Z.,T.H.Kuehn,andD.Y.Pui:RespiratorTestingUsingVirusAerosol:Comparisonbetween
ViabilityPenetrationandPhysicalPenetration.AnnalsofOccupationalHygiene59(6):812‐816(2015).
21 Hinds,W.,C:AerosolTechnology,Properties,Behavior,andMeasurementofAirborneParticles:
JohnWiley&Sons,1982.
22 Lee,S.‐A.,S.A.Grinshpun,andT.Reponen:RespiratoryperformanceofferedbyN95respirators
andsurgicalmasks:humansubjectevaluationwithNaClaerosolrepresentingbacterialandviralparticle
sizerange.AnnalsofOccupationalHygiene52(3):177‐185(2008).
23 Haghighat,F.,A.Bahloul,J.Lara,R.Mostofi,andA.Mahdavi:"Développementd’une
procéduredemesuredel’efficacitédesfiltresd’appareilsdeprotectionrespiratoireN95contreles
nanoparticules",pp.77:l’InstitutderechercheRobert‐Sauvéensantéetensécuritédutravail,2013.
24 Ramirez,J.A.:EvaluationofparticlepenetrationandbreathingresistanceofN95filteringface‐
piecerespiratorsanduncertifieddustmasks(2015).
25 Rengasamy,S.,A.Miller,andB.C.Eimer:EvaluationofthefiltrationperformanceofNIOSH‐
approvedN95filteringfacepiecerespiratorsbyphotometricandnumber‐basedtestmethods.Journalof
occupationalandenvironmentalhygiene8(1):23‐30(2011).
Page26 COVID19Pt1 Rev6,0323020
©2020A.Havics
26 Eshbaugh,J.P.,P.D.Gardner,A.W.Richardson,andK.C.Hofacre:N95andP100respiratorfilter
efficiencyunderhighconstantandcyclicflow.Journalofoccupationalandenvironmentalhygiene6(1):
52‐61(2008).
27 Han,H.,R.Holm,M.Prell,andR.Remiarz:PenetrationofN95filteringfacepiecerespiratorsby
chargedandcharge‐neutralizednanoparticles.JIntSocRespProtect29(2):75‐81(2012).
28 Harnish,D.A.,B.K.Heimbuch,C.Balzli,M.Choe,A.E.Lumley,R.E.Shafferetal.:Captureof0.1‐
μmaerosolparticlescontainingviableH1N1influenzavirusbyN95filteringfacepiecerespirators.
Journalofoccupationalandenvironmentalhygiene13(3):D46‐D49(2016).
29 Liu,Y.,Z.Ning,Y.Chen,M.Guo,Y.Liu,N.K.Galietal.:AerodynamicCharacteristicsandRNA
ConcentrationofSARS‐CoV‐2AerosolinWuhanHospitalsduringCOVID‐19Outbreak.bioRxiv(2020).
30 Brosseau,L.:FilterEfficiencyandFacialFitofHealthCareMasks.InAIHCE2006.Chicago,IL,
2006.
31 Bałazy,A.,M.Toivola,A.Adhikari,S.K.Sivasubramani,T.Reponen,andS.A.Grinshpun:Do
N95respiratorsprovide95%protectionlevelagainstairborneviruses,andhowadequatearesurgical
masks?Americanjournalofinfectioncontrol34(2):51‐57(2006).
32 Davidson,C.S.:EfficacyofSelectedN95Respirators,SurgicalMasks,andTransparentMesh
NettingAgainstAirborne,Non‐PathogenicBacillusAnthracisSterne34F2VegetativeCellsand
Endospores:UniversityofCincinnati,2006.
33 Davidson,C.S.,C.F.Green,S.G.Gibbs,K.K.Schmid,A.L.Panlilio,P.A.Jensenetal.:
PerformanceevaluationofselectedN95respiratorsandsurgicalmaskswhenchallengedwith
aerosolizedendosporesandinertparticles.Journalofoccupationalandenvironmentalhygiene10(9):
461‐467(2013).
34 Grinshpun,S.A.,H.Haruta,R.M.Eninger,T.Reponen,R.T.McKay,andS.‐A.Lee:Performance
ofanN95filteringfacepieceparticulaterespiratorandasurgicalmaskduringhumanbreathing:two
pathwaysforparticlepenetration.Journalofoccupationalandenvironmentalhygiene6(10):593‐603
(2009).
35 Johnson,B.,D.Martin,andI.Resnick:Efficacyofselectedrespiratoryprotectiveequipment
challengedwithBacillussubtilissubsp.niger.Appl.Environ.Microbiol.60(6):2184‐2186(1994).
36 McCullough,N.,L.Brosseau,andD.Vesley:Collectionofthreebacterialaerosolsbyrespirator
andsurgicalmaskfiltersundervaryingconditionsofflowandrelativehumidity.TheAnnalsof
OccupationalHygiene41(6):677‐690(1997).
37 Derrick,J.,andC.Gomersall:Protectinghealthcarestafffromsevereacuterespiratory
syndrome:filtrationcapacityofmultiplesurgicalmasks.JournalofHospitalInfection59(4):365‐368
(2005).
38 Oberg,T.,andL.M.Brosseau:Surgicalmaskfilterandfitperformance.Americanjournalof
infectioncontrol36(4):276‐282(2008).
39 Weber,A.,K.Willeke,R.Marchloni,T.Myojo,R.Mckay,J.Donnellyetal.:Aerosolpenetration
andleakagecharacteristicsofmasksusedinthehealthcareindustry.Americanjournalofinfection
control21(4):167‐173(1993).
40 Tseng,C.‐C.,Z.‐M.Pan,andC.‐H.Chang:Applicationofaquaternaryammoniumagenton
surgicalfacemasksbeforeuseforpre‐decontaminationofnosocomialinfection‐relatedbioaerosols.
AerosolScienceandTechnology50(3):199‐210(2016).
41 Brosseau,L.M.,N.V.McCullough,andD.Vesley:Mycobacterialaerosolcollectionefficiencyof
respiratorandsurgicalmaskfiltersundervaryingconditionsofflowandhumidity.AppliedOccupational
andEnvironmentalHygiene12(6):435‐445(1997).
42 Elmashae,R.B.Y.,S.A.Grinshpun,T.Reponen,M.Yermakov,andR.Riddle:Performanceof
tworespiratoryprotectivedevicesusedbyhome‐attendinghealthcareworkers(apilotstudy).Journal
ofoccupationalandenvironmentalhygiene14(9):D145‐D149(2017).
Page27 COVID19Pt1 Rev6,0323020
©2020A.Havics
43 He,X.,T.Reponen,R.McKay,andS.A.Grinshpun:Howdoesbreathingfrequencyaffectthe
performanceofanN95filteringfacepiecerespiratorandasurgicalmaskagainstsurrogatesofviral
particles?Journalofoccupationalandenvironmentalhygiene11(3):178‐185(2014).
44 Eninger,R.M.,C.J.HoganJr,P.Biswas,A.Adhikari,T.Reponen,andS.A.Grinshpun:
Electrosprayversusnebulizationforaerosolizationandfiltertestingwithbacteriophageparticles.
AerosolScienceandTechnology43(4):298‐304(2009).
45 Guha,S.,B.McCaffrey,P.Hariharan,andM.R.Myers:Quantificationofleakageofsub‐micron
aerosolsthroughsurgicalmasksandfacemasksforpediatricuse.Journalofoccupationaland
environmentalhygiene14(3):214‐223(2017).
46 Jeong,S.B.,H.S.Ko,S.C.Seo,andJ.H.Jung:Evaluationoffiltrationcharacteristicsandmicrobial
recoveryratesofcommercialfilteringfacepiecerespiratorsagainstairbornebacterialparticles.Science
ofTheTotalEnvironment682:729‐736(2019).
47 Willeke,K.,Y.Qian,J.Donnelly,S.Grinshpun,andV.Ulevicius:Penetrationofairborne
microorganismsthroughasurgicalmaskandadust/mistrespirator.AmericanIndustrialHygiene
Associationjournal57(4):348‐355(1996).
48 Rengasamy,S.,A.Miller,B.C.Eimer,andR.E.Shaffer:FiltrationperformanceofFDA‐cleared
surgicalmasks.JournaloftheInternationalSocietyforRespiratoryProtection26(1):54(2009).
49 Rengasamy,S.,andB.C.Eimer:N95‐companionmeasurementofCout/CinratiosfortwoN95
filteringfacepiecerespiratorsandonesurgicalmask.Journalofoccupationalandenvironmentalhygiene
10(10):527‐532(2013).
50 Sanchez,E.:Filtrationefficiencyofsurgicalmasks.InDepartmentofEnvironmentaland
OccupationalHealth,pp.83:UniversitySouthFlorida,2010.
51 Vo,E.,S.Rengasamy,andR.Shaffer:Developmentofatestsystemtoevaluateproceduresfor
decontaminationofrespiratorscontainingviraldroplets.Appl.Environ.Microbiol.75(23):7303‐7309
(2009).
52 Wake,D.,A.Bowry,B.Crook,andR.Brown:Performanceofrespiratoryfiltersandsurgical
masksagainstbacterialaerosols.Journalofaerosolscience28(7):1311‐1329(1997).
53 Willeke,K.,S.Grinshpun,Y.Quian,J.Donnelly,A.Juozaitis,andV.Ulevicius:Physicaland
biologicalaerosolpenetrationandface‐sealleakcharacteristicsofindustrialandhealth‐carerespirators.
Journalofaerosolscience25:569‐570(1994).
54 Rengasamy,S.,B.Eimer,andR.E.Shaffer:Simplerespiratoryprotection—evaluationofthe
filtrationperformanceofclothmasksandcommonfabricmaterialsagainst20–1000nmsizeparticles.
AnnalsofOccupationalHygiene54(7):789‐798(2010).
55 Cooper,D.,W.Hinds,J.Price,R.Weker,andH.Yee:"Expedientmethodsofrespiratory
protection.II.Leakagetests.Finalreport":HarvardUniv.,Boston,MA(USA).SchoolofPublicHealth,
1983.
56 Brosseau,L.M.,S.‐K.Chen,D.Vesley,andJ.H.Vincent:Systemdesignandtestmethodfor
measuringrespiratorfilterefficiencyusingmycobacteriumaerosols.Journalofaerosolscience25(8):
1567‐1577(1994).
57 Chen,C.‐C.,andK.Willeke:Aerosolpenetrationthroughsurgicalmasks.Americanjournalof
infectioncontrol20(4):177‐184(1992).
58 Bałazy,A.,M.Toivola,T.Reponen,A.Podgórski,A.Zimmer,andS.A.Grinshpun:Manikin‐
basedperformanceevaluationofN95filtering‐facepiecerespiratorschallengedwithnanoparticles.
AnnalsofOccupationalHygiene50(3):259‐269(2006).
59 Brochot,C.,A.Djebara,F.Haguiguat,andA.Bahloul:Validationofalaboratorytestbenchfor
theefficiencyofanN95filteringfacepiece,usingsimulatedoccupationalexposure.Journalof
Environmental&AnalyticalToxicology5:286‐297(2015).
Page28 COVID19Pt1 Rev6,0323020
©2020A.Havics
60 Eninger,R.M.:PerformanceAspectsofFilteringFacepieceRespiratorsAgainstUltrafineInert
andBiologicalParticles:UniversityofCincinnati,2008.
61 Qian,Y.,K.Willeke,S.A.Grinshpun,J.Donnelly,andC.C.Coffey:PerformanceofN95
respirators:filtrationefficiencyforairbornemicrobialandinertparticles.AmericanIndustrialHygiene
Associationjournal59(2):128‐132(1998).
62 Willeke,K.,andY.Qian:Tuberculosiscontrolthroughrespiratorwear:PerforanceofNational
InstituteforOccupationalSafetyandHealth‐regulatedrespirators.Americanjournalofinfectioncontrol
26(2):139‐142(1998).
63 Bergman,M.,Z.Zhuang,E.Brochu,andA.Palmiero:FitAssessmentofN95Filtering‐Facepiece
RespiratorsintheU.S.CentersforDiseaseControlandPreventionStrategicNationalStockpile.Journal
oftheInternationalSocietyforRespiratoryProtection32(2):50‐64(2015).
64 Gardner,P.D.,J.P.Eshbaugh,S.D.Harpest,A.W.Richardson,andK.C.Hofacre:Viableviral
efficiencyofN95andP100respiratorfiltersatconstantandcyclicflow.Journalofoccupationaland
environmentalhygiene10(10):564‐572(2013).
65 Harnish,D.A.,B.K.Heimbuch,M.Husband,A.E.Lumley,K.Kinney,R.E.Shafferetal.:
ChallengeofN95filteringfacepiecerespiratorswithviableH1N1influenzaaerosols.InfectionControl&
HospitalEpidemiology34(5):494‐499(2013).
66 Hauge,J.,M.Roe,L.M.Brosseau,andC.Colton:Real‐timefitofarespiratorduringsimulated
healthcaretasks.Journalofoccupationalandenvironmentalhygiene9(10):563‐571(2012).
67 Rengasamy,S.,B.C.Eimer,andR.E.Shaffer:Comparisonofnanoparticlefiltrationperformance
ofNIOSH‐approvedandCE‐markedparticulatefilteringfacepiecerespirators.AnnalsofOccupational
Hygiene53(2):117‐128(2009).
68 Rengasamy,S.,W.P.King,B.C.Eimer,andR.E.Shaffer:FiltrationperformanceofNIOSH‐
approvedN95andP100filteringfacepiecerespiratorsagainst4to30nanometer‐sizenanoparticles.
Journalofoccupationalandenvironmentalhygiene5(9):556‐564(2008).
69 Rengasamy,S.:NanoparticlepenetrationthroughNIOSH‐approvedN95filtering‐facepiece
respirators.J.Int.Soc.RespiratoryProtection24:49‐59(2007).
70 Hurata,H.,T.Honda,R.M.Eninger,T.Reponen,R.McKay,andS.Grinshpun:Experimentaland
TheoreticalInvestigationofthePerformanceofN95RespiratorFiltersagainstUltrafineAerosolParticles
TestedatConstantandCyclicFlows.JournaloftheInternationalSocietyforRespiratoryProtection25(3‐
4):75‐88(2008).
71 Zhou,S.S.,S.Lukula,C.Chiossone,R.W.Nims,D.B.Suchmann,andM.K.Ijaz:Assessmentofa
respiratoryfacemaskforcapturingairpollutantsandpathogensincludinghumaninfluenzaand
rhinoviruses.Journalofthoracicdisease10(3):2059(2018).
72 Zhuang,Z.,M.S.Bergman,B.C.Eimer,andR.E.Shaffer:Laboratoryfacesealleakageevaluation
ofN95filteringfacepiecerespiratorsagainstnanoparticlesand“allsize”particles.Journalof
occupationalandenvironmentalhygiene10(9):496‐504(2013).
73 Zuo,Z.,T.H.Kuehn,andD.Y.Pui:Performanceevaluationoffilteringfacepiecerespiratorsusing
virusaerosols.Americanjournalofinfectioncontrol41(1):80‐82(2013).
74 Cho,K.J.,T.Reponen,R.McKay,A.Dwivedi,A.Adhikari,U.Singhetal.:Comparisonof
workplaceprotectionfactorsfordifferentbiologicalcontaminants.Journalofoccupationaland
environmentalhygiene8(7):417‐425(2011).
75 Roberge,R.,G.Niezgoda,andS.Benson:AnalysisofForcesGeneratedbyN95Filtering
FacepieceRespiratorTetheringDevices:APilotStudy.Journalofoccupationalandenvironmental
hygiene9(8):517‐523(2012).
76 Viscusi,D.J.,M.Bergman,E.Sinkule,andR.E.Shaffer:Evaluationofthefiltrationperformance
of21N95filteringfacepiecerespiratorsafterprolongedstorage.Americanjournalofinfectioncontrol
37(5):381‐386(2009).
Page29 COVID19Pt1 Rev6,0323020
©2020A.Havics
77 Dharmadhikari,A.S.,M.Mphahlele,A.Stoltz,K.Venter,R.Mathebula,T.Masotlaetal.:
Surgicalfacemaskswornbypatientswithmultidrug‐resistanttuberculosis:impactoninfectivityofair
onahospitalward.Americanjournalofrespiratoryandcriticalcaremedicine185(10):1104‐1109
(2012).
78 Jaeger,J.L.,M.Patel,N.Dharan,K.Hancock,E.Meites,C.Mattsonetal.:Transmissionof2009
pandemicinfluenzaA(H1N1)virusamonghealthcarepersonnel—SouthernCalifornia,2009.Infection
Control&HospitalEpidemiology32(12):1149‐1157(2011).
79 MacIntyre,C.R.,Q.Wang,S.Cauchemez,H.Seale,D.E.Dwyer,P.Yangetal.:Acluster
randomizedclinicaltrialcomparingfit‐testedandnon‐fit‐testedN95respiratorstomedicalmasksto
preventrespiratoryvirusinfectioninhealthcareworkers.Influenzaandotherrespiratoryviruses5(3):
170‐179(2011).
80 MacIntyre,C.R.,Q.Wang,B.Rahman,H.Seale,I.Ridda,Z.Gaoetal.:Efficacyoffacemasks
andrespiratorsinpreventingupperrespiratorytractbacterialcolonizationandco‐infectioninhospital
healthcareworkers.Preventivemedicine62:1‐7(2014).
81 Yarbrough,M.I.,M.E.Ficken,C.U.Lehmann,T.R.Talbot,M.D.Swift,P.W.McGownetal.:
Respiratoruseinahospitalsetting:establishingsurveillancemetrics.JournaloftheInternationalSociety
forRespiratoryProtection33(1):1(2016).
82 MacIntyre,C.R.,andA.A.Chughtai:Facemasksforthepreventionofinfectioninhealthcareand
communitysettings.Bmj350:h694(2015).
83 Bailar,J.,D.S.Burke,L.Brosseau,H.Cohen,E.Gallagher,andK.Gensheimber:Reusabilityof
facemasksduringaninfluenzapandemic.Washington[DC]:NationalAcademiesPress,2006.
84 Lavoie,J.,Y.Cloutier,J.Lara,andG.Marchand:Guidesurlaprotectionrespiratoirecontreles
bioaérosols:recommandationssurlechoixetl'utilisation.RapportRG497(2007).
85 Brady,T.M.,A.L.Strauch,C.M.Almaguer,G.Niezgoda,R.E.Shaffer,P.L.Yorioetal.:Transfer
ofbacteriophageMS2andfluoresceinfromN95filteringfacepiecerespiratorstohands:Measuring
fomitepotential.Journalofoccupationalandenvironmentalhygiene14(11):898‐906(2017).
86 Havics,A.A.:ALookatCOVID19intermsof:2.HygieneTechniques&Policies(Inpreparation.).
87 Fisher,E.M.,andR.E.Shaffer:Considerationsforrecommendingextendeduseandlimited
reuseoffilteringfacepiecerespiratorsinhealthcaresettings.Journalofoccupationalandenvironmental
hygiene11(8):D115‐D128(2014).
88 Nicas,M.,andR.M.Jones:Relativecontributionsoffourexposurepathwaystoinfluenza
infectionrisk.RiskAnalysis:AnInternationalJournal29(9):1292‐1303(2009).
89 Heimbuch,B.K.,W.H.Wallace,C.L.Balzli,M.L.Laning,A.E.Lumley,K.D.Cunninghametal.:
"BioaerosolExposuretoFilteringFacepieceRespiratorsinaClinicalEnvironment(Author'sFinal
Manuscript)":AppliedResearchAssociatesPanamaCityUnitedStates,2013.
90 Heimbuch,B.K.,W.H.Wallace,C.L.Balzli,M.L.Laning,D.A.Harnish,andJ.D.Wander:
Bioaerosolexposuretopersonnelinaclinicalenvironmentabsentpatients.Journalofoccupationaland
environmentalhygiene13(2):D11‐D15(2016).
91 Jachowicz,A.,K.Majchrzycka,J.Szulc,M.Okrasa,andB.Gutarowska:Survivalof
MicroorganismsonFilteringRespiratoryProtectiveDevicesUsedatAgriculturalFacilities.International
JournalofEnvironmentalResearchandPublicHealth16(16):2819(2019).
92 Fisher,E.,S.Rengasamy,D.Viscusi,E.Vo,andR.Shaffer:Developmentofatestsystemto
applyvirus‐containingparticlestofilteringfacepiecerespiratorsfortheevaluationofdecontamination
procedures.Appl.Environ.Microbiol.75(6):1500‐1507(2009).
93 Higami,M.:Anaerobicbacterialcontaminationofthedustmaskafteruseandits
countermeasures.OccupationalHealthMagazine(inJapanese)58(5):173‐178(2016).
Page30 COVID19Pt1 Rev6,0323020
©2020A.Havics
94 Higami,M.,Y.Shimada,T.Ishida,Y.Fueda,andH.Hori:Bacterialcontaminationofthedust
maskafteruseanditscountermeasures─Evaluaonbyaerobicculture.OccupationalHealthMagazine
(inJapanese)56(6):237‐244(2014).
95 Johnson,B.,D.R.Winters,T.R.Shreeve,andC.C.Coffey:Respiratorfilterreusetestusingthe
laboratorysimulantmycobacteriumtuberculosis(H37RAstrain).JournaloftheAmericanBiological
SafetyAssociation3(3):105‐116(1998).
96 Patterson,B.,andR.Wood:IscoughreallynecessaryforTBtransmission?Tuberculosis
(Edinburgh,Scotland)117:31(2019).
97 Loudon,R.G.,andL.C.Brown:Coughfrequencyinpatientswithrespiratorydisease.American
ReviewofRespiratoryDisease96(6):1137‐1143(1967).
98 Nicas,M.,W.W.Nazaroff,andA.Hubbard:Towardunderstandingtheriskofsecondary
airborneinfection:emissionofrespirablepathogens.Journalofoccupationalandenvironmentalhygiene
2(3):143‐154(2005).
99 Druett,H.,J.Robinson,D.Henderson,L.Packman,andS.Peacock:Studiesonrespiratory
infection:II.Theinfluenceofaerosolparticlesizeoninfectionoftheguinea‐pigwithPasteurellapestis.
Epidemiology&Infection54(1):37‐48(1956).
100 Loudon,R.G.,andR.M.Roberts:Dropletexpulsionfromtherespiratorytract.AmericanReview
ofRespiratoryDisease95(3):435‐442(1967).
101 Papineni,R.S.,andF.S.Rosenthal:Thesizedistributionofdropletsintheexhaledbreathof
healthyhumansubjects.JournalofAerosolMedicine10(2):105‐116(1997).
102 Morawska,L.,G.Johnson,Z.Ristovski,M.Hargreaves,K.Mengersen,S.Corbettetal.:Size
distributionandsitesoforiginofdropletsexpelledfromthehumanrespiratorytractduringexpiratory
activities.Journalofaerosolscience40(3):256‐269(2009).
103 Lee,J.,D.Yoo,S.Ryu,S.Ham,K.Lee,M.Yeoetal.:Quantity,SizeDistribution,and
CharacteristicsofCough‐generatedAerosolProducedbyPatientswithanUpperRespiratoryTract
Infection.AerosolandAirQualityResearch19(4):840‐853(2019).
104 Buckland,F.,andD.Tyrrell:Experimentsonthespreadofcolds:1.Laboratorystudiesonthe
dispersalofnasalsecretion.Epidemiology&Infection62(3):365‐377(1964).
105 Nishimura,H.,S.Sakata,andA.Kaga:Anewmethodologyforstudyingdynamicsofaerosol
particlesinsneezeandcoughusingadigitalhigh‐vision,high‐speedvideosystemandvectoranalyses.
PloSone8(11)(2013).
106 Bourouiba,L.,E.Dehandschoewercker,andJ.W.Bush:Violentexpiratoryevents:oncoughing
andsneezing.JournalofFluidMechanics745:537‐563(2014).
107 Jennison,M.W.:Atomizingofmouthandnosesecretionsintotheairasrevealedbyhigh‐speed
photography.InAerobiology,F.R.Moulton(ed.),pp.106‐128:AmericanAssociationforthe
AdvancementofScience,1942.
108 VanSciver,M.,S.Miller,andJ.Hertzberg:Particleimagevelocimetryofhumancough.Aerosol
ScienceandTechnology45(3):415‐422(2011).
109 Tang,J.W.‐T.,andG.Settles:Coughingandmasks.NewEnglandJournalofMedicine361(26):
e62(2009).
110 Boston,L.N.:TheSpreadofTuberculosisbyCoughing.JournaloftheAmericanMedical
Association37(11):685‐688(1901).
111 Williams,C.M.,M.Abdulwhhab,S.S.Birring,E.deKock,N.J.Garton,A.Stoltzetal.:Twenty‐
fourhourfacemasksamplinginpulmonarytuberculosisrevealsthreedistinctpatternsofbacterial
aerosolproductiondissociatedfromconventionalmarkersoftransmissionrisk.bioRxiv:426825(2018).
112 Williams,C.M.L.,E.S.G.Cheah,J.Malkin,H.Patel,J.Otu,K.Mlagaetal.:FaceMaskSampling
fortheDetectionofMycobacteriumtuberculosisinExpelledAerosols.PloSone9(8):e104921(2014).
Page31 COVID19Pt1 Rev6,0323020
©2020A.Havics
113 Lindsley,W.G.,J.D.Noti,F.M.Blachere,J.V.Szalajda,andD.H.Beezhold:Efficacyofface
shieldsagainstcoughaerosoldropletsfromacoughsimulator.Journalofoccupationaland
environmentalhygiene11(8):509‐518(2014).
114 Wood,M.E.,R.E.Stockwell,G.R.Johnson,K.A.Ramsay,L.J.Sherrard,N.Jabbouretal.:Face
masksandcoughetiquettereducethecoughaerosolconcentrationofPseudomonasaeruginosain
peoplewithcysticfibrosis.Americanjournalofrespiratoryandcriticalcaremedicine197(3):348‐355
(2018).
115 Lai,A.,C.Poon,andA.Cheung:Effectivenessoffacemaskstoreduceexposurehazardsfor
airborneinfectionsamonggeneralpopulations.JournaloftheRoyalSocietyInterface9(70):938‐948
(2012).
116 Milton,D.K.,M.P.Fabian,B.J.Cowling,M.L.Grantham,andJ.J.McDevitt:Influenzavirus
aerosolsinhumanexhaledbreath:particlesize,culturability,andeffectofsurgicalmasks.PLoS
pathogens9(3)(2013).
117 Diaz,K.T.,andG.C.Smaldone:Quantifyingexposurerisk:surgicalmasksandrespirators.
Americanjournalofinfectioncontrol38(7):501‐508(2010).
118 Birkner,J.S.,D.Fung,W.C.Hinds,andN.J.Kennedy:Particlereleasefromrespirators,partI:
Determinationoftheeffectofparticlesize,dropheight,andload.Journalofoccupationaland
environmentalhygiene8(1):1‐9(2011).
119 Birkner,J.S.,S.Kovalchik,D.Fung,W.C.Hinds,andN.J.Kennedy:Particlereleasefrom
respirators,partII:Determinationoftheeffectoftensionappliedinsimulationofremoval.Journalof
occupationalandenvironmentalhygiene8(1):10‐12(2011).
120 Fisher,E.M.,A.W.Richardson,S.D.Harpest,K.C.Hofacre,andR.E.Shaffer:Reaerosolizationof
MS2bacteriophagefromanN95filteringfacepiecerespiratorbysimulatedcoughing.Annalsof
OccupationalHygiene56(3):315‐325(2012).
121 Kennedy,N.J.,andW.C.Hinds:Releaseofsimulatedanthraxparticlesfromdisposable
respirators.Journalofoccupationalandenvironmentalhygiene1(1):7‐10(2004).
122 Qian,Y.,K.Willeke,S.A.Grinshpun,andJ.Donnelly:PerformanceofN95respirators:
reaerosolizationofbacteriaandsolidparticles.AmericanIndustrialHygieneAssociationjournal58(12):
876‐880(1997).
123 Brosseau,L.M.,N.V.McCullough,andD.Vesley:Bacterialsurvivalonrespiratorfiltersand
surgicalmasks.JournaloftheAmericanBiologicalSafetyAssociation2(3):32‐43(1997).
124 Coulliette,A.,K.Perry,E.M.Fisher,J.Edwards,R.Shaffer,andJ.Noble‐Wang:MS2Coliphage
asaSurrogatefor2009PandemicInfluenzaA(H1N1)Virus(pH1N1)inSurfaceSurvivalStudiesonN95
FilteringFacepieceRespirators.JournaloftheInternationalSocietyforRespiratoryProtection32(1):14‐
22(2015).
125 Fisher,E.,andR.Shaffer:SurvivalofbacteriophageMS2onfilteringfacepiecerespirator
coupons.AppliedBiosafety15(2):71‐76(2010).
126 Coulliette,A.,K.Perry,J.Edwards,andJ.Noble‐Wang:Persistenceofthe2009pandemic
influenzaA(H1N1)virusonN95respirators.Appl.Environ.Microbiol.79(7):2148‐2155(2013).
127 Ko,G.,H.A.Burge,M.Muilenberg,S.Rudnick,andM.First:SurvivalofmycobacteriaonHEPA
filtermaterial.JournaloftheAmericanBiologicalSafetyAssociation3(2):65‐78(1998).
128 Miaskiwicz‐Peska,E.,andT.Slomczynski:Survivalofbacteriainrespiratoryprotectivefilters.
Polishjournalofmicrobiology65(4):475‐477(2016).
129 Rengasamy,S.,E.Fisher,andR.E.Shaffer:EvaluationofthesurvivabilityofMS2viralaerosols
depositedonfilteringfacepiecerespiratorsamplesincorporatingantimicrobialtechnologies.American
journalofinfectioncontrol38(1):9‐17(2010).
130 Reponen,T.A.,Z.Wang,K.Willeke,andS.A.Grinshpun:SurvivalofmycobacteriaonN95
personalrespirators.InfectionControl&HospitalEpidemiology20(4):237‐241(1999).
Page32 COVID19Pt1 Rev6,0323020
©2020A.Havics
131 Wang,Z.:Survivalofbacteriaonrespiratorfilters.AerosolScience&Technology30(3):300‐308
(1999).
132 Majchrzycka,K.,M.Okrasa,A.Jachowicz,J.Szulc,andB.Gutarowska:Microbialgrowthon
dust‐loadedfilteringmaterialsusedfortheprotectionofrespiratorytractasafactoraffectingfiltration
efficiency.InternationalJournalofEnvironmentalResearchandPublicHealth15(9):1902(2018).
133 Majchrzycka,K.,M.Okrasa,J.Skóra,andB.Gutarowska:Evaluationofthesurvivabilityof
microorganismsdepositedonfilteringrespiratoryprotectivedevicesundervaryingconditionsof
humidity.InternationalJournalofEnvironmentalResearchandPublicHealth13(1):98(2016).
134 Majchrzycka,K.,M.Okrasa,J.Szulc,A.Jachowicz,andB.Gutarowska:Survivalof
MicroorganismsonNonwovensUsedfortheConstructionofFilteringFacepieceRespirators.
InternationalJournalofEnvironmentalResearchandPublicHealth16(7):1154(2019).
135 Lin,T.‐H.,F.‐C.Tang,C.‐H.Chiang,C.‐P.Chang,andC.‐Y.Lai:Recoveryofbacteriainfiltering
facepiecerespiratorsandeffectsofartificialsaliva/perspirationonbacterialsurvivalandperformanceof
respirators.AerosolAirQual.Res17:187‐197(2017).
136 Casanova,L.,E.Alfano‐Sobsey,W.A.Rutala,D.J.Weber,andM.Sobsey:Virustransferfrom
personalprotectiveequipmenttohealthcareemployees’skinandclothing.Emerginginfectiousdiseases
14(8):1291(2008).
137 Rebmann,T.,R.Carrico,andJ.Wang:Physiologicandothereffectsandcompliancewithlong‐
termrespiratoruseamongmedicalintensivecareunitnurses.Americanjournalofinfectioncontrol
41(12):1218‐1223(2013).
138 Alhmidi,H.,S.Koganti,M.E.Tomas,J.L.Cadnum,A.Jencson,andC.J.Donskey:Apilotstudyto
assessuseoffluorescentlotioninpatientcaresimulationstoillustratepathogendisseminationandtrain
personnelincorrectuseofpersonalprotectiveequipment.AntimicrobialResistance&InfectionControl
5(1):40(2016).
139 Watanabe,T.,T.A.Bartrand,M.H.Weir,T.Omura,andC.N.Haas:Developmentofadose‐
responsemodelforSARScoronavirus.RiskAnalysis:AnInternationalJournal30(7):1129‐1138(2010).
140 Nicas,M.:UseofaProbabilisticInfectiousDoseModelforEstimatingAirbornePathogen
InfectionRisk:ApplicationtoRespiratoryProtection.JournaloftheInternationalSocietyforRespiratory
Protection22(1/2):24‐37(2005).
141 Hines,S.E.,C.Brown,M.Oliver,P.Gucer,M.Frisch,R.Hoganetal.:Useracceptanceof
reusablerespiratorsinhealthcare.Americanjournalofinfectioncontrol47(6):648‐655(2019).
142 Vawter,D.E.,J.E.Garrett,K.G.Gervais,A.W.Prehn,D.A.DeBruin,C.A.Taueretal.:Forthe
goodofusall:EthicallyrationinghealthresourcesinMinnesotainasevereinfluenzapandemic.
Minneapolis,MN:MinnesotaCenterforHealthCareEthicsandUniversityofMinnesotaCenterfor
Bioethics(2010).
143 Food,andH.DrugAdministration:Medicaldevices;generalhospitalandpersonalusedevices;
classificationofthefilteringfacepiecerespiratorforusebythegeneralpublicinpublichealthmedical
emergencies.Finalrule.Federalregister72(127):36360(2007).
144 Janssen,L.,andL.Brosseau:LettertotheEditorandAuthor'sReply.Journalofoccupationaland
environmentalhygiene8(2):D15‐D17(2011).
145 Brosseau,L.M.:Fittestingrespiratorsforpublichealthmedicalemergencies.Journalof
occupationalandenvironmentalhygiene7(11):628‐632(2010).
146 Lam,S.C.,A.K.Lui,L.Y.Lee,J.K.Lee,K.Wong,andC.N.Lee:Evaluationoftheusersealcheckon
grossleakagedetectionof3differentdesignsofN95filteringfacepiecerespirators.Americanjournalof
infectioncontrol44(5):579‐586(2016).
147 Frost,S.,R.Mogridge,andM.Roff:FitofFilteringFacepieceClass3(FFP3)RespiratorsPart2,
TheValueofFit‐CheckingandSimpleSubjectiveAssessofFitasanAlternativetoaFitTest.Journalof
theInternationalSocietyforRespiratoryProtection31(2):79‐88(2014).
Page33 COVID19Pt1 Rev6,0323020
©2020A.Havics
148 Mogridge,R.,A.Bowry,andM.Clayton:EvaluationofaShortenedQualitativeFitTestMethod
forFilteringFacpieceRespirators.JournaloftheInternationalSocietyforRespiratoryProtection35(1):
47‐64(2018).
149 Myong,J.‐P.,J.Byun,Y.Cho,H.‐K.Seo,J.‐E.Baek,J.‐W.Kooetal.:Theeducationandpractice
programformedicalstudentswithquantitativeandqualitativefittestforrespiratoryprotective
equipment.IndustrialHealth54(2):177‐182(2016).
150 CDC:"RecommendedguidanceforextendeduseandlimitedreuseofN95filteringfacepiece
respiratorsinhealthcaresettings."[Online]Availableat
https://www.cdc.gov/niosh/topics/hcwcontrols/recommendedguidanceextuse.html,2020).
151 Roberge,R.J.,J.‐H.Kim,andS.M.Benson:Absenceofconsequentialchangesinphysiological,
thermalandsubjectiveresponsesfromwearingasurgicalmask.Respiratoryphysiology&neurobiology
181(1):29‐35(2012).
152 Roberge,R.J.,A.Coca,W.J.Williams,J.B.Powell,andA.J.Palmiero:Reusableelastomericair‐
purifyingrespirators:Physiologicimpactonhealthcareworkers.Americanjournalofinfectioncontrol
38(5):381‐386(2010).
153 Bergman,M.S.,D.J.Viscusi,Z.Zhuang,A.J.Palmiero,J.B.Powell,andR.E.Shaffer:Impactof
multipleconsecutivedonningsonfilteringfacepiecerespiratorfit.Americanjournalofinfectioncontrol
40(4):375‐380(2012).
154 Vuma,C.D.,J.Manganyi,K.Wilson,andD.Rees:TheEffectonFitofMultipleConsecutive
DonningandDoffingofN95FilteringFacepieceRespirators.Annalsofworkexposuresandhealth63(8):
930‐936(2019).
155 Suen,L.K.,L.Yang,S.S.Ho,K.H.Fung,M.V.Boost,C.S.Wuetal.:ReliabilityofN95respirators
forrespiratoryprotectionbefore,during,andafternursingprocedures.Americanjournalofinfection
control45(9):974‐978(2017).
156 Kim,H.,J.‐E.Baek,H.‐K.Seo,J.‐E.Lee,J.‐P.Myong,S.‐J.Leeetal.:Assessingreal‐time
performancesofN95respiratorsforhealthcareworkersbysimulatedworkplaceprotectionfactors.
IndustrialHealth53(6):553‐561(2015).
157 Sietsema,M.,andL.M.Brosseau:Arequantitativefitfactorspredictiveofrespiratorfitduring
simulatedhealthcareactivities?Journalofoccupationalandenvironmentalhygiene15(12):803‐809
(2018).
158 Zhuang,Z.,M.Bergman,E.Brochu,A.Palmiero,G.Niezgoda,X.Heetal.:Temporalchangesin
filtering‐facepiecerespiratorfit.Journalofoccupationalandenvironmentalhygiene13(4):265‐274
(2016).
159 Bessesen,M.T.,J.C.Adams,L.Radonovich,andJ.Anderson:Disinfectionofreusable
elastomericrespiratorsbyhealthcareworkers:afeasibilitystudyanddevelopmentofstandard
operatingprocedures.Americanjournalofinfectioncontrol43(6):629‐634(2015).
160 Bergman,M.S.,D.J.Viscusi,B.K.Heimbuch,J.D.Wander,A.R.Sambol,andR.E.Shaffer:
Evaluationofmultiple(3‐cycle)decontaminationprocessingforfilteringfacepiecerespirators.Journalof
EngineeredFibersandFabrics5(4):155892501000500405(2010).
161 Bergman,M.S.,D.J.Viscusi,A.J.Palmiero,J.B.Powell,andR.E.Shaffer:Impactofthreecycles
ofdecontaminationtreatmentsonfilteringfacepiecerespiratorfit.JournaloftheInternationalSociety
ofRespiratoryProtection28(1):48(2011).
162 Fisher,E.M.,andR.E.Shaffer:AmethodtodeterminetheavailableUV‐Cdoseforthe
decontaminationoffilteringfacepiecerespirators.Journalofappliedmicrobiology110(1):287‐295
(2011).
163 Fisher,E.M.,J.L.Williams,andR.E.Shaffer:Evaluationofmicrowavesteambagsforthe
decontaminationoffilteringfacepiecerespirators.PloSone6(4)(2011).
Page34 COVID19Pt1 Rev6,0323020
©2020A.Havics
164 Fisher,E.,J.Williams,andR.Shaffer:Theeffectofsoilaccumulationonmultiple
decontaminationprocessingofN95filteringfacepiecerespiratorcouponsusingphysicalmethods.JInt
SocRespirProt27(1):16‐26(2010).
165 Heimbuch,B.K.,K.Kinney,A.E.Lumley,D.A.Harnish,M.Bergman,andJ.D.Wander:Cleaning
offilteringfacepiecerespiratorscontaminatedwithmucinandStaphylococcusaureus.Americanjournal
ofinfectioncontrol42(3):265‐270(2014).
166 Lin,T.‐H.,C.‐C.Chen,S.‐H.Huang,C.‐W.Kuo,C.‐Y.Lai,andW.‐Y.Lin:Filterqualityofelectret
masksinfiltering14.6–594nmaerosolparticles:Effectsoffivedecontaminationmethods.PloSone
12(10):e0186217(2017).
167 Lin,T.H.,F.C.Tang,P.C.Hung,Z.C.Hua,andC.Y.Lai:RelativesurvivalofBacillussubtilisspores
loadedonfilteringfacepiecerespiratorsafterfivedecontaminationmethods.Indoorair28(5):754‐762
(2018).
168 Lindsley,W.G.,S.B.MartinJr,R.E.Thewlis,K.Sarkisian,J.O.Nwoko,K.R.Meadetal.:Effectsof
ultravioletgermicidalirradiation(UVGI)onN95respiratorfiltrationperformanceandstructural
integrity.Journalofoccupationalandenvironmentalhygiene12(8):509‐517(2015).
169 Lore,M.B.,B.K.Heimbuch,T.L.Brown,J.D.Wander,andS.H.Hinrichs:Effectivenessofthree
decontaminationtreatmentsagainstinfluenzavirusappliedtofilteringfacepiecerespirators.Annalsof
OccupationalHygiene56(1):92‐101(2012).
170 Mills,D.,D.A.Harnish,C.Lawrence,M.Sandoval‐Powers,andB.K.Heimbuch:Ultraviolet
germicidalirradiationofinfluenza‐contaminatedN95filteringfacepiecerespirators.Americanjournalof
infectioncontrol46(7):e49‐e55(2018).
171 Salter,W.,K.Kinney,W.Wallace,A.Lumley,B.Heimbuch,andJ.Wander:Analysisofresidual
chemicalsonfilteringfacepiecerespiratorsafterdecontamination.Journalofoccupationaland
environmentalhygiene7(8):437‐445(2010).
172 Salter,W.,K.Kinney,W.Wallace,A.Lumley,B.Heimbuch,andJ.Wander:"Analysisofresidual
chemicalsonfilteringfacepiecerespiratorsafterdecontamination":AirForceResearchLab,2009.
173 Viscusi,D.J.,W.P.King,andR.Shaffer:EffectofDecontaminationontheFiltrationEfficiencyof
TwoFilteringFacepieceRespiratorModels.JournaloftheInternationalSocietyforRespiratory
Protection24(3‐4):93‐103(2007).
174 Viscusi,D.J.,M.S.Bergman,B.C.Eimer,andR.E.Shaffer:Evaluationoffivedecontamination
methodsforfilteringfacepiecerespirators.AnnalsofOccupationalHygiene53(8):815‐827(2009).
175 Viscusi,D.J.,M.S.Bergman,D.A.Novak,K.A.Faulkner,A.Palmiero,J.Powelletal.:Impactof
ThreeBiologicalDecontaminationMethodsonFilteringFacepieceRespiratorFit,Odor,Comfort,and
DonningEase.Journalofoccupationalandenvironmentalhygiene8(7):426‐436(2011).
176 Moyer,E.S.,andM.S.Bergman:ElectrostaticN‐95RespiratorFilterMediaEfficiency
DegradationResultingfromIntermittentSodiumChlorideAerosolExposure.AppliedOccupationaland
EnvironmentalHygiene15(8):600‐608(2000).
177 Banovic,F.,T.Olivry,W.Bäumer,J.Paps,J.Stahl,A.Rogersetal.:Dilutedsodiumhypochlorite
(bleach)indogs:antisepticefficacy,localtolerabilityandinvitroeffectonskinbarrierfunctionand
inflammation.Veterinarydermatology29(1):6‐e5(2018).
178 Basketter,D.,E.Whittle,H.Griffiths,andM.York:Theidentificationandclassificationofskin
irritationhazardbyahumanpatchtest.Foodandchemicaltoxicology32(8):769‐775(1994).
179 Bruch,M.K.:Toxicityandsafetyoftopicalsodiumhypochlorite.InDisinfectionbySodium
Hypochlorite:DialysisApplications,pp.24‐38:KargerPublishers,2007.
180 Brooks,C.D.,A.Kujawska,andD.Patel:Cutaneousallergicreactionsinducedbysporting
activities.SportsMedicine33(9):699‐708(2003).
181 Habets,J.,A.Geursen‐Reitsma,E.Stolz,andT.VanJoost:Sensitizationtosodiumhypochlorite
causinghanddermatitis.ContactDermatitis15(3):140‐142(1986).
Page35 COVID19Pt1 Rev6,0323020
©2020A.Havics
182 Zhe,G.C.S.,A.Green,Y.T.Fong,H.Y.Lee,andS.F.Ho:RarecaseoftypeIhypersensitivity
reactiontosodiumhypochloritesolutioninahealthcaresetting.CaseReports2016:bcr2016217228
(2016).
183 Hostynek,J.J.,K.P.Wilhelm,A.Cua,andH.I.Maibach:Irritationfactorsofsodiumhypochlorite
solutionsinhumanskin.ContactDermatitis23(5):316‐324(1990).

Page36 COVID19Pt1 Rev6,0323020
©2020A.Havics
AppendixA
AppendixA.N95FFandSurgicalMaskRPDCleaningProcesses
(recommendlimitingto5decontaminationcycles)
SodiumHypochloriteProcess
1. Preparea0.06%to0.1%solutionofsodiumhypochlorite;placeinContainerB.
 [sizesufficienttosubmergetheRPD]
2. Prepareapan/container[ContainerA]with1%Alconoxsolution*inroomtemperaturewater.
[sizesufficienttosubmergetheRPD]
3. Prepareapan/container[ContainerC]withroomtemperaturewater.
[sizesufficienttosubmergetheRPD]
3. Useanon‐alcoholwetwipeandwipeoffstrapsandanyvisibledebrisfromRPD.
4. PlacetheRPDinpan/containerwith1%Alconoxsolution[ContainerA].
5. GentlyagitatetheRPD.
6. RemoveRPDfromContainerA.
7. RinseRPDonceinContainerC.
8. RemoveRPDanddrainexcesswater.
9. PlaceRPDinContainerB.Soaksubmergedfor10minutes.
10. WhileRPDissoakingchangewaterinContainerC.
11. After10minsoak,removeRPD.
12. PlaceRPDinContainerC.
13. GentlyagitatetheRPDfor30sec.
14. RemoveRPDanddrainexcesswater.[Ifskinsensitive,repeatsteps12&13twomoretimes
withfreshwatereachtime]
15. RemoveRPDanddryinanareawithreasonablecleanairflow(e.g.,hood,sterileopenchamber,
etc.).
16. ExamineRPDfordegradationofstraps,edges,fraying,etc.beforereusing.Donotreuseif
damaged.
Page37 COVID19Pt1 Rev6,0323020
©2020A.Havics
UltravioletGermicidalIrradiation(UVGI)Process
1. DoffRPD.
[Wearlatexornitrileglovestominimizehandcontactduringthisprocess]
2. Useanon‐alcoholwetwipeandwipeoffstrapsandanyvisibledebrisfromRPD.
3. PlaceRPDfaceupindrychamberwithUVshieldingcapacity(oruseproperPPE,e.g.,goggles).
4. ApplyUV‐Cat25W/m2totheoutersurfacefor10min.
5. TurnRPDoverandplacefacedown.
6. ApplyUV‐Cat25W/m2totheinnersurfacefor5min.
7. RemoveRPDanddryinanareawithreasonablecleanairflow(e.g.,hood,sterileopenchamber,
etc.).
8. ExamineRPDfordegradationofstraps,edges,fraying,etc.beforereusing.Donotreuseif
damaged.
CheckefficacyofUV‐C(254nm)sourcedailytoensure25W/m2acrossareatheRPDwillbeplaced.
MoistHeat(MH)Process
1. DoffRPD.
[Wearlatexornitrileglovestominimizehandcontactduringthisprocess]
2. Useanon‐alcoholwetwipeandwipeoffstrapsandanyvisibledebrisfromRPD.
3. PlaceRPDfaceupincubatororsteamingdevice.
4. Appl60‐65⁰C(uppertemp.limit),80‐85%RHfor30min.
5. Removeanddryinanareawithreasonablecleanairflow(e.g.,hood,sterileopenchamber,
etc.).
6. ExamineRPDfordegradationofstraps,edges,fraying,etc.beforereusing.Donotreuseif
damaged.
*Onecansubstituteamilddetergentatlowconcentrationifnecessary.
... There is a presumption that coughs and sneezes are the primary aerosols of concern that are generated from symptomatic persons. As pointed out in an earlier paper (2) , one expects these aerosols to be created/emitted by coughing and sneezing of symptomatic individuals as well as during aerosol generating medical procedures (AGMP) (3) involving these symptomatic persons. These AGMPs might include: intubation, ventilation, suctioning, manipulation of oxygen mask, cardiopulmonary resuscitation, and bronchoscopy (4,5) . ...
... Because the opportunities for significant exposure during time periods in the category of "After 10 days of Non-Use" are not anticipated, no respiratory protection beyond that necessary for use with typical cleaning & cleaning products is needed. For cleaning other than after 10 days, N95 Filtering Facepiece (FFs) are recommended as a minimum for cleaning activities, although other respiratory protection devices 7 (RPDs) may provide higher levels of protection (2) . For Categories 1 & 2 in Table 1, under "immediate" there is a preference for a ½ face respirator as best practice or splash resistant N95 (for example, TB approved RPD), but an N95 as acceptable (2) . ...
... For cleaning other than after 10 days, N95 Filtering Facepiece (FFs) are recommended as a minimum for cleaning activities, although other respiratory protection devices 7 (RPDs) may provide higher levels of protection (2) . For Categories 1 & 2 in Table 1, under "immediate" there is a preference for a ½ face respirator as best practice or splash resistant N95 (for example, TB approved RPD), but an N95 as acceptable (2) . Gloves and proper hygiene controls would also be necessary as well as any PPE necessary in relation to the cleaning products. ...
Technical Report
Full-text available
Protocol for Cleaning and Cleaning Verification for COVID 19 [corrected]
Article
Full-text available
The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
Article
Full-text available
Background: N95 filtering facepiece respirators (FFRs) are widely used in healthcare to reduce transmission of airborne infectious diseases. These respirators are generally described as single use or limited reuse devices, but cost and operational issues mean that they may be donned and doffed multiple times. There is scant research on the effect of this practice on adequacy of fit. Objective: The purpose of this study was to measure the effect on respirator fit of multiple donning and doffing of N95 FFRs. Methods: This was an experiment in which 16 women and 9 men employed by the National Institute for Occupational Health (NIOH), Johannesburg, donned their same N95 FFR six times. All 25 were trained in the correct wearing of the devices before the experiment. Four models of respirators were used: the six who did not use respirators at work (novice subjects) were issued a 3M 1860 FFR and the others used their currently supplied one. During the experiment subjects donned their respirators under the supervision of the tester. Quantitative fit testing was done in the NIOH Occupational Hygiene laboratory after each donning according to the OSHA-Accepted Fit Test Protocol using the TSI PortaCount Pro+ Model 8038 Respirator Fit Tester. During the test, fit was measured after each of seven exercises and then an overall fit factor was computed. Only individuals who achieved an initial overall fit factor of ≥100 were allowed to continue participation in the study. Median overall fit factors were calculated for the 25 subjects for each donning and changes across them was examined using Wilcoxon rank sum tests. Men and women and frequent and infrequent users were compared across the six tests. Infrequent use was defined as subjects who wore respirators ≤ once per week, and novice subjects. Results: Two subjects (8%) had an overall fit factor <100 at fit Test 2, 6 (24%) at Test 3, and 8 (32%) at Tests 4, 5, and 6. Thirteen respirator users (52%) achieved ≥100 throughout the fit testing, so 12 had at least one failure at either Tests 2-6. Five of the 12 subjects with at least one failure showed persistent failures on all subsequent donnings. Six subjects out of 12 (50%) who failed a fit test achieved an overall fit factor >100 at a subsequent test. There was a significant difference between the median first and sixth overall fit factors (195 versus 150; P = 0.0271), but not between the second and sixth (161 versus 150; P = 0.3584). Men and women had similar overall fit factors, but infrequent users had larger average overall fit factors than frequent users after all six donnings. Conclusion: Forty-eight percent of study subjects failed at least one fit test after re-donning an N95 FFR. The fit test data suggest that donning practices probably accounted for the fit test failures. The 50% of subjects who produced overall fit factors ≥100 after a test of <100 supports this contention.
Article
Full-text available
Bioaerosol is a threat at workplaces, therefore the selection and safe use of filtering facepiece respirators (FFRs) is important in preventive activities. The aim of the study was to assess the survival of microorganisms on materials used for FFRs construction. The parameters for microorganism growth under model conditions were described using the Gompertz equation, model verification was also carried out using FFRs at the farmers' workplaces. We found that the factors determining a high survival of microorganisms were as follows: moisture corresponding to the conditions of use and storage of FFRs at workplaces, the presence of sweat and organic dust; inorganic dust and addition of biocide in nonwovens limited the growth of microorganisms, resulting in a shortening of the stationary growth phase and decreased cell numbers (5-6 log). Dust concentration at workplaces was higher than EU occupational exposure limit values and WHO recommendations for airborne particulate matter. Microbial contaminations of the air (10 3-10 4 CFU/m 3), settled dust (10 4-10 6 CFU/g) and FFRs (10 5 CFU/4cm 2) during the grain harvest were high, the main contamination being bacteria (actinomycetes, Pseudomonas fluorescens) and xerophilic fungi. A high correlation was found between the number of microorganisms and the weight of dust on FFRs (R 2 = 0.93-0.96).
Article
Full-text available
Cough has long been implicated in the production of infectious aerosol leading to transmission of tuberculosis (TB). However, prevalence studies frequently identify radiographic evidence of TB in subclinical individuals in the absence of reported coughing. Elucidating the role of cough in transmission depends on understanding the physical process of aerosolizing and expelling mycobacterium tuberculosis (Mtb) bacilli. In the last decade, human aerosol studies have progressed with improved precision of particle detection and greater sophistication of experimental protocols. Combining principles of respiratory physiology, the site and mechanism of aerosolization of respiratory lining fluids during phases of the respiratory cycle has been investigated in detail. Additionally, recent success in the direct detection of naturally generated Mtb aerosols has allowed more detailed characterization in terms of their rate of production and size distribution. We propose that TB transmission depends on the coincidence of the site of aerosol generation with the presence of Mtb bacilli. This review will examine the evidence for site of aerosol production during cough and respiratory activities in conjunction with the characteristics of detectable Mtb aerosols and locations of tuberculosis infection. Furthermore, we propose respiratory activities that are likely to optimise aerosol sampling for investigation of transmission.
Article
Full-text available
Filtering nonwovens that constitute the base material for filtering facepiece respirators (FFRs) used for the protection of the respiratory system against bioaerosols may, in favourable conditions, promote the development of harmful microorganisms. There are no studies looking at the impact that different types of filtering nonwovens have on microorganism survival, which is an important issue for FFR producers and users. Five commercial filtering nonwovens manufactured using diverse textile technologies (i.e., needle-punching, melt-blown, spun-bonding) with different structural parameters and raw material compositions were used within our research. The survival of microorganisms on filtering nonwovens was determined for E. coli, S. aureus, B. subtilis bacteria; C. albicans yeast and A. niger mould. Samples of nonwovens were collected immediately after inoculum application (at 0 h) and after 4, 8, 24, 48, 72, and 96 h of incubation. The tests were carried out in accordance with the AATCC 100-1998 method. Survival depended strongly on microorganism species. E. coli and S. aureus bacteria grew the most on all nonwovens tested. The structural parameters of the nonwovens tested (mass per unit area and thickness) and contact angle did not significantly affect microorganism survival.
Article
Full-text available
Background: Inclusion of reusable respirators, such as elastomeric half-face respirators (EHFRs) and powered air-purifying respirators (PAPRs), in hospital respiratory protection inventories may represent 1 solution to the problem of N95 respirator shortages experienced during pandemics. User acceptance of these devices is 1 potential barrier to implementing such a strategy in respiratory protection programs. Methods: To assess user attitudes toward various respirators, health care workers enrolled in respiratory protection programs in a medical system using EHFRs, N95s, and PAPRs and completed an online questionnaire that addressed attitudes, beliefs, and respirator preferences under different risk scenarios. Responses were compared between user groups. Results: Of 1,152 participants, 53% currently used N95s, 24% used EHFRs, and 23% used PAPRs. N95 users rated their respirators more favorably compared with EHFR and PAPR users (P < .001) regarding comfort and communication, however, EHFR users rated their respirators much more highly regarding sense of protection (P < .001). For all user groups, reusable respirators were significantly more likely (odds ratios 2.3-7.7) to be preferred over N95 filtering facepiece respirators in higher risk scenarios compared to "usual circumstance" scenarios. Conclusions: Despite somewhat less favorable ratings on comfort and communication, experienced EHFR and PAPR users still prefer reusable respirators over N95s in certain higher risk scenarios. This suggests that reusable respirators are an acceptable alternative to N95 respirators in health care and offer 1 viable solution to prevent pandemic-generated respirator shortages.
Article
Full-text available
This work aims at understanding the effects of various dust-loading conditions and the type of nonwovens used in the construction of FFRs on the safe use of those protective devices in situations of exposure to biological agents. The survival of microorganisms (Escherichia coli, Candida albicans, and Aspergillus niger) in dust-loaded polypropylene nonwovens (melt-blown, spun-bonded, and needle-punched) was experimentally determined using microbiological quantitative method (AATCC TM 100-2004). Scanning electron microscope was used to assess biofilm formation on dust-loaded filtering nonwovens. The impact of the growth of microorganisms on filtration efficiency of nonwovens was analysed based on the measurements of penetration of sodium chloride particles (size range 7-270 nm). Results showed that tested microorganisms were able to survive on dust-loaded polypropylene filtering nonwovens. The survival rate of microorganisms and penetration of nanoparticles and submicron particles depended on the type of microorganism, as well as the type and the amount of dust, which indicates that both of those factors should be considered for FFR use recommendations.
Article
Many brands of filtering facepiece respirators are used against air pollution, including bioaerosols; however, studies have explored exposure to bioaerosols from the inside surfaces of respirators. We evaluated the filtration efficiencies and microbial recovery rates of commercial filtering facepiece respirators against bioaerosols. Eight filtering facepiece respirators and one surgical mask were selected, all with high market shares in the Republic of Korea and certified by national or international standards. The tested filtering facepiece respirators were installed on the head of a mannequin under various airflow velocity and relative humidity (RH)conditions. The filtration efficiency against Staphylococcus epidermidis and Escherichia coli bioaerosols, the pressure drop of the filter, and the relative recovery rates for the bacteria were evaluated. The filtration efficiency of each filtering facepiece respirator ranged from 82% to 99%, depending on the filtration grade. The pressure drop was significantly affected by variations in the surrounding RH. The mean relative recovery rates of all filtering facepiece respirators were 14 ± 4.8% and 9 ± 4.7% for S. epidermidis and E. coli, respectively. These results indicate that airborne microorganisms can survive and accumulate on the surfaces of filtering facepiece respirators, which may lead to harmful health outcomes. Our findings will be useful as background information for the development of commercial filtering facepiece respirators while considering their biological properties and reliable guidance to users.
Article
It is generally recognized that most nosocomial infections are spread by exposure to expelled particles at close range (usually within 1 m) or through contact. Although the Korea Centers for Disease Control established a 2-m cut-off for transmittance from patients during the Middle East Respiratory Syndrome (MERS) outbreak in Korea in 2015, questions have been raised regarding possible infection due to aerosols transported beyond this distance. The aim of this study was to characterize cough-generated aerosol emissions from cold patients and to determine the transmission distance of cough particles in indoor air. The study was conducted using subjects with acute upper respiratory infections. The number and size distribution of the particles generated from each cough were measured after participants coughed into a stainless steel chamber in a clean room. The total particle concentration was measured for each subject in the near field (< 1 m) and far field (> 2 m). The number of particles emitted by the cough of an infected patient was 560 ± 5513% greater than that generated by patients after recovery (P < 0.001). The number of particles was also significantly higher (P < 0.001) than the background concentration when infected patients were coughing, even in the far field. These results suggest that the 2-m cut-off should be reconsidered to effectively prevent airborne infections.
Article
Long term storage of personal protective equipment (PPE) in stockpiles is increasingly common in preparation for use during public health emergency responses. Confidence in PPE requires an understanding of the impact of time in storage on all aspects of PPE effectiveness, including protection against inward leakage. Disposable N95 filtering facepiece respirators (FFR) typically rely upon inexpensive elastomeric head straps to provide an effective seal between the filter body and the wearer's face. Annual fit testing provides a measure of assurance that a model fresh from the manufacturer will prove effective, but seal quality may degrade during long term storage. This study examines the stability of a s election of polyisoprene elastomer straps taken from various ages of common N95 FFRs. The tension of the straps at a predetermined strain of 150% was found to differ according to age for one respirator model, though whether due to age or due to manufacturing variations could not be determined. The straps from one manufacturer were found to have notable variation in length, indicating that minor variations in strap tensile properties may not result in significant differences in respirator seal quality. Based on our observations, prolonged storage may affect the tensile properties of headstraps for some models of N95.