Content uploaded by Andrew Havics
Author content
All content in this area was uploaded by Andrew Havics on Apr 01, 2020
Content may be subject to copyright.
Page1 COVID19Pt1 Rev6,0323020
©2020A.Havics
ALookatCOVID19inTermsof:1.RespiratoryProtection
AndrewA.“Tony”Havics,CIH,PE
pH2,LLC
5250EUSHighway36,Suite830
Avon,IN46123
(317)7218‐7020Office
(317)409‐3238Cell
Introduction
TheworldhasbeeninundatedwithvariousmessagesaboutprotectionandcontrolsforCOVID‐19(more
correctlySARs‐CoV‐2(1),buthereaftercalledCOVID‐19forpubliccontinuity’ssake).Aswithany
biologicalagent,themechanismsforprotectionfromdiseasevary.Oneofthemostprominentand
highlydiscussedisthatofrespiratoryprotection.Considerationofrespiratoryprotectionduring
outbreaksorpandemicshasbeendiscussedtovariousextents[(2‐14)]giventheoutbreaksofSARs,MERs,
H1N1,in2003,2012‐2015,and2009.ThecurrentoutbreakofCOVID‐19isnodifferent.Thispaperis
intendedtoprovidethefactsandresearchsupportwhereavailable,andthendrawfromthataswellas
theauthor’sexperiencetoproviderecommendationsbasedtheweightingoftheevidence.Thedata
providedhereandtherecommendationscannotbemaintainedinavacuum,thusotherCOVID19
topicalpapersareintendedtofollowthisone,buteachwillhopefullybesufficientlyself‐containedtobe
usefulandreliable.Theintendedaudienceofthispaperisprofessionals.Thisincludesindustrial
hygienists,occupationalandpublichealthprofessionals,healthandsafetypractitioners,andmedical
personnel.Itisnotintendedforthegeneralpublic,thoughmanyindividualsmaybenefitfromreading
it.
RespiratoryProtectionClassification
Itisimportanttounderstandthecapacityofvariousrespiratoryprotectiondevicestoprotectagainst
particulateingeneralandbiologicalagentsasspecificbioaerosols,suchasCOVID‐19.Beforedoingso,
oneshouldseparaterespiratoryprotectionintheformofthoseintendedforonetimeorlimiteduse
suchasSurgicalMasksandFilteringFacepieces(FFs)fromotherrepeatuserespiratorssuchashalf‐face
negativepressurerespirators(1/2‐faceNPRs),full‐facenegativepressurerespirators(full‐faceNPRs),
andpositivepressurePoweredAirPurifyingRespirators(PAPRs).Duetothelackofrealneedinhealth
caresettingsrespondingtoCOVID19forotherhigherlevelsofprotectionsuchassuppliedair
respirators(SARs)andSelf‐ContainedBreathingApparatus(SCBA),thesewillnotbediscussed.The
needtodifferentiatethetypesofrespiratoryprotectiontobeemployedintheresponsetoany
pandemicisthatthesehavedifferentmethodsofconstruction,operation,regulatorycontrols,and
intendeduse.Inaddition,oneshouldunderstandthatthepurposeofasurgicalmaskistoprotectthe
wearerfromfluids,largedroplets,splashes,orspraysandprotectthepatientfromthewearer’s
respiratoryemissions.Thisfluidresistanceisimportantforprotectionfromcoughingandsneezing.The
purposeofanN95FFistoreduceswearer’sexposuretoparticlesincludingsmallparticleaerosolsand
largedroplets.OnedoesnotperformausersealcheckonasurgicalmaskbutitisrequiredforanN95
Page2 COVID19Pt1 Rev6,0323020
©2020A.Havics
FF.AnN95isintendedtobeatleast95%onamassbasisunderlaboratorytestingofNaClparticleswith
countmediandiameterof0.075um(per42CFR84.181).Thisisapproximatelythemostpenetrating
size(seebelow).
RespiratorEfficiency
Tobegin,onecanevaluatethegeneralaerosolcontrolbyafilteringfacepieceorarespirator.One
considersanaerosolasasolidand/orliquidparticledispersedinagaseousmedium(air)(15).Forthe
varioustypesofrespiratoryprotection,oneobservesthattherearedifferencesinthecapacityto
removeunwantedaerosolsingeneral,andbioaerosolsmoreappropriately.Inthecaseofbioaerosols,
thesemaybemoldspores,bacteria,bacteriophage,viruses,parasites,biofluids,etc.Thesizesofthese
rangefromvirusesat0.02‐0.5μmtobacteriaat0.2‐10μmtofungiat1‐500μm.Thelikelihoodofa
biologicalagentbecomingandstayingairbornewillvaryandisthesubjectofanotherpaper(16).Suffice
tosaythatabsentbeingpresentduringdirectaerosolization(cough,sneeze,surgicalormedical
proceduraldisturbance,etc.),theriskofaerosoltransmissionisnotexpectedtobeaprimaryrouteof
concern(16,17).Thedifferenttypesofrespiratoryprotectionhavebeentestedonbothgeneralparticulate
andspecificbiologicalagentsasseeninTable1below.Onemustrememberthatdespitetypicalsize
differencesinagents,theytendtoaggregateorattachthemselvestootherparticlesmakingthemoften
largerthantheiroriginalsize.Thisisclearfromreviewsofnumerousstudies(18).Whileitistruethat
someagents(fungi,bacteria,insects)canmoreeasilybecomefragmentedandstillpresentallergic
responses,theprimaryconcernisagent‐specificinfectivity,whichisrelatedtoviability.Physical
penetrationisnotthesameasviabilityafterphysicalpenetration(19,20).
Theauthorhasheardanumberofindividualsindicatethattheyareconcernedthatvirusesaresmaller
than0.3μminsizeandthusHEPAfilterswillnotefficientlycapturethem.HEPAfilters,usedin
respiratorsandairfiltrationdevices,aretestedtobe99.97%efficiencyat0.3μmaerosolsizebecause
themostpenetrableparticleisintherangeof0.2‐0.45μm,dependingonthefiltermediacharacteristics
andtheflowrate.Theefficiencybelowandabovethatmostpenetrablepointisbetterbecausethere
aremultiplecapturemechanisms(interception,inertialimpaction,diffusion,gravitationalsettling,
electrostaticattraction)andeachhasitsowncaptureefficiency.Thesumoftheseproducesacapture
curvethathasashapelikethatinFigure1(figurefromHinds(21)).
Page3 COVID19Pt1 Rev6,0323020
©2020A.Havics
Figure1.Filtrationefficiencyandmostpenetratingparticlesizebycapturemechanism.FromHinds,1982.
N95Filteringfacepieces(N95FFs)tendtohaveamaximumpenetrationbetween0.040‐0.200μm(22‐28).
TheefficiencyalsoissimilartotheHEPAinthatitincreasesatlessthanormorethanthemost
penetratingparticlesize.Theweightoftheevidenceclearlyindicatespoorperformancebysurgical
masks,andyetgenerallysufficientforN95FFuseswhenwornproperly(seeTable1below).
Considerationofnewdata(29)regardingaerosolsizing(byPCRanalysisofairsamples)inWuhan
Hospitalsindicatespeakconcentrationof40and9copiesSARS‐CoV‐2aerosolspercubicmeterinthe
0.25to0.5μmand0.5to1.0μmsizeranges,respectively.
Thisaspectofbeingwornproperlyhasbeendemonstratedbythevariabilitybetweenusers(30),
difficultiesfittingandintentionalattemptsatleakagecreationonmanikins,andbyanyonewhohas
performedtestingusingaparticlecounter(suchasTSI’sPortacountA)whereminoradjustmentsinmask
fitcanbringaboutsignificantchangesinFitFactor.FitFactor(FtF)isaratiobetweentheconcentration
outsidetherespiratoryprotectivedevicedividedbytheconcentrationinsidethemaskduringafittest,
oftenmeasuredintermsofverysmallparticles,asseeninequation1.
Equation1.FtF=Coutside/Cinside
Onenotesthatfiltrationefficiencyis:
Equation2: %E=100(Coutside‐Cinside)/(Coutside)
Onecanrearrangetheseequationstoshowthat:
Equation3: %E=100([1–(1/FtF)]
AAUseoftradenames,products,orproductmanufacturerdoesnotrepresentanendorsement,butratherare
usedforfactualexamplesorhypotheticalexamples.
Page4 COVID19Pt1 Rev6,0323020
©2020A.Havics
OnecancontinueandsolveforFtFintermsof%Etoarriveat:
Equation4: FtF= 1_____
[1‐(%E/100)]
So,anoverallFitFactorof500isequivalenttoanoverallnominalefficiencyof99.8%whereasaFtFof
100isequivalenttoanefficiencyof99%.Similarly,anefficiencyof95%equatestoaFtFof20.When
performedinthefieldreal‐time,theFtFratioisreferredtoasaWorkplaceProtectionFactor(WPF).FtF
evaluatestherespiratoryprotectivedeviceundercontrolledlabconditionswhereasaWPFrepresents
real‐worldconditions.Toaccountfordifferencesbetweenlabtesting(FtF)aswellasvariabilityinactual
workplaces(asrepresentedbyWPF),onerequiresaFitFactorthatresultsinahigherefficiencythanthe
statednominalfilterefficiencyofarespiratoryprotectivedeviceinordertobeconsiderasuccessfulfit
test,e.g.,a100FtFforaN95FF.
Table1.Lab&FieldEfficiencyTestingofN95FF,SurgicalMasks,andImpromptuClothMasks
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
SurgicalMask SM2Virus 15‐98 Balazy,2006a(31)
SurgicalMask M.Luteus(0.9‐1.8μm) 61.2‐75.3 Anon,1997
(restricted)
SurgicalMask B.subtilis(0.75‐2.5μm) 74.2‐90.6 Anon,1997
(restricted)
SurgicalMask Bacteriophage(0.06‐0.15
μm)†
21.8‐58.7 Anon,1997
(restricted)
SurgicalMaskw
Leakage
M.Luteus(0.9‐1.8μm) 31‐47.4 Anon,1997
(restricted)
SurgicalMaskw
Leakage
B.subtilis(0.75‐2.5μm) 4.7‐40.6 Anon,1997
(restricted)
SurgicalMaskw
Leakage
Bacteriophage(0.06‐0.15
μm)†
2.4‐6 Anon,1997
(restricted)
SurgicalMasks B.anthracis(1‐1.5x1‐8μm) 45‐65 Davidson,2006(32,33)
SurgicalMask Ambientparticles 66.7 Derrick,2006
SurgicalMask Ambientparticles ~51 Grinsphun,2009(34)
SurgicalMask BSubtilis(0.7‐0.8x1.5‐1.8
μm)
67 Johnson,1994(35)
SurgicalMask Ambientparticles 41.1‐80.8 Lee,2008(22)
SurgicalMask Mycobacteriumabcsesus
(0.3‐0.5x1‐4μm)
~0.5 McCullough,1997(36)
SurgicalMask Staphylococcusepidermis
(0.5‐1.5μm)
~0.6 McCullough,1997(36)
SurgicalMask Bsubtilis(0.5‐0.8x2‐3μm) ~7.5 McCullough,1997(36)
SurgicalMask Mycobacteriumabcsesus
(0.3‐0.5x1‐4μm)
8‐95.8 McCullough,1996
Page5 COVID19Pt1 Rev6,0323020
©2020A.Havics
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
SurgicalMask Staphylococcusepidermis
(0.5‐1.5μm)
8‐94.4 McCullough,1996
SurgicalMask Bsubtilis(0.5‐0.8x2‐3μm) 12‐97.4 McCullough,1996
SurgicalMasks Ambientparticles 1Mask63.0
2Masks73.7
3Masks78.3
5Masks81.8
Derrick,2005(37)
SurgicalMask NaCl(0.3μm)
LatexSpheres(0.8μm)
LatexSpheres(2μm)
LatexSpheres(3μm)
9.8‐96.04
18.3‐99.96
22.8‐99.99
32.6‐99.98
Oberg,2008(38)
SurgicalMask LatexSpheres(0.03,0.1,0.5,
1,2.5μm)
78‐94 Shakya,2017
SurgicalMask Cornoil(0.02‐1μm) 0‐80 Weber,1993(39)
SurgicalMask A.baumannii,E.faecalis,
andB.subtilis
98.4‐98.6 Tseng,2016(40)
Surgicalmask Mycobacteriumabcsesus 76.9GM Brousseau,1997(41)
SurgicalMask Ambienthomehealthcare 50‐88.89 Elmashae,2017(42)
SurgicalMask NaCl(0.02‐0.50μm) 89‐93% He,2014(43)
SurgicalMask MS2phage 91.7‐92.0 Eninger,2009(44)
SurgicalMask NaClparticles 0‐98.5 Guha,2017(45)
SurgicalMask Staphylococcusepidermidis
(0.93μm)
~86‐99 Jeong,2019(46)
SurgicalMask Escherichiacoli(0.82μm) ~82‐98 Jeong,2019(46)
SurgicalMask Steptococcussalivarus(0.8‐
1μm)
~90 Willeke,1996(47)
SurgicalMask Psuedomonasfluorescens
(0.3‐0.5x1.0‐1.5μm)
~92 Willeke,1996(47)
SurgicalMask CornOil ~69 Willeke,1996(47)
SurgicalMask Bacillusalcalophilus(0.7‐0.9
x3‐4μm)
~94 Willeke,1996(47)
SurgicalMask Bacillusmagetherium(1.2‐
1.5x2‐5μm)
~95.8 Willeke,1996(47)
SurgicalMask NaClParticles(0.02‐1μm) 8‐92 Rengasamy,2009b(48)
SurgicalMask NaClParticles(0.04‐0.60
μm)
90.96‐99.25 Rengasamy,2013(49)
SurgicalMask LatexParticles 0.5μm47.78‐51
1.0μm71.06‐84.22
2.0μm69.76‐85.26
Sanchez,2010(50)
SurgicalMask,
Unsealed
LatexParticles,1um 0.5μm3.83‐43.81
1.0μm58.3‐75.58
2.0μm58.87‐79.67
Sanchez,2010(50)
SurgicalMask MS2phagedroplets(0.54‐
100μm)
78.69‐80.43 Vo,2012(51)
Page6 COVID19Pt1 Rev6,0323020
©2020A.Havics
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
SurgicalMask M.Luteus(0.9‐1.8μm) 17.2‐99.64 Wake,1997(52)
SurgicalMask B.subtilis(0.7‐0.8x2‐3μm) 30.4‐>99.9 Wake,1997(52)
SurgicalMask P.alcaligens(0.5x2‐3μm) 75‐85 Wake,1997(52)
SurgicalMask Cornoil(0.1‐4μm) 0‐80 Weber,1993(39)
SurgicalMask NotSpecified 0‐80 Willeke,1994(53)
ClothMask LatexSpheres(0.03,0.1,0.5,
1,2.5μm)
15‐57(countbasis)
13‐40(massbasis)
Shakya,2017
T‐shirts,scarvesand
clothmasks
NaCl(0.020‐1μm) 10‐60 Rengasamy,2010(54)
Shirt
Towel
Handkerchief
Nylonhosiery
DOP 4
14
2
67
Cooper,1983(55)
GFFilterSheet Mycobacteriumchelonae
(0.65‐0.22μm)
86,1Layer*
99.9,2Layers
99.95,3Layers
99.999,4Layers
Brousseau,1994(56)
DM Mycobacteriumabcsesus 96.3GM Brousseau,1997(41)
DMF Mycobacteriumabcsesus 99.39GM Brousseau,1997(41)
FF Cornoil 25‐>99 Chen,1992(57)
N95FF SM2Virus 94.5‐99.5 Balazy,2006a(31)
N95FF 0.02‐0.2μmNaClPM 94‐99.9 Balazy,2006b(58)
N95FF 0.02‐0.2μmNaClPM 95‐98.5 Brochot,2015(59)
N95FF B.anthracis(1‐1.5x1‐8μm) 49‐62 Davidson,2006(32,33)
N95FF Ambientparticles 99.03 Derrick,2006
N95FF MS2Bacteriophagevirus 98.2‐98.3 Eninger,2008(19)
N95FF MS2Bacteriophage ~96.5 Eninger,2008(60)
N95FF Bsubtilisphage ~98.1 Eninger,2008(60)
N95FF T4Phage ~99.1 Eninger,2008(60)
N95FF Ambientparticles ~91 Grinsphun,2009(34)
N95FF NaCl(0.006‐220μm) 97.5‐99.5 IRSST,2013(23)
N95FF Ambientparticles ~91‐96 Lee,200822)
N95FF Culturablebacteria ~64‐98 Lee,200622)
N95FF Culturablefungi ~87.5‐99.7 Lee,200622)
N95FF TotalFungi ~62‐99.7 Lee,200622)
N95FF Bsubtilis(0.7‐0.8x2‐3μm) 99.5+ Qian,1998(61)
N95FF Mycobacteriumtuberculosis
(0.3‐0.6x1‐4μm)
99.5+ Qian,1998(61)
N95FF BMegatherium(1.2‐1.5x2‐
5μm)
99.5+ Qian,1998(61)
N95FF NaCl 94.9‐97.2 Ramirez,2015(24)
N95FF NaCL(0.02‐1μm) 94.8‐98.6 Rengasamy,2011(25)
N95FF NaCl(0.2μm) 96.2‐96.8 Willeke,1998(62)
N95FF BSubtilis(0.8μm) >99.5 Willeke,1998(62)
Page7 COVID19Pt1 Rev6,0323020
©2020A.Havics
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
N95FF NaCl(0.020‐1μm) 99.88
N95FF Ambientparticles 96‐99+ Bergman,2015(63)
N95FF Ambienthomehealthcare 96.55‐97.5 Elmashae,2017(42)
N95FF MS2phage 98.9‐99.9+ Gardner,2013(64)
N95FF MS2phage 99.28‐99.30 Eninger,2009(44)
N95FF LatexSpheres 79.2‐99.3 Eshbaugh,2008(26)
N95FF NaClparticles ~99.75 Han,2012(27)
N95FF LatexSpheres 99.17‐99.995 Harnish,2016(28)
N95FF H1N1Virus 99.26‐99.997 Harnish,2016(28)
N95FF H1N1Virus 98.56‐99.996 Harnish,2013(65)
N95FF LatexSpheres 98.37‐99.999 Harnish,2013(65)
N95FF NaCl(0.02‐0.50μm) 99‐99.6% He,2014(43)
N95FF Ambientparticles(IV
treatment&Woundcare)
99.42‐99.91% Hauge,2012(66)
N95FF Staphylococcusepidermidis
(0.93μm)
Avg99.6 Jeong,2019(46)
N95FF Escherichiacoli(0.82μm) Min90.5
Avg99.1
Jeong,2019(46)
N95FF NaCl(0.02‐0.4μm) 99.435‐99.99 Rengasamy(67),2009a
N95FF SilverParticles(0.004‐0.02
μm)
81.9‐99.98 Rengasamy,2008(68)
N95FF NaClParticles(0.04‐0.60
μm)
99.386‐99.986 Rengasamy,2013(49)
N95FF NaClParticles(0.02‐0.4μm) 98.76‐99.39 Rengasamy,2007(69)
N95FF LatexParticles(0.025‐0.099
μm)
~95.3‐96@65nm Hurata,2008(70)
N95FF MS2phagedroplets(0.54‐
100μm)
96.17‐98.18 Vo,2012(51)
N95FF InfluenzaA 99.6‐99.7 Zhou,2018(71)
N95FF Rhinovirustype14 99.6‐99.9 Zhou,2018(71)
N95FF BacteriophageΦΧ174, 99.5‐>99.9 Zhou,2018(71)
N95FF Staphylococcusaureus 99.7‐>99.9+ Zhou,2018(71)
N95FF Paraffinoil >99.3 Zhou,2018(71)
N95FF NaClParticulate >99.3 Zhou,2018(71)
N95FF NaClParticulate(0.02‐2μm) 99.26‐99.36 Zhuang,2013(72)
N95FF NaClParticulate(0.04‐0.06
μm)
99.27 Zhuang,2013
N95FF Humanadenovirusserotype
1(0.048‐0.052μm)
95.27‐98.15§
Physical
Zuo,2013(73)
N95FF swineinfluenzaH3N2virus
(0.048‐0.052μm)
94.76‐97.04§
Physical
Zuo,2013(73)
N95FF M2phage 99.949‐99.984
ViralRNA
99.976‐99.992
Zuo,2015(20)
Page8 COVID19Pt1 Rev6,0323020
©2020A.Havics
RespiratoryProtection
Device
Agent Efficiency(%) Ref.
Viable
N95FF&½‐faceN95 Endotoxininfield 99.64 Cho,2011(74)
N95FF&½‐faceN95 Fungiinfield 97.45 Cho,2011(74)
N95FF&½‐faceN95 1‐3‐β‐D‐Glucaninfield 97.11 Cho,2011(74)
*OnemightexpectaHEPAfiltertohave10layers
†Notindividual,butextractedE.Coli
§LowestefficiencyfromaN95FFthatisnotNIOSHcertified
Onequestionthatoftencomesupinconsiderationforfiltrationefficiencyishowlongcanamasksit
aroundbeforeitsfiltrationefficiencydegradesbeyondacceptable.Rottach(10)foundthatstraptension
capacitywasreducedovertimefor1of2modelsofN95FFwhenevaluatingthemafter1‐10yearsof
storage.Fitfactoreffectwasnotevaluated.Robergemeasuredtherestorativeforcesofstrapsforfive
simulateddonningsandreportedreductioninthestraploadforeachsuccessivedonningwiththe
majorityofthereductionoccurringafterthefirstdonning(75).However,theN95FFmodelwiththe
lowestrestorativestrapperformanceloadwasstillabletopassfit‐testing(anychangeinfitfactorwas
notreported).Viscusi(76)assessed21modelsofN95FFsrespiratorsthathadbeenstoredintheir
originalpackagingforaperiodofatleast6yearsinresearchlaboratoriesanddrywarehousefacilities,
rangingintemperaturebetween15.8Cand32.8CandRHbetween20%and80%.Ofthese,19of21had
minimumefficiencies>95%(96‐98.99),theothertwowereat94.17and94.51%.Theredidnotappear
tobeanycorrelationbetweenthelengthofstorageandfailuretopassthefiltrationtest.
Thereareseveralstudiesthatsupporttheuseofanykindofrespiratoryprotectiontoreduceriskof
disease.ThisincludesInfluenzaA(4,7,8,13)&B(13),TB(77),pH1N1(78),adenoviruses,human
metapneumovirus,coronavirus229E⁄NL63,parainfluenzaviruses1,2or3,influenzavirusesAorB,
respiratorysyncytialvirusAorB,rhinovirusA⁄BandcoronavirusOC43⁄HKU1(79),Streptococcus
pneumoniae,Bordetellapertussis,Chlamydiapneumoniae,MycoplasmapneumoniaeorHaemophilus
influenzatypeB(80),andgeneralinfectioncontrolatahospital(81).MacIntyre(82)hasperformedameta‐
analysisofmanyoftheseanddemonstratedthevalueofrespiratoryprotection.
Althoughrespiratoryprotectionisbeneficialforreducingpotentialinhalationexposure,itmaybecome
contaminatedwithbiologicalaerosols(seebelow).Threeaspectsofthiscontaminationneedtobe
addressedwhenconsideringappropriatenessfordeployment.Thefirstisre‐aerosolizationfromthe
devicebackintothepotentialbreathingzoneofothers.Thesecondiscontactcontaminationbetween
thedeviceandhands,fingers,forearms,orfomites(cellphones,pens,paper,tags,keys,etc.)(83‐85)ofthe
wearer.Thethirdisdecontaminationofthedeviceifpossibleorpreferred.
Thesecondaspect,contactcontamination,canbeaddressedbyclassicaltime‐distance‐shielding
protectivecontrols:appropriatehygienetechniques,limitingthetimeofuseandreuse,proper
selectionfortheseparametersgivenamountandfrequencyofusecombinedwithpotentialfor
exposure.Theseprotectivecontrolsarenottreatedfurtherinthispaper.Detailsonhygieneaspects
willbeprovidedinanotherpaper(86).Thethirdaspect,decontaminationwillbereviewedafterRPD
selectionundertheheadingDecontaminationofRespiratoryProtectionDevices.
Page9 COVID19Pt1 Rev6,0323020
©2020A.Havics
ContaminationPotential
Thepremiseforconsiderationofcontaminationmustfirstbeacceptedbeforetransferisevaluated.
Fisheretal.(87)modeledthecontaminationofN95FFandSurgicalMasks(SMs)usingtheNicas‐Jones(88)
model.Forthesimulatedaerosolcontaminationscenarios,estimatedfacemaskcontaminationranged
from19to202,549virusesandfrom13to182,477virusesforFFsandSMs,respectively.They
demonstratedcontaminationbydropletsprayproducedbyadirectcoughwouldleadto19viruses
becomingtrappedontheFForSM,givenadistanceof0.6m,aconcentrationof355virus/cough,a
particlespreadof3,800cm2,andanFilteringFacepieceareaof200cm2.Heimbuch(89)investigated52
N95FFswornbyhospitalstaffduringapproximately20minutecleaningofroomswhosepatientshad
beendischarged.Thesewereanalyzedandfoundtocontainanaverageloadingofmicrobesranged
from6.2×102to4.8×103CFU/mask.Approximately97%ofthecontaminationwasfoundonthe
externallayer.Mostoftheisolatesrecoveredwerecoagulase‐negative,Gram‐positivestaphylococci
andMicrococcusspp.Additionaldata(90)fromthissamestudyrevealedloadingofupto24.15CFU/cm2
and3.33CFU/cm2forthetwotypesofN95FFsused.Jackowicz(91)evaluatedsurvivalonFFsbyanalyzing
in‐field(15‐120minusage)FFsfromagriculturalusageandthesameFFmaterialunderlabtreatments
for3bacteriaE.Coli,B.subtilis,B.subtilis,andtwofungi,C.albicans,andA.niger.Airsamplingduring
activitieswas7.5x103to7.2x104CFU/m3culturablebacteriacountand3.9x103to1.7x104CFU/m3
culturablefungalcount.FungionFFsrangedfrom10,000to~315,000CFU/cm2whereasbacteria
rangedfrom~30,000‐200,000CFU/cm2.Inlabtesting,E.Coliincreasedwithinthefirst24hoursthen
heldsteadyuntildecreasingafter72hours.B.subtilisincreased3ordersofmagnitudewithinthefirst
24hoursthenheldsteadyuntildecreasingafter72hours.B.subtilisstayedconsistentlythesame
throughthelengthofthetest(120hours).C.albicansincreasedslightlywithinthefirst24hoursthen
heldsteadyuntildecreasingafter96hours,andA.nigerstayedconsistentlythesamethroughthe
lengthofthetest(120hours).
Aspartofdesigningatestmethodology,Fisher(92)aerosolizedMS2phageontoN95FFcoupons.The
N95shadthreelayers.Outerandmiddlelayerdepositionvariedbymediumusedbutrangedfrom20‐
80%,whereastheinnerlayer(closesttoawearer)had<2%deposition.Tseng(40)directlyapplieddrops,
usedaspraybottle,andanebulizertoapplA.baumannii,E.faecalis,andB.subtilistosurgicalmasksat
10E3to10E8CFU/m3.Filtrationefficienciesforall3taxawerefoundtobe98.4‐98.6%.Thesemasks
werethentestingusingNaClparticlesandfoundtobe77.6‐79.4%efficient.
Inastudyatastudenthealthcenter,12participantswereassessedforinfluenzavirusexposureover12
days.Only3of127airsampleswerepositive,2of483surfacesamplesandnoneofthe54surgical
maskswerefoundtohaveviralcomponents(byPCR)(11).
Clearly,thepotentialforexternalcontaminationofsurgicalmasksandN95FFsexists.
AlthoughnotofrelevancetoCOVID19exposureoutsidethemask,butrelevantforsharingof
respiratoryprotection,inonestudy(93)self‐contaminationfrom1hourusageon3menrevealed7.8x104
to2.8x106CFU/maskonhalf‐facerespirators.Inthefacecontactarea,therewasa75%reductiontoa
50%increaseafter1dayofstorageinaplasticbagwith2of25testsshowinganincrease.Onthe
exhalationvaluearea,therewasa98%reductiontoa31%increaseafter1dayofstorageinaplastic
bag;with3of25testsshowinganincrease.Similarly,anotherstudybyHigami(94)revealedself‐
contaminationfrom1hourusageatlevelsof100‐4,000CFUbacteriapermlofwashing.Johnson(95)also
discoveredenvironmentalbacterialcontaminationontheinsideofN95FFsafter1dayofuse.
Page10 COVID19Pt1 Rev6,0323020
©2020A.Havics
AerosolizationPreventionbyRPD
Asmentionedearliersurgicalmaskspreventinhalationoflargeraerosols,whereasanN95FFprevents
bothlargeandveryfineaerosols.Anotherdesignaspectofsurgicalmasksistopreventthepatientfrom
exposuretothewearer’srespiratoryemissions.OnequestionishowwelldosurgicalmasksandN95FF
preventtransmissionfromthewearer.
Firstoneexaminesthenatureofcoughing&sneezing.OnemightexpectaTBpatienttocough2.6‐26
timesperhour(96).AlthoughWilliamsmeasuredthemediancoughfrequencyat466per24hour(19.4
cough/hr).Twoparticipantsproducedgreaterthan2000coughsoverthe24hoursamplingperiod(83.3
coughs/hr),nearly20‐foldmorethanthelowestvalueof39(1.625coughs/hr).Loudon(97)found12
cough/hratthe40%percentileinpneumoniapatients.Socoughingisfrequentenough,giventhe
aerosolamountsreleased.ForatypicalsneezeseeFigure2belowfromJennison.
Figure2.Imageofaerosolsgeneratedduringasneeze.(fromJennison,1942)
Nextonecanassessthetypesofaerosolsproduced.Nicas(98)modeledaerosolproductionbasedon
threestudies:Druett(99),Loudon(100),andPapineni(101).Thepattenisadispersedonewithlargerand
smallersizefractionsthat,obviously,reactdifferentlyaerodynamically.Otherauthors,suchas
Morawska(102),Lee(103),havefoundsimilardistributionsforcoughsandsneezeswithverificationof
microorganismsaswell(104).
Regardingcoughs,Nishimura(105)showedthatduringthefirst0.08s,thevelocityoftheparticleslocated
atthedistalend(i.e.,75–80cmfromthemouth)washighestinthemistcloud,andthereafter,
deceleratedtobecomeslowerthantheparticlesfoundattheinnerpartofthemistmass,andfinally
almostlostvelocityby0.15s,about85cmfromthemouth.Similarresultsweredocumentedby
Bouriub(106),Jennison(107),andVansciver(108).Tang(109)showedvisually,usingschlierenimaging,theeffect
ofamaskonreducing(butnoteliminating)emissionsfromcoughing(seeFigure3).
Page11 COVID19Pt1 Rev6,0323020
©2020A.Havics
Figure3.Cough(fromTang,2008)
Usinganoldtechnique
(110)
,Williams
(111)
evaluated24hospitalizedpatientswithnewlydiagnosed
pulmonaryTBwhoworeFFP1masks(Britishfilteringfacepiecedesignation)foronehouroutofevery
threefor24hours.AerosolwascapturedinagelatinefilterprocessedforM.tuberculosisquantitation
byPCR.Serialsputumwascollectedandobjectivecoughfrequencymonitoringperformedoverthe
sameperiod.M.tuberculosiswasdetectedin86.5%of192masksamplesand20.7%of38assessable
sputumsamplesobtainedfromthecohort.Williams
(112)
continuedthisworkwithanother37patients
showingsimilarresults.
Lindsley
(113)
evaluatedtheefficacyoffaceshieldsincoughtransmissionprotection.Duringtestingofan
influenzaladencoughaerosolwithavolumemediandiameter(VMD)of8.5μm,wearingafaceshield
reducedtheinhalationalexposureoftheworkerby96%intheperiodimmediatelyaftera
cough.Thefaceshieldalsoreducedthesurfacecontaminationofarespiratorby97%.Whenasmaller
coughaerosolwasused(VMD=3.4μm),thefaceshieldwaslesseffective,blockingonly68%ofthe
coughand76%ofthesurfacecontamination.Intheperiodfrom1to30minutesafteracough,during
whichtheaerosolhaddispersedthroughouttheroomandlargerparticleshadsettled,thefaceshield
reducedaerosolinhalationbyonly23%.Increasingthedistancebetweenthepatientandworkerto183
cm(6ft)reducedtheexposuretoinfluenzathatoccurredimmediatelyafteracoughby92%.Hencethe
6ftofsocialdistancing.
Wood
(114)
evaluatedsurgicalmasksforpreventionofaerosolizationofPseudomonasaeruginosain
dropletnucleiduringcoughsfrom25adultswithcysticfibrosis.Atotal19of25(76%)participants
producedaerosolscontainingP.aeruginosa.TherewasareductioninaerosolP.aeruginosaloadduring
coughingwithasurgicalmask(2of25),coughingwithanN95mask(4of24),andcoughetiquette
(coughingintothehandorarm),comparedwithuncoveredcoughing.Asimilarreductionintotalcolony
formingunitswasobservedforbothmasksduringcoughing;yet,participantsratedthesurgicalmasksas
morecomfortable.Coughetiquetteprovidedapproximatelyhalfthereductionofviableaerosolsofthe
maskinterventionsduringvoluntarycoughing(13of25patients).Talkingwasalowviableaerosol–
producingactivity(only1in24patientsrevealedemissionsoutsideamask).Thevisualeffectoftheuse
ofasurgicalmask(albeitaveryoldstyle)isseeninFigure4below.
Page12 COVID19Pt1 Rev6,0323020
©2020A.Havics
Figure4.Sneezethroughasurgicalmask(fromJennison,1942)
Lai(115)evaluated(non‐specified)FFssealedindifferentwaysonamanikinandfoundemission
reductionsof33‐100%.Milton(116)measuredexhaledviralparticlesemittedwithandwithoutsurgical
masks.Fineparticles(≤5μmdia)contained8.8foldmoreviralcopiesthandidcoarseparticles(>5
μm).Surgicalmasksreducedviralcopynumbersinthefinefractionby2.8foldandinthecoarsefraction
by25fold(e.g.,captureefficienciesof~64.3%and96%,respectively.Overall,masksproduceda3.4fold
reduction(e.g.,captureefficiencyof~70.6%).reductioninviralaerosolshedding.
Diaz(117)evaluatedN95FFsonbothsymptomaticperson(manikin)andreceiver(manikin)aswellasa90
degreeheadturnusingparticlegeneratorandparticlemeasurementsystems.UsinganN95FFonthe
symptomaticpersononlyresultedina~46.5%effectivecollectionefficiency.UsinganN95FFonthe
receiveronlyresultedina~50%effectivecollection(prevention)efficiency.UsinganN95FFonthe
symptomaticpersonandhavingthepersonturn90degreestothesideresultedinonly~14.5%
effectivecollectionefficiency.Interestingly,usinganN95FFwithaVaseline®sealonthesymptomatic
persononlyresultedina~93.8%effectivecollectionefficiency.UsinganN95FFonthereceiveronly
withaVaseline®sealresultedina~99%effectivecollection(prevention)efficiency.
ThebottomlineisthatsurgicalandN95FFssignificantlyreducesourceemissions,asdoesafaceshield.
Thenextquestionisonthereductionofexternalemissionsfromcapturedbioaerosolsonmasksand
FFs.
Release/Reaerosolization
Afewstudieshaveevaluatedthepotentialreleaseofagentsfromrespiratoryprotectivedevices(RPDs)
forpotentialinhalationtothoseinthenear‐bodyarea.Theseagentsincludelatexpaticles(118,119),M2
phage(85,120),polystyrenespheres(121),andB.subtilis(62,122).Inanevaluationofreleasingmicrospheres
(0.59‐1.9μm)fromdroppingarespirator,only6in100,000particleswasreleased(118).Insimilarworkby
Page13 COVID19Pt1 Rev6,0323020
©2020A.Havics
thesameauthor,inanevaluationofreleasingmicrospheres(0.59‐1.9μm)frommockremovalofaFF,
only1.5‐2particlesin100,000particleswasreleased(119).Kennedy(121)alsolookedatmicrosphere
releasefromdroppingN95FFsataheightof3feetandfound160‐290in100,000particleswas
released.Fisher(120)demonstratedreleaseof0.08‐0.21%(8to21particlesin1,000)fromdropletnuclei
and<0.0001%(<1in10,000)fromdropletsfromaN95FFduringsimulatedcoughing(120).Qian(122)used
B.subtilissporestosimulateM.tuberculosisandB.megatheriumwhileattemptingtoreaerosolizethese
at22%RHfromaN95duringasimulatedsneeze.HealsousedNaClparticlesandlatexspheres.The
resultsshowedthatthelargerparticleshadmoreaerosolizationpotentialof0.01,0.025,and0.04%(1,
2.5,and4particlesin100,000)forNaCL,B.subtilis,andB.megatherium,respectively.Wileke(62)usedB.
subtilistoevaluatereaerosolizastionfromN95FFs.Nobacteriawerereaerosolizedduringnormal
exhalation.Somereaerosolization(0.022‐0.025%orless[22‐25in100,000])wasobservedonlyatlow
humidityandextremelyhighairflowthroughtherespirator,correspondingtoviolentcoughingor
sneezing.LowerRHandlowerflowproducednodetectablebacteria.Theweightoftheevidence
suggestslittleopportunitytoreaerosolizesignificantbioaerosols.
SurvivabilityonFilterMaterial
Brousseau,etal.testedtheabilityforbacteria(MabscessusandSepidermis)togrowonfilters5days
aftercaptureatroomtemperatureand85%RH(123).Almostallfiltersrevealedculturablebacteriaafter
capture,butonly20%offiltersrevealedculturableMabscessusafter5daysand61%Sepidermis.
CouilletefoundthatMS2coliphagepersistedafter48hoursonN95FFandviruspH1N1wasviableafter
6days(124).FishershowedthatforM2Phage,Atleast10%oftheinitialMS2loadwasabletosurvivefor
4daysontheFFRandallsampleshaddetectablelevelsafter10days(125).Johnson(95)testedseveral
respiratoryprotectivedevicesforsurvivabilityofH37Raandfoundthattherewasasharpdropoffafter
day3withonly1of6showinganydetectableH37Raafter28days.
CoulliettedistributedpH1N1ontoN95couponsandextractedthevirusesbyavortex‐centrifugation‐
filtrationprocesstoanalyzebyELISAforsurvivalovera6dayperiodat20%RH(126).Reductionsin
pH1N1were40%,70%,and82%at12,72,and144hours,respectively.Fisherappliedbacteriophage
MS2toN95FFcouponsasanaerosolorliquiddropsandstoredat22°Cand30%RH(125).Viabilityofthe
viruswasmonitoredevery24hoursfrom1to5daysandthenagainonday10.Dropletsshowedless
reductionthandropletnucleiwith10dayvaluesat22%and99.97%,respectively.Asignificantdecrease
indropletnucleididnotoccuruntilafterday4.Koevaluatedthesurvivalofmycobacteria(M.chelonae,
MTBH37Ra,andMTBH37Rv)onHEPAfiltersbothwithoutandwithairflow(127).Miaskiewicz‐Peska(128)
tested4typesofFFmaterialswithchallengesfromaerosolizedStaphylococcushominisbacteria.In
untreatedfiltersthenumberofbacteriaincreased100‐foldandreached1.3×105cfu/cm2within8h.
Rengasamy(129)evaluatedMS2phageonN95FFcouponsat22Cand30%RHat8and12hourspost
inoculation.Theresultsshowedan~54%decreaseafter8hoursand~84%after20hours.Rengasamy
alsoevaluatedMS2phageonN95FFcouponsat37Cand80%RHat8and12hourspostinoculation.
Theresultsshowedan~90%decreaseafter8hoursand~99.68%after20hours.Reponen(130)usedM.
smegmatistotestsurvivabilityonN95FFat37Cand85%RH.Theyevaluatednutrientloading,no
nutrients,andsaliva,fordays1‐6.Withoutnutrients,theresultswere>99%reductionafter24hours,
withsaliva~99.74%reductionat24hoursand>~99.87%at72hours,withnutrients~85.5%reduction
after24hoursand~98.2%at72hoursand~99.6at6days.Wang(131)studiedPseudomonasfluorescens
andB.subtilissurvivalonN95filtersat37Cand85%RHforBsubtilisand28Cand85%RHfor
Pseudomonasfluorescens.Theyweretestedwithnutrients,withoutnutrients,sandwithsaliva.
Page14 COVID19Pt1 Rev6,0323020
©2020A.Havics
Culturalbacteriacountsdroppedbelowdetectionafter3days.ResultsforAll3conditionsrevealed>
99.92%decreasein3days.
Majchrycka(132)investigatedthesurvivalofEscherichiacoli,Candidaalbicans,andAspergillusnigerin
dust‐loadedpolypropylenenonwovens(atypicalouterlayermaterialofN95FFs).Materialsweredust
loadedfromvariousindustrytypes,inoculatedandthenheldat80%RHandatatemperatureof30Cfor
7days.Controlsurvivalsrangedfrom228to5,692%whereasdustloadedsurvivalwas261–150,946%.
Thedustcreatedbothincreasesandsuppressioncomparedtocontrols.TheresultsforCandidaalbicans
andAspergillusnigerweresimilarinthatthedustcreatedbothincreasesandsuppressioncomparedto
controls.Majchrycka(133)inanotherstudyinvestigatedEscherichiacoli,Staphylococcusaureus,Bacillus
subtilis,CandidaalbicansandAspergillusnigersurvivabilityonFFfabricsatmoisturecontentsof4‐,80,
and200%.Evaluationsweremadeat0,8,24,48,72and120hours.B.subtilissurvivedthebeston
filtermaterialswith40%–200%moisturecontent.AdecreaseinsurvivabilitywasobservedforE.Coli
andC.albicanswhenmasshumiditydecreased.TheyfoundthatB.subtilisandA.nigerproliferatedfor
48–72hofincubationandthendiedregardlessofthemoisturecontent.Inyetathirdstudyby
Majchrycka(134),E.Coli,B.subtilis,B.subtilisbacteria;andC.albicansyeastandA.nigermoldwere
testedonsamplesofnonwovensforFFs.Evaluationsweremadeat0,4,8,24,48,72,and96h.The
testswerecarriedoutinaccordancewiththeAATCC100‐1998method.Survivaldependedstronglyon
microorganismspecies.E.ColiandB.subtilisbacteriagrewthemostonallnonwovenstested.The
structuralparametersofthenonwovenstested(massperunitareaandthickness)andcontactangledid
notsignificantlyaffectmicroorganismsurvival.
AlthoughHEPAfiltersareconstructeddifferentlythanFFs,thereshouldbesomeparallelsin
performance.Ko(127)foundthatanRHof75%resultedinafasterdecreaseofsurvivableM.chleonae
beginningat2hoursthrough24hourswithfinalvaluesof0.05survivalfor75%RHversus0.5for55%
RH.Withoutairflow,H37RaandH37Rvshowedsurvivalratesof10and17%after24hoursandratesof
1.1and1%after72hours.SurvivalratesofH37Raafter24hoursaerosolizedontoaHEPAfollowedby
airflowwere~0.6%.Lin(135)evaluatedthesurvivabilityofB.subtilisandE.ColionN95FFsupto96
hoursatRHsof40,60,and95%,andwithsalivaandartificialperspiration.ResultsatallRHsshowan
increaseinthefirst24hoursfollowedbydeclines.Salivaclearlyenhancedsurvival.ForB.subtilisat
37Csurvivalratesofapproximately23,36,and39%wereobservedat40,60,and95%RHat24hours.
ForB.subtilis25Csurvivalratesofapproximately13,16,and16%wereobservedat40,60,and95%RH
at24hours.ForB.subtilis25Csurvivalratesofapproximately2,2,and4%wereobservedat40,60,and
95%RHat96hours.ForB.subtilis25Csurvivalratesofapproximately6,8,and7%wereobservedat
40,60,and95%RHwithsalivaat96hours.ForE.Colisurvivalrateswereconsistentlybelow10%.At
37Cand95%RH,B.subtilisincreased300%in24hourswithartificialperspiration.
Theweightoftheevidenceindicatesthatbioaerosolswillgrowonfilteringfacepieces,andthatsalivais
animportantfactorinsurvivability.
MicrobialTransferfromRespiratoryProtection
GiventhatN095FFsandSurgicalmaskshavethepotentialtoacquireandgrowmicrobesonthem,a
wearercanexpecttocontactandtransfersomeofthesetoeitherfingers,hands,clothing(pockets),etc.
Thisprovidesanopportunityforspreadofcontaminationtoselfandothers.Inaddition,itlimits
potentialextendeduseandlimitspotentialreuseunlesscleaned.
Page15 COVID19Pt1 Rev6,0323020
©2020A.Havics
BradyinvestigatedtransferofM2phagefromcontaminatedFFandfoundtransfertohandsat7.6‐
15.4%and2.2‐2.7%fordropletanddropletnuclei,respectively(85).Asexpected,Bradyalsofound
improperdoffingandreusetoresultinahighertransferthanimproperdoffingalone.Cassanova
evaluatedtransferofM2phageby10volunteersfromprecontaminatedgowns,N95FF,goggles,and
dominanthandpalm(136).Transfertoother(initiallynon‐contaminatedsites)werenondominantglove
(80%),righthandskin(90%),lefthandskin(70%),scrubshirt(100%),scrubpants(75%),andface(0%).
Rebmann(137)studiedN95FFextendeduseandfoundthatduringtwo12‐hrshiftsthenumberof
touchesperpersontotheface,eye,N95,undertheN95,N95adjustmentswere3.6‐5.8,0‐0.8,6.6‐14.6,
0‐0.8,and3.2‐6.6(rangefromday1&2).
Theauthorhasusedfluorescenttracers(powders,liquids,creams)toevaluatebothtransferofagents
anddecontaminationprocedurestoremovecontaminants.DuringatrainingexercisewiththeNCID
Bioterrorismresponseteam(in2003duringtheSARsoutbreak)involvingthecollectionofa
contaminatedenvelope(withpowderedtracer),evenafter3successivedecontaminationsequences,
thetransfertohands,head,andotherbodypartswasstillevident.Others(85,138)havealsousedthese
tracers.Cassanova(136)didindicatethevirusesmaynotcorrelatedwithfluorescenttracer.
SuggestedSelectionMatrix
Selectionoftheappropriatelevelofrespiratoryprotectionshouldbetiedtominimizingexposurebythe
inhalationroutebasedonthemostprobablerisk.Nicas(88)estimatedtheriskofinfectionassociated
with4pathwaysofexposureforinfluenza(assumingthatdepositioninthelowerrespiratorytractto
upperrespiratorytractwas3200:1Bandassuming0.5ACHintheroomC):(1)virus‐contaminatedhand
contactwithfacialmembranes,(2)inhalationofrespirable(<10μm)coughparticles,(3)inhalationof
inspirable(10μm<da<100μm)coughparticles,and(4)sprayofcoughdropletsontofacial
membranes.Therelativeriskofinfectionbypathwaywas31%,17%,0.52%,and52%,respectively.
Thus,thebulkoftheriskisassociatedwithshort‐termcoughingdirectlyonorimmediatelyadjacentto
theinfectedpersonversusfromsmallrespirableaerosolscontinuingtocirculateintheroom.Nicas
estimatedthatmorethan99.9%oftheemittedvirusarenon‐respirableparticles(baseduponcough
studies).Watanabe(139)prepareddose‐responsecurvesforoftheSARS‐CoV(asimilartothecurrent
SARS‐CoV‐2)withcorrespondingto10%and50%responses(illness)estimatedat43and280PFU
[PlaqueFormingUnits],respectively.Theyindicatedthatitsestimatedinfectivitywascomparableto
thatofHCoV‐229E,knownasanagentofhumancommoncold,andalsosimilartothoseofsomeanimal
coronavirusesbelongingtothesamegeneticgroup.Nicas(140)modeledinfectionriskreductionafforded
bytheuseofrespiratoryprotectionwithhalf‐face,full‐face,andPAPRrespirators.Basedonthe
filtrationcapacityoftheN95FF,itwouldfallbetweennoprotectionandahalf‐face,butstillprovidean
orderofmagnitudereductioninrisk.Basedonthisandreviewofaerosoltransmission,risk,andreuse&
cleaningpotential,amatrixofrespiratoryprotectionselectionisprovidedinTable2.Alsoin
considerationisthatwhensurveyed,reusablerespiratorsweresignificantlymorelikely(oddsratios2.3‐
BIftheratiowas1:1,thenhandcontactwoulddominate.
CThisisaresidentialrate.Hospitalswouldbeexpectedtobeinthe4‐15ACHdependingontheusageandageof
construction.
Page16 COVID19Pt1 Rev6,0323020
©2020A.Havics
7.7)tobepreferredoverN95filteringfacepiecerespiratorsinhigherriskscenarioscomparedto“usual
circumstance”scenarios(141).
Table2.RespiratoryProtectionSelectionMatrix
Class Population WorkingExample Recommended
Respiratory
Protection
RecommendedUse
&Hygiene
Practices
1 IndividualsinDirect
ContactwithInfected
Persons
CDCHighRisk‖=Level
1HealthCarewith
routinehandson
contact
1APreferred½‐face
1BPreferredsplash
resistantN95‡
1CAcceptableN95
SeeHavics(86)1A
SeeHavics(86)1B
SeeHavics(86)1C
2 Individualinrooms
adjacenttoInfected
Persons
CDCMediumRisk=
Level2HeathCare
withoutroutinehands
oncontact
N95 Personalhygiene
(seeHavics(86)Class
2).
Hygieneprotocols
forsurfacesare
necessary.
3 Individualswith
IndirectRisk
CDCLowRisk=Level3
GeneralBusinesswith
occasionofcasual
contactwith
symptomaticperson
None Personalhygiene
(seeHavics(86)Class
3).
Cleaningofsurfaces
isrequired
promptlyand
thoroughly
4 GeneralPublic CDCVeryLowRisk=
Level4General
Businesswith
occasionofcasual
contactwith
asymptomaticpersons
None Personalhygiene
(seeHavicsClass4)
‡Forexample,TBapprovedRPD
‖RisklevelstoparallelCDC,InterimUSGuidanceforRiskAssessmentandPublicHealthManagementofPersons
withPotentialCoronavirusDisease2019(COVID‐19)Exposures:GeographicRiskandContactsofLaboratory‐
confirmedCases,March22,2020
Onenotesthatunlessthereisdirectcontact,anN95FFisnotrecommended.Asre‐statedbythe
NationalAcademyofSciencespanel(83),CDCestimatesthatintheeventofasevereinfluenzapandemic,
atleast1.5billionmedicalmaskswouldbeneededbythehealthcaresectorandanadditional1.1billion
wouldbeneededbythepublic.DemandforN95respiratorsbythehealthcaresectorcouldexceed90
millionfora42‐dayoutbreak.N95sshouldbereservedformedicalpersonnel(142)engageddirectlywith
symptomaticpersonssoastoprovidesufficientresourcesforthosemostatriskofinfection.
Inordertoworkeffectively,oneneedstofittestanN95FF.ThisauthordisagreeswiththeFDA’s
policy(143)onhavingaminimumcriteriaforpublichealthemergencyrespiratorsofaminimumFitFactor
Page17 COVID19Pt1 Rev6,0323020
©2020A.Havics
of2.Wecanandshoulddobetterthanthat,becauseitmeansweacceptonly50%efficiencyfor
healthcarepersonnelwhenatdirectriskofinfection‐justonapolicybasis.Aspointedoutby
Janssen(144),onewouldexpectaNIOSHcertifiedN95toeasilyexceedthatvalue,buttheregulatory
policyitselfsendsapoormessage.Thatsaid,trainingandinstructionareimportantforproperfitting
anduse.ThefindingsofBrosseau(145)pointtothis,wherewithoutinstructionalmostabout3%didnot
properlyplacetherespiratorontheirface(i.e.,rightsideup,overthechin,andcoveringthenoseand
mouth)andabout3%didnotproperlyformthenosecliptothenose.Theauthor’sownexperience
testingothersandhimselfareaconstantreminderofaneedfortesting.Similarly,andnotsurprisingly,
Lam(146)andFrost(147),bothrevealedsignificantfailingsoftheUserSealCheckwithFilteringFacepieces.
Itshouldbeconsideredaminimumscreeningtool,notoneofabsolutereliance.Italsocreatesan
opportunityforcontaminationofthehandsduringextendeduseorreuse.Inthepasttheauthorhas
suggestedapossiblealternativeistouseaplasticsandwichbagoverthehandtolimitcontamination
duringreuse.AsforfittestingN95FFs,qualitativefittestshavelimits(148,149),butshouldbeconsidereda
minimuminunderstandingwhatagoodfitisandhelpingtoachievethat,whereasquantitativefit
testingisabetterpracticeandprovidesmorerealtimeinsightintohowwellaFFworks(ornot).
DecontaminationofRespiratoryProtectionDevices
InrecognitionofthefactthatRPDsareexpectedtobecomecontaminatedatsomepoint,andthat
suppliesonN95sarelikelylimited,onehastoconsiderextendeduse(usingforawholeday/shiftand
notjustwhenvisitingasymptomaticpersonfollowedbydisposal)andreuse(morethanoneday).
CDC(150)definesextendedasthepracticeofwearingthesameN95respiratorforrepeatedclosecontact
encounterswithseveralpatients,withoutremovingtherespiratorbetweenpatientencounters.
Extendedusemaybeimplementedwhenmultiplepatientsareinfectedwiththesamerespiratory
pathogenandpatientsareplacedtogetherindedicatedwaitingroomsorhospitalwards.Reuserefers
tothepracticeofusingthesameN95respiratorformultipleencounterswithpatientsbutremovingit
(‘donning’)aftereachencounter.Therespiratorisstoredinbetweenencounterstobeputonagain
(‘donned’)priortothenextencounterwithapatient.
Thereareafewstudiesthathaveassessedreuseandextendeduse.Rebmann(137)evaluatedlong‐term
dailywearofN95FFsfortwo12‐hrshiftson10nursesandfound90%tolerance(1nurseworethe
maskfor30minutesandthenwithdrewfromthestudy).Noclinicaleffects,norsubjectiveperceptions
werenotedafter1hourofsurgicalmaskwearing(151).Tensubjectsworehalf‐maskrespiratorswhile
exercisingfor1hourandshowedonlyaslightdecreaseinbreathingratethatwaswelltolerated(152).
Bergman(153)studiedmultipleconsecutiveuseonN95FFsbytestingFitFactorsaftermultipleuses.No
statisticaldifferencewasfoundafter5re‐donnings,butthereafterthereweremorefailurestowards
achievingthedesiredFitFactorof100.ThiseffectwasN95FFmodeldependentbutwas53‐75%across
allmodelsbydonnings16‐20.
Vuma(154)studiedtheeffectonFitFactorofmultipleconsecutivedonninganddoffingofN95FFsby25
persons.After3doffings,6individualsshowedasignificantdeclineinFtFresults.After6doffings,7
individualsshowedasignificantdeclineinFtFresults.Resultssuggestthatproperadjustmentmustbe
carriedoutforeachsequenceofdonning.Suen(155)evaluatedN95FFreuseon120nursesperforming
10minsofsuctioning&NGtubeinsertionwithpreandpostprocedurefittesting.Theaveragefitfactor
droppedsignificantlyafternursingprocedures(184.85vs134.71)asdetectedbythequantitativefit
testing.One‐thirdofFtFsfellbelow100(40of120nurses)afteruse.Kim(156)assessedworkplace
protectionfactorsduringvariousscenarios:1)checkbloodpressure,raise‐lowerstretcher,cleanhands,
Page18 COVID19Pt1 Rev6,0323020
©2020A.Havics
2)Upperairwaysuction,notifyaspirator,knockchestsandputongloves,raise/lowerstretcher,
performaspirator,3)AdministerIV,injection,cleanwithalcohol,tietourniquet,pushIVmed,
raise/lowerstretcher.Fittestingbeforehandrevealed73.5%passrate(FtF>100)withaGMFtFof
256.3forhosepassingand37.0forthosefailing.Duringworkplaceusage(Scenarios1,2,3)thefactors
forthosewhopassedthefittestwas68.8(GM)andthosewhofailedwas39.6(GM).Sothosewho
passeddeclinedinprotectionduringtasksandthosewhofailedremainedthesame–stillfailing.
Sietsma(157)studiedfitfactorsfortheshorttasksofcardiopulmonaryresuscitation(CPR),ultrasound
examination,andmakingahospitalbed.Fitfactorsrangedfrom58‐1,368(98.3‐99.93%efficiency)with
anaverageof285(99.65%).Inanalternativeway,Zhuang(158)lookedatFitFactorson10subjectsat
week0,2,and4,toevaluategeneralchangesovertimeinfit.Thecoefficientofvariationassociated
withbetweenvisitsandbetweensubjectswas2.4‐7.7%.Thisisrelevantinthatoneneedstoshowa
smallvariationinnon‐reusesituationswithfittestingtobeabletodetectchangesduringreuse.
Severalstudieshavelookedatdecontamination.Bessesen(159)evaluated21personsandfoundthat12
ofthemmadeatleastoneerrorinthedisinfectionprocesswhilecleaningahalf‐facerespirator.This
clearlyindicatestheneedfortrainingandsupervision.
Bergman(160)evaluatedtheparticlepenetrationonN95FFmaterialafter3‐cyclesofvarioustreatments:
ultravioletgermicidalirradiation,ethyleneoxide,hydrogenperoxidegasplasma,hydrogenperoxide
vapor,microwave‐oven‐generatedsteam,bleach,liquidhydrogenperoxide,andmoistheatincubation
(pasteurization).Onlythehydrogenperoxidegasplasmaprocessingcausedlevelshigherthanexpected
ofinitialaerosolpenetration(>5%)in9of36(25%)samples.Bergman(161)alsotestedN95FFsafter
multipleapplicationsofultravioletgermicidalirradiation(UVGI),moistheatincubation(MHI),or
microwave‐generatedsteam(MGS).After3cyclesoftreatment,nostatisticaldifferenceswerefound
betweentheuntestedresultsandthatafterthethirdcycleontentestsubjects.Fisher(162)conducted
testsonUV‐Cdecontamination.Circularcoupons,excisedfromtheFFRs,wereexposedtoaerosolized
particlescontainingMS2coliphageandtreatedwithIFM‐specificUV‐Cdosesrangingfrom38to4707J/
m2.ModelsexposedtoaminimumIFMdoseof1000J/m2demonstratedatleasta3logreduction
(LR)inviableMS2.Model‐specificexposuretimestoachievethisIFMdoserangedfrom2to266min.
Fisher(92)alsotestedtreatmentsonN95FFcouponsinoculatedwithaerosolizedMS2phage.Sodium
hypochlorite(bleach)concentrationof0.6%andsteamtreatmentsof45secondsandlongerresultedin
logreductions(>4log)whichreachedthedetectionlimitsforbothlevelsofprotectivefactors.
Fisher(163)againevaluatedtheuseoftwocommerciallyavailablesteambags,marketedtothepublicfor
disinfectinginfantfeedingequipment,forFFdecontamination.TheFFs(surgicalN95andN95)were
decontaminatedwithmicrowavegeneratedsteamfollowingthemanufacturers’instructionsthen
evaluatedforfiltrationefficiencyforuptothreesteamexposures.ThesteamhadlittleeffectonFFR
performanceasfiltrationefficiencyofthetreatedFFsremainedabove95%.Thedecontamination
efficacyofthesteambagwasassessedusingbacteriophageMS2asasurrogateforapathogenicvirus.
Thetestedsteambagswerefoundtobe99.9%effectiveforinactivatingMS2onFFs.
Fisher(164)testedtheefficiencyof3cyclesofdecontaminationbymicrowavegeneratedsteamandUVGI
underartificialsoilloading(protein).Microwave‐generatedsteamdecontaminationefficacywassimilar
forallthreecyclesregardlessofthesoilaccumulation(p=0.34)[thelogreductionwaspractically
speakingverysimilarforbothtreatmentsandallthreecycles].UVGIdecontaminationdemonstrateda
differenceinefficacyamongthecyclesofboththelowandhighsoilloadsamplesets(p<0.01)and
performedanorderofmagnitudepoorerinreductiongoingfromcycles1to3.
Page19 COVID19Pt1 Rev6,0323020
©2020A.Havics
Heimbuch(2)assessedsixcommerciallyavailableFFmodelsthatwerecontaminatedwithH1N1influenza
virusasaerosolsordropletsthatarerepresentativeofhumanrespiratorysecretions.Asubsetofthe
FFRswastreatedwithmicrowave‐generatedsteam(2min),warmmoistheat(30min),andultraviolet
germicidalirradiation(5min)at254nmtodecontaminateH1N1influenzavirus.All3decontamination
technologiesprovidedgreaterthan4‐logreductionofviableH1N1virus.In93%oftheexperiments,the
viruswasreducedtolevelsbelowthelimitofdetectionofthemethodused.
Heimbuch(165)assessed3modelsofsurgicalN95FFscontaminatedwithaerosolsofmucinorviable
Staphylococcusaureus.Thesewerecleanedwithhypochlorite(OCL),benzalkoniumchloride(BAC),or
on(inert)antimicrobialwipes.Eachofthe3testedFFswaswiped3timesinturnwith4facesofafresh
wipeproductfoldedovertwice.TotalcleaningtimeperFFwas~30seconds.Aftercleaning,FFswere
separatedintocomponents(nosepad,fabrics,andperforatedstrip),andcontaminantswereextracted
andquantified.Mucinremovalwas<1logforallwipeproductsonallcomponents.Inertwipesachieved
~1logattenuationinviableSaureusonfabricsfromallFFRmodelsremovalwaslesseffectivefromnose
padsandperforatededges.Bothantimicrobialwipesachieved3‐5logattenuationonmost
components,withsmallerreductionsonnosepadsandgreaterreductionsonperforatedstrips.Particle
penetrationfollowingcleaningyieldedmeanvalues<5%.Resultsofparticlefiltrationefficiencywere
~95.8‐98%forBAC,~98.3‐99.6%forOCL,and~87.5‐99.85%.Thehighestpenetrationswereobservedin
FFscleanedwithbenzalkoniumchloridewipe.Theseresultsshouldbeplacedincontext.All3are
surgicalFFRswithfluidresistantexteriorsurfaces,whichisnotcommontotypicalindustrialN95FFs.
ImmersionofFFsin10%householdbleachoxidizedmetalandleftanodor.
Lin(166)investigatedtheeffectsoffivedecontaminationmethodsonthefilterqualityofthree
commerciallyavailableelectretmasks,aN95,GauzeandSpunlacenonwovenmasks.Penetrationof
0.0156‐0.594μmlatexsphereswereusedtoassesstheeffectsonthedecontamination.The
decontaminationmethodswere1)physicaldecontaminationusingatraditionalelectricricecookerthat
wasmadeinTaiwantoprovidedryheat(3min),2)physicaldecontaminationusinganautoclave(15
min)toprovidemoistheat,andlowtemperaturechemicaldecontaminationusing3)70%ethanol(10
minsoak),4)isopropanol(10minsoak)and5)bleach(0.5%sodiumhypochlorite,10minsoak).The
bleachdestroyedtheGauzemask.Afterdecontaminationthericecookerrevealed~24%efficiencyfor
thespunlace,~76%forGauze,and~97%fortheN95FF.Afterdecontaminationtheautoclaverevealed
~19%efficiencyforthespunlace,~50%forGauze,and~97%fortheN95FF.Afterdecontaminationthe
ethanolrevealed~19%efficiencyforthespunlace,39%forGauze,and~71%fortheN95FF.After
decontaminationthebleachrevealed~12%efficiencyforthespunlace,0%forGauze(destroyed),and
~82%fortheN95FF.AfterdecontaminationtheIPArevealed32%forGauzeand~30%fortheN95FF.
Lin(167)alsodeterminedtherelativesurvivalofBsubtilissporesloadedonanN95filteringfacepiece
respirator(FFR)afterdecontaminationbyfivemethodsunderworst‐caseconditions.Relativesurvival
wasobtainedbytestingafterdecontaminationandafterstoringtheFFsat37°Cand95%RHfor24
hours.Thedecontaminationmethodsinvolvedethanol,bleach,ultravioletirradiation(UVA365nm,UVC
254nm),anautoclave,andatraditionalelectricricecooker(TERC)thatwasmadeinTaiwan.Without
decontamination,59±8%oftheloadedsporessurvivedfor24hours.When70%ethanolwasaddedto
theN95FFatapackingdensityof0.23,thesurvivalwas73%initiallyanddecayedto22%in24hours.
Relativesurvivalremainedabove20%after20minutesofUVAirradiation.Theotherfour
decontaminationmeasuresachieved99%‐100%reduction.
Lindsley(168)exposedbothsidesofmaterialcouponsandrespiratorstrapsfromfourmodelsofN95FFs
toUVgermicidalirradiation(UVGI)dosesfrom120–950J/cm2.UVGIresultedinasmalldecreasein
Page20 COVID19Pt1 Rev6,0323020
©2020A.Havics
efficiency(1.25%)andnochangeinairflow.UVGIdidreducestrengthofthefiltermaterial(upto90%).
HigherUVGIdose(2,360J/cm2)resultedin20‐51%strengthreductioninstraps.Ingeneral,thefindings
indicatethatevenlowdosesofUVGIwillresultinaminimumof10%reductioninstrapstrength.
Lore(169)examinedH1N1appliedasanaerosolto2modelsonN95FFs.Theeffectivenessofthree
energeticdecontaminationmethods[ultravioletgermicidalirradiation(UVGI),microwave‐generated
steam,andmoistheat]ontwoNIOSH‐certifiedN95FFs.UVGIconsistedof15‐WUV‐C(254‐nm
wavelength)at25cmfor15min(dose18kJ/m2).A1250‐W(2450MHz)commerciallyavailable
microwaveovenwasusedalongwithaplasticboxfilledwith50mlofroomtemperaturetapwater.A
perforatedsystemallowsteamtotreattheFFsfor2miatfullpower.Formoistheat,a6‐lsealable
containerwasfilledwith1loftapwater,placedinanovenandheatedto65"Cfor3h.AsallFFs
displayed>95%efficiencyby300‐nmparticles,withnoprofoundreductioninfiltrationperformance.
Mills(170)tooktwelvesampleseachof15N95FFmodelsandcontaminatedthemwithH1N1influenza
(facepieceandstrap),thencoveredwithasoilingagent—artificialsalivaorartificialskinoil.Foreach
soilingagent,3contaminatedFFsweretreatedwith1J/cm2UVGIforapproximately1minute,whereas
3othercontaminatedFFsremaineduntreated.Allcontaminatedsurfaceswerecutoutandviruses
extracted.Theresultsrevealedsignificantreductions(≥3log)ininfluenzaviabilityforbothsoiling
conditionsonfacepiecesfrom12of15FFmodelsandstrapsfrom7of15FFmodels.
Salter(171,172)evaluated8decontaminationtechniques:1)UVirradiation(2547302nm@~2.7E5J/m2),
2)vaporizedhydrogenperoxide(VHP),3)3%hydrogenperoxide,4)dilutedhouseholdbleach(0.6%
hypochlorite),5)Moistheat(65Cand85%RH),6)mixedoxidants(10%oxone,6%sodiumchloride,5%
sodiumbicarbonate)7)Dimethyldioxirane(DMDO)(10%oxone,105acetone,5%sodiumbicarbonate),
8)ethyleneOxide(EtO).Peroxidetechniques(VHP&3%)andUVresultedinnosignificantoff‐gassingor
residue.Bleachoxidizedmetalandleftastrongodor.DMDOandmixedoxidantsalsocausedissues
withcorrosion.EtOtreatmentofFFsproduced2‐hydroxyethylacetate,(ahazardouschemicalby‐
product),possiblyformedbyareactionofEtOwithrubberpartsoftherespirator.Additionally,EtO
requiresalongoff‐gassingperiodthatwilllimitthroughput.ThroughputisalsoaproblemfortheVHP
technology—theauthorsindicatedtestingwiththeVHPsterilizerwasasterilizationcycleabortionif
morethansixFFRswereloadedinthechamberduringtheone‐hoursterilizationcycle.Also,itisknown
thatcellulosicmaterialwillabsorbperoxide.
Viscusi(173)testedtwomodelsofFFRs(oneN95andoneP100)withseveraldecontaminationprocesses
attwoconditionseach.Theseincluded:1)submergingthetestrespiratorsintapwaterfor30minutes,
2)Liquidchemicaldecontamination[hydrogenperoxide;Fisher30%stabilizedH2O2,Bleach;Fisher
5.25%SodiumHypochlorite(NaOCl)with0.20%SodiumHydroxide(NaOH);HenrySheinIsopropyl
alcohol(IPA),70%;Ivorybarsoap,1g/L,shavedfromthebaranddilutedintapwater]3)Ultraviolet
radiation(0.24mW/cm2)bothsides,4)dryheat(oven),5)Microwave26mW/cm3(750W/ft3)for2‐4
min,5)Autoclave121°C(15psi),6)EtOforonehourfollowedbyafour‐houraerationinterval,7)
VaporizedHydrogenPeroxide(VHP).Thestandarddryingtimewas72hoursforeach.Filtration
performanceofthetreatedrespiratorsplustwocontrolswasassessedusingapoly‐dispersedsodium
chlorideaerosoltestmethodsimilartothatusedbytheNIOSHforrespiratorcertification.
Decontaminationusinganautoclave,160⁰Cdryheat,70%isopropylalcohol,andsoapandwater(20
minutesoak)causedsignificantfilterdegradationtobothN95andP100FFs.Theparticlepenetration
levelsweregreaterthanallowedforNIOSHcertification.Filtrationperformanceafterdecontamination
usingbleach,ethyleneoxide,andamicrowaveovenwasdegradedforbothrespiratormodels,although
particlepenetrationlevelswerestilllessthantheNIOSHcertificationcriteria.Thedecontamination
Page21 COVID19Pt1 Rev6,0323020
©2020A.Havics
methodsthathadtheleasteffectonparticlepenetrationinvolvedhydrogenperoxide(vaporizedand
liquidforms)andUVradiation.
Viscusi(174)evaluatedfivedecontaminationmethods:1)ultravioletgermicidalirradiation(UVGI)40‐W
UV‐Clight(averageUVintensityexperimentallymeasuredtorangefrom0.18to0.20mW/cm2)2)
ethyleneoxide(EtOexposurefor1hfollowedby4hofaeration),3)vaporizedhydrogenperoxide
(VHP),4)microwaveovenirradiation(750W/ft3experimentallymeasured;2‐mintotalexposure;1min
eachsideofFF;papertowelwasplacedontherevolvingglassplateforinsulationtoprotecttheFFRs
frommeltingontotheglassplate),and5)bleach(30minutessubmersionin0.6%).Theyusednine
modelsofNIOSH‐certifiedrespirators(threemodelseachofN95FFRs,surgicalN95respirators,and
P100FFRs).MicrowaveovenirradiationmeltedsamplesfromtwoFFmodels.TheremainderoftheFF
samplesthathadbeendecontaminatedhadexpectedlevelsoffilteraerosolpenetrationandfilter
airflowresistance.Thepoorestresultshowedaleast98.14%efficiency.Thescentofbleachremained
noticeablefollowingovernightdryingandlowlevelsofchlorinegaswerefoundtooff‐gasfrombleach‐
decontaminatedFFswhenrehydratedwithdeionizedwater.Thechlorineoff‐gasconcentrationwas
initially2‐12ppmbutdroppedto~0.05ppmovernight.TheOSHAPELforChlorineis1ppmasaCeiling
limit.TheACGIHTLVis0.1ppmasan8‐hourlimitand0.4ppmasaSTEL.Rinsingafter30min
submersiondidnotappeartochangetheoff‐gassing.Perhapsthemosttellingwasthatefficiencies
declinedafterovenheattreatmentover100⁰C.Thisindicatesacriticaltemperaturetoavoid.
Viscusi(175)againevaluatedultravioletgermicidalirradiation(UVGI),moistheatincubation(MHI),or
microwave‐generatedsteam(MGS)decontaminationaffectsthefittingcharacteristics,odor,comfort,or
donningeaseofsixN95filteringfacepiecemodels(seepreviousstudiesbythisauthorfirdetailsonthe
decontaminationprocedures).Fiton10subjectswerefittestedusingaparticlecountingmethod.
Interestingly,testtechniciansdidnotreportanyunusualorstrongodorfromFFRsfollowinganyofthe
decontaminationmethods.WhilefiveofthesixFFRmodelsincludedinthisstudycontainedmetallic
nosepieces,nosparkingoccurredfrommicrowavingduringtheMGSprocessing.Therewasnomelting
ofanFFRoranyofitscomponents.Onesubjectcomplainedofintolerableodorissuesafter
decontaminationcycles4&5byUVGI.Therewerealsoanumberofheadstrapbreakages.Allmodels
underalldecontaminationprocedurescontinuedtomeet100FitFactor.
Vo(51)usedMS2coliphagewasusedasasurrogateforpathogenicviruses.Aviraldroplettestsystem
wasconstructed,andthesizedistributionofviraldropletsloadeddirectlyontorespiratorswas
characterizedusinganaerodynamicparticlesizer.Thesizesrangedfrom0.5to15μm.Relative
efficienciesofdecontaminationofsodiumhypochlorite(bleach)andUVirradiationwereassessed.
Sodiumhypochloritedosesof2.75to5.50mg/literwitha10‐mindecontaminationperiodresultedin
approximately3‐to4‐logreductionsinthelevelofMS2coliphage(99.90‐99.99%decrease).When
highersodiumhypochloritedoses(>8.25mg/liter)wereusedwiththesamecontacttimethatwasused
forthedilutesolutionscontaining2.75to5.50mg/liter,allMS2wasinactivated.ForUV
decontaminationatawavelengthof254nm,anapproximately3‐logreductioninthelevelofMS2virus
wasachievedwithdoseof4.32J/cm2(3hoursofcontacttimewithaUVintensityof0.4mW/cm2),while
withhigherdosesofUVirradiation(>7.20J/cm2;UVintensity,0.4mW/cm2;contacttimes,>5hours),all
MS2wasinactivated.
Moyer(176)tooknewN‐95respiratorsfromthreedifferentmanufacturersandloadedthemwith5mgof
sodiumchlorideaerosolonedayaweek,overaperiodofweekswhilestorageinanoffice.Results
showedthatsomeofthemanufacturers’modelshadpenetrationsofgreaterthan5percentwhen
intermittentlyexposedtosodiumchlorideaerosol.Itisconcludedthatintermittent,low‐levelsodium
Page22 COVID19Pt1 Rev6,0323020
©2020A.Havics
chlorideaerosolloadingofN‐95respiratorshasadegradingeffectonfilterefficiency.Thisreductionin
filterefficiencywasnotaccompaniedbyasignificantincreaseinbreathingresistancethatwouldsignal
theuserthatthefilterneedstobereplaced.However,itwasn’tuntilday40(4applications)that5%
penetrationwasreachedbyoneofthemanufacturer’sfilters.Thissuggestssometolerancetochloride.
Moyeralsodeterminedtheeffectduetowater,acomparisonwasdonebetweennewfiltersandnew
filterswhichweredippedfor15secondsinabeakerofdistilledwater.Thewater‐dippedfilterswere
allowedtoairdryovernightbeforetesting.Boththenewfiltersandthewater‐dippedfiltersweretested
forfilterpenetration.Thewatertreatmentwasperformedtoascertainwhat,ifany,effectitwouldhave
ontheseN‐95serieselectrostaticfilters.TheeffectofthewaterdipwasminimalformanufacturersB’s
andC’sfilters.ThereappearstobeanincreaseinthefilterpenetrationvaluesforthemanufacturerA
filterswhencomparingthenewtothewater‐dippedpenetrationvalues.Practicallyspeakinghowever,
themanufacturerA’sfilterswerestillat96.48%efficientafter20days,thuswashinginwateris
tolerable.
OnenotesthatOSHA[29CFR1910.134AppendixB‐2]hasamandatoryRespiratorCleaningProcedure
asfollows:
“A.Removefilters,cartridges,orcanisters.Disassemblefacepiecesbyremovingspeaking
diaphragms,demandandpressure‐demandvalveassemblies,hoses,oranycomponents
recommendedbythemanufacturer.Discardorrepairanydefectiveparts.
B.Washcomponentsinwarm(43deg.C[110deg.F]maximum)waterwithamilddetergentor
withacleanerrecommendedbythemanufacturer.Astiffbristle(notwire)brushmaybeused
tofacilitatetheremovalofdirt.
C.Rinsecomponentsthoroughlyinclean,warm(43deg.C[110deg.F]maximum),preferably
runningwater.Drain.
D.Whenthecleaneruseddoesnotcontainadisinfectingagent,respiratorcomponentsshould
beimmersedfortwominutesinoneofthefollowing:
1.Hypochloritesolution(50ppmofchlorine)madebyaddingapproximatelyone
milliliteroflaundrybleachtooneliterofwaterat43deg.C(110deg.F);or,
2.Aqueoussolutionofiodine(50ppmiodine)madebyaddingapproximately0.8
millilitersoftinctureofiodine(6‐8gramsammoniumand/orpotassiumiodide/100ccof
45%alcohol)tooneliterofwaterat43deg.C(110deg.F);or,
3.Othercommerciallyavailablecleansersofequivalentdisinfectantqualitywhenused
asdirected,iftheiruseisrecommendedorapprovedbytherespiratormanufacturer.
E.Rinsecomponentsthoroughlyinclean,warm(43deg.C[110deg.F]maximum),preferably
runningwater.Drain.Theimportanceofthoroughrinsingcannotbeoveremphasized.
Detergentsordisinfectantsthatdryonfacepiecesmayresultindermatitis.Inaddition,some
disinfectantsmaycausedeteriorationofrubberorcorrosionofmetalpartsifnotcompletely
removed.
F.Componentsshouldbehand‐driedwithacleanlint‐freeclothorair‐dried.
G.Reassemblefacepiece,replacingfilters,cartridges,andcanisterswherenecessary.
H.Testtherespiratortoensurethatallcomponentsworkproperly.”
Havingreviewedthefindingsofvarioustests,itisclearthatextendeduseandre‐usearecertainly
possibleandworthwhileprovidedgoodhygienetechniques,andproperstorage(cleandryplaceoutside
facingup)areusedforextendeduseanddecontaminationisperformedwhensignificantandknown
bioaerosolshavebeenencountered.Thisisnotbestpracticebutratheranacceptablepracticegiven
resourcelimitations.Thethreetechniquesmostuseablearebleach,UVGI,andsteam.Howevercareful
Page23 COVID19Pt1 Rev6,0323020
©2020A.Havics
attentiontotheconditionofmaterialsofconstruction(straps,edges)mustbetakenseriously.See
attachedAppendixforexamplesofeach.
ConcernoverSodiumHypochloriteUsage
Variousauthorshaveraisedconcernsregardingpotentialskinandvaporexposureduringthe
decontaminationofRespiratoryProtectivedevices.Thevapordataabovesuggested0.05ppmafter
dryingisoneconcern(174).Onemightexpectatriplerinseaftertreatmentorextendeddryingwould
reducethisrisk.Ignoringforthetimedifferencesinconcentrationresponse,onenotesthattopical
hypochloriteat0.05%appliedtobothsidesofthethoraxofdogswerewell‐toleratedwithoutsignsof
skinirritation(177,178).
HazeltonLaboratoriesexamined1.1%sodiumhypochloritesolutionusingastandardtestforpredicting
sensitizationorallergicreactions,theGuineaPigMaximizationTestwithnosensitization(179).Twotests
byAmuchinaonhumansubjectsat0.11%and0.1%revealednosensitizationandnosignificant
irritation(179).InanotherhumanprimaryirritationpatchtestbyBillhimerinaclinicalexaminationofthe
irritationpotentialofsodiumhypochloriteeachtestsubjectwasexposedtothreeconsecutive24‐hour
applicationsof0.11%sodiumhypochloritesolutionwithobservationstakenaftereachapplication.Only
transient,slighttomoderateirritationwasobservedduringthestudy(179).
Giventhewidespreaduseofsodiumhypochlorite,itisapositivesignthattherearelimitedreportsof
variouseffectssuchasurticariatohypochloriteinthepoolwater(180),andacoupleofcasesofbleach
usage(181),andacaseinvolvingatheatretechnician(182).Hostynek(183)suggestedthatanon‐irritant
concentrationfordiagnosticpatchtestingforallergiccontactdermatitisusing17ulto20ultestvolume,
couldbeashighasI%NaOCI.
Thesestudiesdiscussedabovedemonstratethatsodiumhypochloriteisnotaskinirritant,nora
sensitizeratlessthan1%.
Somekeyfindings:
1. N95FilteringFacepiecesworkfairlywellagainstbiologicalaerosols.
2. Surgicalmasksdonotworkwellagainstbiologicalaerosols.Handkerchiefs,clothmasks,etc.do
notworkwellagainstbiologicalaerosols.
3. Veryfewvirusesorbiologicalmaterialencompassingviralmaterialisexpectedtobereleased
fromtheoutsideofN95FF.
4. Variousbiologicalagentshavepotentialtogrowonfiltrationmediaoncedepositedthere(with
orwithoutdustadded).
5. BiologicalagentshavepotentialtogrowontheinsideinRPDstoo.
6. ProperhygienepracticesandproperPPE(RPDandotherapparel)doffingisamust.
7. BestpracticeistoproperlyremoveandthendisposeofanN95afterone‐timeuse.
Page24 COVID19Pt1 Rev6,0323020
©2020A.Havics
8. AcceptablepracticeistouseanN95forextendeduseprovidedtheN95FFishandledwithcare
(includesaggressivetrainingbytheauthorityhavingjurisdiction,andstoringproperlyinaclean
dryplaceoutsidefacingup).
9. Riskassessmentindicatesvaryinglevelsofrespiratorycontroldependingonthewearerand
his/heractivities.
10. Thehighestriskisforthoseindirectcontactandinrangeofcoughing/sneezingsymptomatic
persons.
11. Althoughnotbestpractice,extendeduseofN95FFsisacceptableprovidedproperhygiene
practicesandproperPPEdonning/doffingisperformed.
12. Althoughnotbestpractice,norevengoodpractice,re‐useofN95FFsisacceptableprovided
properhygienepractices,properPPEdonning/doffing,anddecontaminationisperformed
(includesaggressivetrainingbytheauthorityhavingjurisdiction,performancedemonstrationof
sanitizationpracticesbythedevicewearer,andstoringproperlyinacleandryplaceoutside
facingup,andjudicioussupervision).
13. TheuseofsurgicalmasksorN95FFsonsymptomaticpatientsisbeneficial.
Acknowledgements
ThankstoElsevier,Springer,andthosepublisherswhohavemademanyrelevantarticlesavailablefree.
AldothankstoPurdueUniversity,IUPUI,andIUSchoolofMedicinewhohaveallowedmethrough
variousadjunctfacultyandlecturingpositionsaccesstoanumberofthearticlescitedherein.Also,a
heartyshoutouttoSteveJahnandScottArmourfortheirencouragementtowritethisandtheirreview
ofthetext.Finally,thankstomybetterhalfTami,whoindulgesmeinmyscientificendeavors.
References
1 Gorbalenya,A.,S.Baker,andR.Baric:ThespeciesSevereacuterespiratorysyndrome‐related
coronavirus:classifying2019‐nCoVandnamingitSARS‐CoV‐2.NatureMicrobiology(2020).
2 Heimbuch,B.K.,W.H.Wallace,K.Kinney,A.E.Lumley,C.‐Y.Wu,M.‐H.Wooetal.:Apandemic
influenzapreparednessstudy:useofenergeticmethodstodecontaminatefilteringfacepiecerespirators
contaminatedwithH1N1aerosolsanddroplets.Americanjournalofinfectioncontrol39(1):e1‐e9
(2011).
3 Rubino,I.,andH.‐J.Choi:Respiratoryprotectionagainstpandemicandepidemicdiseases.
Trendsinbiotechnology35(10):907‐910(2017).
4 Süß,T.,C.Remschmidt,S.Schink,M.Luchtenberg,W.Haas,G.Krauseetal.:Facemasksand
intensifiedhandhygieneinaGermanhouseholdtrialduringthe2009/2010influenzaA(H1N1)
pandemic:adherenceandtolerabilityinchildrenandadults.Epidemiology&Infection139(12):1895‐
1901(2011).
5 Bergman,M.,Z.Zhuang,E.Brochu,andA.Palmiero:FitassessmentofN95filtering‐facepiece
respiratorsintheUSCentersforDiseaseControlandPreventionStrategicNationalStockpile.Journalof
theInternationalSocietyforRespiratoryProtection32(2):50(2015).
Page25 COVID19Pt1 Rev6,0323020
©2020A.Havics
6 Chia,S.,D.Koh,K.Takahashi,Y.Li,T.Imai,W.Lietal.:Appropriateuseofpersonalprotective
equipmentamonghealthcareworkersinSingapore,China,andJapanhospitalsduringtheSARS
outbreak.JOURNAL‐INTERNATIONALSOCIETYFORRESPIRATORYPROTECTION23(3/4):67(2006).
7 MacIntyre,C.R.,S.Cauchemez,D.E.Dwyer,H.Seale,P.Cheung,G.Browneetal.:Facemask
useandcontrolofrespiratoryvirustransmissioninhouseholds.Emerginginfectiousdiseases15(2):233
(2009).
8 Loeb,M.,N.Dafoe,J.Mahony,M.John,A.Sarabia,V.Glavinetal.:SurgicalmaskvsN95
respiratorforpreventinginfluenzaamonghealthcareworkers:arandomizedtrial.Jama302(17):1865‐
1871(2009).
9 Shine,K.I.,B.Rogers,andL.R.Goldfrank:NovelH1N1influenzaandrespiratoryprotectionfor
healthcareworkers.NewEnglandJournalofMedicine361(19):1823‐1825(2009).
10 Rottach,D.R.,andZ.Lei:StockpiledN95filteringfacepiecerespiratorpolyisoprenestrap
performance.JournaloftheInternationalSocietyforRespiratoryProtection34(2):69(2017).
11 Ahrenholz,S.H.,S.E.Brueck,A.M.Rule,J.D.Noti,B.Noorbakhsh,F.M.Blachereetal.:
Assessmentofenvironmentalandsurgicalmaskcontaminationatastudenthealthcenter—2012–2013
influenzaseason.Journalofoccupationalandenvironmentalhygiene15(9):664‐675(2018).
12 Anon:Anon,InterimguidanceonICmeasuresfor2009H1N1influenzainhealthcaresettings,
includingprotofhealthcarepersonnel.MississippiRN71(4):13‐18(2010).
13 Canini,L.,L.Andréoletti,P.Ferrari,R.D'Angelo,T.Blanchon,M.Lemaitreetal.:Surgicalmask
topreventinfluenzatransmissioninhouseholds:aclusterrandomizedtrial.PloSone5(11)(2010).
14 Cowling,B.J.,K.‐H.Chan,V.J.Fang,C.K.Cheng,R.O.Fung,W.Waietal.:Facemasksandhand
hygienetopreventinfluenzatransmissioninhouseholds:aclusterrandomizedtrial.Annalsofinternal
medicine151(7):437‐446(2009).
15 Eide,M.,andD.R.Lillquist:Chapter14.Samplingandsizingofairborneparticles.InThe
OccupationalEnvironment:ItsEvaluationControlandManagement,D.H.Anna(ed.),pp.330‐355:
Fairfax,Va.:AIHAPress,2011.
16 Havics,A.A.:ALookatCOVID19intermsof:4.AerosolTransmission,InPreparation.
17 Havics,A.A.:ALookatCOVID19intermsof:5.Risk,InPreparation.
18 Clauß,M.:Particlesizedistributionofairbornemicro‐organismsintheenvironment—Areview.
LandbauforschApplAgricForestryRes65(2):77‐100(2015).
19 Eninger,R.M.,A.Adhikari,T.Reponen,andS.A.Grinshpun:Differentiatingbetweenphysical
andviablepenetrationswhenchallengingrespiratorfilterswithbioaerosols.CLEAN–Soil,Air,Water
36(7):615‐621(2008).
20 Zuo,Z.,T.H.Kuehn,andD.Y.Pui:RespiratorTestingUsingVirusAerosol:Comparisonbetween
ViabilityPenetrationandPhysicalPenetration.AnnalsofOccupationalHygiene59(6):812‐816(2015).
21 Hinds,W.,C:AerosolTechnology,Properties,Behavior,andMeasurementofAirborneParticles:
JohnWiley&Sons,1982.
22 Lee,S.‐A.,S.A.Grinshpun,andT.Reponen:RespiratoryperformanceofferedbyN95respirators
andsurgicalmasks:humansubjectevaluationwithNaClaerosolrepresentingbacterialandviralparticle
sizerange.AnnalsofOccupationalHygiene52(3):177‐185(2008).
23 Haghighat,F.,A.Bahloul,J.Lara,R.Mostofi,andA.Mahdavi:"Développementd’une
procéduredemesuredel’efficacitédesfiltresd’appareilsdeprotectionrespiratoireN95contreles
nanoparticules",pp.77:l’InstitutderechercheRobert‐Sauvéensantéetensécuritédutravail,2013.
24 Ramirez,J.A.:EvaluationofparticlepenetrationandbreathingresistanceofN95filteringface‐
piecerespiratorsanduncertifieddustmasks(2015).
25 Rengasamy,S.,A.Miller,andB.C.Eimer:EvaluationofthefiltrationperformanceofNIOSH‐
approvedN95filteringfacepiecerespiratorsbyphotometricandnumber‐basedtestmethods.Journalof
occupationalandenvironmentalhygiene8(1):23‐30(2011).
Page26 COVID19Pt1 Rev6,0323020
©2020A.Havics
26 Eshbaugh,J.P.,P.D.Gardner,A.W.Richardson,andK.C.Hofacre:N95andP100respiratorfilter
efficiencyunderhighconstantandcyclicflow.Journalofoccupationalandenvironmentalhygiene6(1):
52‐61(2008).
27 Han,H.,R.Holm,M.Prell,andR.Remiarz:PenetrationofN95filteringfacepiecerespiratorsby
chargedandcharge‐neutralizednanoparticles.JIntSocRespProtect29(2):75‐81(2012).
28 Harnish,D.A.,B.K.Heimbuch,C.Balzli,M.Choe,A.E.Lumley,R.E.Shafferetal.:Captureof0.1‐
μmaerosolparticlescontainingviableH1N1influenzavirusbyN95filteringfacepiecerespirators.
Journalofoccupationalandenvironmentalhygiene13(3):D46‐D49(2016).
29 Liu,Y.,Z.Ning,Y.Chen,M.Guo,Y.Liu,N.K.Galietal.:AerodynamicCharacteristicsandRNA
ConcentrationofSARS‐CoV‐2AerosolinWuhanHospitalsduringCOVID‐19Outbreak.bioRxiv(2020).
30 Brosseau,L.:FilterEfficiencyandFacialFitofHealthCareMasks.InAIHCE2006.Chicago,IL,
2006.
31 Bałazy,A.,M.Toivola,A.Adhikari,S.K.Sivasubramani,T.Reponen,andS.A.Grinshpun:Do
N95respiratorsprovide95%protectionlevelagainstairborneviruses,andhowadequatearesurgical
masks?Americanjournalofinfectioncontrol34(2):51‐57(2006).
32 Davidson,C.S.:EfficacyofSelectedN95Respirators,SurgicalMasks,andTransparentMesh
NettingAgainstAirborne,Non‐PathogenicBacillusAnthracisSterne34F2VegetativeCellsand
Endospores:UniversityofCincinnati,2006.
33 Davidson,C.S.,C.F.Green,S.G.Gibbs,K.K.Schmid,A.L.Panlilio,P.A.Jensenetal.:
PerformanceevaluationofselectedN95respiratorsandsurgicalmaskswhenchallengedwith
aerosolizedendosporesandinertparticles.Journalofoccupationalandenvironmentalhygiene10(9):
461‐467(2013).
34 Grinshpun,S.A.,H.Haruta,R.M.Eninger,T.Reponen,R.T.McKay,andS.‐A.Lee:Performance
ofanN95filteringfacepieceparticulaterespiratorandasurgicalmaskduringhumanbreathing:two
pathwaysforparticlepenetration.Journalofoccupationalandenvironmentalhygiene6(10):593‐603
(2009).
35 Johnson,B.,D.Martin,andI.Resnick:Efficacyofselectedrespiratoryprotectiveequipment
challengedwithBacillussubtilissubsp.niger.Appl.Environ.Microbiol.60(6):2184‐2186(1994).
36 McCullough,N.,L.Brosseau,andD.Vesley:Collectionofthreebacterialaerosolsbyrespirator
andsurgicalmaskfiltersundervaryingconditionsofflowandrelativehumidity.TheAnnalsof
OccupationalHygiene41(6):677‐690(1997).
37 Derrick,J.,andC.Gomersall:Protectinghealthcarestafffromsevereacuterespiratory
syndrome:filtrationcapacityofmultiplesurgicalmasks.JournalofHospitalInfection59(4):365‐368
(2005).
38 Oberg,T.,andL.M.Brosseau:Surgicalmaskfilterandfitperformance.Americanjournalof
infectioncontrol36(4):276‐282(2008).
39 Weber,A.,K.Willeke,R.Marchloni,T.Myojo,R.Mckay,J.Donnellyetal.:Aerosolpenetration
andleakagecharacteristicsofmasksusedinthehealthcareindustry.Americanjournalofinfection
control21(4):167‐173(1993).
40 Tseng,C.‐C.,Z.‐M.Pan,andC.‐H.Chang:Applicationofaquaternaryammoniumagenton
surgicalfacemasksbeforeuseforpre‐decontaminationofnosocomialinfection‐relatedbioaerosols.
AerosolScienceandTechnology50(3):199‐210(2016).
41 Brosseau,L.M.,N.V.McCullough,andD.Vesley:Mycobacterialaerosolcollectionefficiencyof
respiratorandsurgicalmaskfiltersundervaryingconditionsofflowandhumidity.AppliedOccupational
andEnvironmentalHygiene12(6):435‐445(1997).
42 Elmashae,R.B.Y.,S.A.Grinshpun,T.Reponen,M.Yermakov,andR.Riddle:Performanceof
tworespiratoryprotectivedevicesusedbyhome‐attendinghealthcareworkers(apilotstudy).Journal
ofoccupationalandenvironmentalhygiene14(9):D145‐D149(2017).
Page27 COVID19Pt1 Rev6,0323020
©2020A.Havics
43 He,X.,T.Reponen,R.McKay,andS.A.Grinshpun:Howdoesbreathingfrequencyaffectthe
performanceofanN95filteringfacepiecerespiratorandasurgicalmaskagainstsurrogatesofviral
particles?Journalofoccupationalandenvironmentalhygiene11(3):178‐185(2014).
44 Eninger,R.M.,C.J.HoganJr,P.Biswas,A.Adhikari,T.Reponen,andS.A.Grinshpun:
Electrosprayversusnebulizationforaerosolizationandfiltertestingwithbacteriophageparticles.
AerosolScienceandTechnology43(4):298‐304(2009).
45 Guha,S.,B.McCaffrey,P.Hariharan,andM.R.Myers:Quantificationofleakageofsub‐micron
aerosolsthroughsurgicalmasksandfacemasksforpediatricuse.Journalofoccupationaland
environmentalhygiene14(3):214‐223(2017).
46 Jeong,S.B.,H.S.Ko,S.C.Seo,andJ.H.Jung:Evaluationoffiltrationcharacteristicsandmicrobial
recoveryratesofcommercialfilteringfacepiecerespiratorsagainstairbornebacterialparticles.Science
ofTheTotalEnvironment682:729‐736(2019).
47 Willeke,K.,Y.Qian,J.Donnelly,S.Grinshpun,andV.Ulevicius:Penetrationofairborne
microorganismsthroughasurgicalmaskandadust/mistrespirator.AmericanIndustrialHygiene
Associationjournal57(4):348‐355(1996).
48 Rengasamy,S.,A.Miller,B.C.Eimer,andR.E.Shaffer:FiltrationperformanceofFDA‐cleared
surgicalmasks.JournaloftheInternationalSocietyforRespiratoryProtection26(1):54(2009).
49 Rengasamy,S.,andB.C.Eimer:N95‐companionmeasurementofCout/CinratiosfortwoN95
filteringfacepiecerespiratorsandonesurgicalmask.Journalofoccupationalandenvironmentalhygiene
10(10):527‐532(2013).
50 Sanchez,E.:Filtrationefficiencyofsurgicalmasks.InDepartmentofEnvironmentaland
OccupationalHealth,pp.83:UniversitySouthFlorida,2010.
51 Vo,E.,S.Rengasamy,andR.Shaffer:Developmentofatestsystemtoevaluateproceduresfor
decontaminationofrespiratorscontainingviraldroplets.Appl.Environ.Microbiol.75(23):7303‐7309
(2009).
52 Wake,D.,A.Bowry,B.Crook,andR.Brown:Performanceofrespiratoryfiltersandsurgical
masksagainstbacterialaerosols.Journalofaerosolscience28(7):1311‐1329(1997).
53 Willeke,K.,S.Grinshpun,Y.Quian,J.Donnelly,A.Juozaitis,andV.Ulevicius:Physicaland
biologicalaerosolpenetrationandface‐sealleakcharacteristicsofindustrialandhealth‐carerespirators.
Journalofaerosolscience25:569‐570(1994).
54 Rengasamy,S.,B.Eimer,andR.E.Shaffer:Simplerespiratoryprotection—evaluationofthe
filtrationperformanceofclothmasksandcommonfabricmaterialsagainst20–1000nmsizeparticles.
AnnalsofOccupationalHygiene54(7):789‐798(2010).
55 Cooper,D.,W.Hinds,J.Price,R.Weker,andH.Yee:"Expedientmethodsofrespiratory
protection.II.Leakagetests.Finalreport":HarvardUniv.,Boston,MA(USA).SchoolofPublicHealth,
1983.
56 Brosseau,L.M.,S.‐K.Chen,D.Vesley,andJ.H.Vincent:Systemdesignandtestmethodfor
measuringrespiratorfilterefficiencyusingmycobacteriumaerosols.Journalofaerosolscience25(8):
1567‐1577(1994).
57 Chen,C.‐C.,andK.Willeke:Aerosolpenetrationthroughsurgicalmasks.Americanjournalof
infectioncontrol20(4):177‐184(1992).
58 Bałazy,A.,M.Toivola,T.Reponen,A.Podgórski,A.Zimmer,andS.A.Grinshpun:Manikin‐
basedperformanceevaluationofN95filtering‐facepiecerespiratorschallengedwithnanoparticles.
AnnalsofOccupationalHygiene50(3):259‐269(2006).
59 Brochot,C.,A.Djebara,F.Haguiguat,andA.Bahloul:Validationofalaboratorytestbenchfor
theefficiencyofanN95filteringfacepiece,usingsimulatedoccupationalexposure.Journalof
Environmental&AnalyticalToxicology5:286‐297(2015).
Page28 COVID19Pt1 Rev6,0323020
©2020A.Havics
60 Eninger,R.M.:PerformanceAspectsofFilteringFacepieceRespiratorsAgainstUltrafineInert
andBiologicalParticles:UniversityofCincinnati,2008.
61 Qian,Y.,K.Willeke,S.A.Grinshpun,J.Donnelly,andC.C.Coffey:PerformanceofN95
respirators:filtrationefficiencyforairbornemicrobialandinertparticles.AmericanIndustrialHygiene
Associationjournal59(2):128‐132(1998).
62 Willeke,K.,andY.Qian:Tuberculosiscontrolthroughrespiratorwear:PerforanceofNational
InstituteforOccupationalSafetyandHealth‐regulatedrespirators.Americanjournalofinfectioncontrol
26(2):139‐142(1998).
63 Bergman,M.,Z.Zhuang,E.Brochu,andA.Palmiero:FitAssessmentofN95Filtering‐Facepiece
RespiratorsintheU.S.CentersforDiseaseControlandPreventionStrategicNationalStockpile.Journal
oftheInternationalSocietyforRespiratoryProtection32(2):50‐64(2015).
64 Gardner,P.D.,J.P.Eshbaugh,S.D.Harpest,A.W.Richardson,andK.C.Hofacre:Viableviral
efficiencyofN95andP100respiratorfiltersatconstantandcyclicflow.Journalofoccupationaland
environmentalhygiene10(10):564‐572(2013).
65 Harnish,D.A.,B.K.Heimbuch,M.Husband,A.E.Lumley,K.Kinney,R.E.Shafferetal.:
ChallengeofN95filteringfacepiecerespiratorswithviableH1N1influenzaaerosols.InfectionControl&
HospitalEpidemiology34(5):494‐499(2013).
66 Hauge,J.,M.Roe,L.M.Brosseau,andC.Colton:Real‐timefitofarespiratorduringsimulated
healthcaretasks.Journalofoccupationalandenvironmentalhygiene9(10):563‐571(2012).
67 Rengasamy,S.,B.C.Eimer,andR.E.Shaffer:Comparisonofnanoparticlefiltrationperformance
ofNIOSH‐approvedandCE‐markedparticulatefilteringfacepiecerespirators.AnnalsofOccupational
Hygiene53(2):117‐128(2009).
68 Rengasamy,S.,W.P.King,B.C.Eimer,andR.E.Shaffer:FiltrationperformanceofNIOSH‐
approvedN95andP100filteringfacepiecerespiratorsagainst4to30nanometer‐sizenanoparticles.
Journalofoccupationalandenvironmentalhygiene5(9):556‐564(2008).
69 Rengasamy,S.:NanoparticlepenetrationthroughNIOSH‐approvedN95filtering‐facepiece
respirators.J.Int.Soc.RespiratoryProtection24:49‐59(2007).
70 Hurata,H.,T.Honda,R.M.Eninger,T.Reponen,R.McKay,andS.Grinshpun:Experimentaland
TheoreticalInvestigationofthePerformanceofN95RespiratorFiltersagainstUltrafineAerosolParticles
TestedatConstantandCyclicFlows.JournaloftheInternationalSocietyforRespiratoryProtection25(3‐
4):75‐88(2008).
71 Zhou,S.S.,S.Lukula,C.Chiossone,R.W.Nims,D.B.Suchmann,andM.K.Ijaz:Assessmentofa
respiratoryfacemaskforcapturingairpollutantsandpathogensincludinghumaninfluenzaand
rhinoviruses.Journalofthoracicdisease10(3):2059(2018).
72 Zhuang,Z.,M.S.Bergman,B.C.Eimer,andR.E.Shaffer:Laboratoryfacesealleakageevaluation
ofN95filteringfacepiecerespiratorsagainstnanoparticlesand“allsize”particles.Journalof
occupationalandenvironmentalhygiene10(9):496‐504(2013).
73 Zuo,Z.,T.H.Kuehn,andD.Y.Pui:Performanceevaluationoffilteringfacepiecerespiratorsusing
virusaerosols.Americanjournalofinfectioncontrol41(1):80‐82(2013).
74 Cho,K.J.,T.Reponen,R.McKay,A.Dwivedi,A.Adhikari,U.Singhetal.:Comparisonof
workplaceprotectionfactorsfordifferentbiologicalcontaminants.Journalofoccupationaland
environmentalhygiene8(7):417‐425(2011).
75 Roberge,R.,G.Niezgoda,andS.Benson:AnalysisofForcesGeneratedbyN95Filtering
FacepieceRespiratorTetheringDevices:APilotStudy.Journalofoccupationalandenvironmental
hygiene9(8):517‐523(2012).
76 Viscusi,D.J.,M.Bergman,E.Sinkule,andR.E.Shaffer:Evaluationofthefiltrationperformance
of21N95filteringfacepiecerespiratorsafterprolongedstorage.Americanjournalofinfectioncontrol
37(5):381‐386(2009).
Page29 COVID19Pt1 Rev6,0323020
©2020A.Havics
77 Dharmadhikari,A.S.,M.Mphahlele,A.Stoltz,K.Venter,R.Mathebula,T.Masotlaetal.:
Surgicalfacemaskswornbypatientswithmultidrug‐resistanttuberculosis:impactoninfectivityofair
onahospitalward.Americanjournalofrespiratoryandcriticalcaremedicine185(10):1104‐1109
(2012).
78 Jaeger,J.L.,M.Patel,N.Dharan,K.Hancock,E.Meites,C.Mattsonetal.:Transmissionof2009
pandemicinfluenzaA(H1N1)virusamonghealthcarepersonnel—SouthernCalifornia,2009.Infection
Control&HospitalEpidemiology32(12):1149‐1157(2011).
79 MacIntyre,C.R.,Q.Wang,S.Cauchemez,H.Seale,D.E.Dwyer,P.Yangetal.:Acluster
randomizedclinicaltrialcomparingfit‐testedandnon‐fit‐testedN95respiratorstomedicalmasksto
preventrespiratoryvirusinfectioninhealthcareworkers.Influenzaandotherrespiratoryviruses5(3):
170‐179(2011).
80 MacIntyre,C.R.,Q.Wang,B.Rahman,H.Seale,I.Ridda,Z.Gaoetal.:Efficacyoffacemasks
andrespiratorsinpreventingupperrespiratorytractbacterialcolonizationandco‐infectioninhospital
healthcareworkers.Preventivemedicine62:1‐7(2014).
81 Yarbrough,M.I.,M.E.Ficken,C.U.Lehmann,T.R.Talbot,M.D.Swift,P.W.McGownetal.:
Respiratoruseinahospitalsetting:establishingsurveillancemetrics.JournaloftheInternationalSociety
forRespiratoryProtection33(1):1(2016).
82 MacIntyre,C.R.,andA.A.Chughtai:Facemasksforthepreventionofinfectioninhealthcareand
communitysettings.Bmj350:h694(2015).
83 Bailar,J.,D.S.Burke,L.Brosseau,H.Cohen,E.Gallagher,andK.Gensheimber:Reusabilityof
facemasksduringaninfluenzapandemic.Washington[DC]:NationalAcademiesPress,2006.
84 Lavoie,J.,Y.Cloutier,J.Lara,andG.Marchand:Guidesurlaprotectionrespiratoirecontreles
bioaérosols:recommandationssurlechoixetl'utilisation.RapportRG497(2007).
85 Brady,T.M.,A.L.Strauch,C.M.Almaguer,G.Niezgoda,R.E.Shaffer,P.L.Yorioetal.:Transfer
ofbacteriophageMS2andfluoresceinfromN95filteringfacepiecerespiratorstohands:Measuring
fomitepotential.Journalofoccupationalandenvironmentalhygiene14(11):898‐906(2017).
86 Havics,A.A.:ALookatCOVID19intermsof:2.HygieneTechniques&Policies(Inpreparation.).
87 Fisher,E.M.,andR.E.Shaffer:Considerationsforrecommendingextendeduseandlimited
reuseoffilteringfacepiecerespiratorsinhealthcaresettings.Journalofoccupationalandenvironmental
hygiene11(8):D115‐D128(2014).
88 Nicas,M.,andR.M.Jones:Relativecontributionsoffourexposurepathwaystoinfluenza
infectionrisk.RiskAnalysis:AnInternationalJournal29(9):1292‐1303(2009).
89 Heimbuch,B.K.,W.H.Wallace,C.L.Balzli,M.L.Laning,A.E.Lumley,K.D.Cunninghametal.:
"BioaerosolExposuretoFilteringFacepieceRespiratorsinaClinicalEnvironment(Author'sFinal
Manuscript)":AppliedResearchAssociatesPanamaCityUnitedStates,2013.
90 Heimbuch,B.K.,W.H.Wallace,C.L.Balzli,M.L.Laning,D.A.Harnish,andJ.D.Wander:
Bioaerosolexposuretopersonnelinaclinicalenvironmentabsentpatients.Journalofoccupationaland
environmentalhygiene13(2):D11‐D15(2016).
91 Jachowicz,A.,K.Majchrzycka,J.Szulc,M.Okrasa,andB.Gutarowska:Survivalof
MicroorganismsonFilteringRespiratoryProtectiveDevicesUsedatAgriculturalFacilities.International
JournalofEnvironmentalResearchandPublicHealth16(16):2819(2019).
92 Fisher,E.,S.Rengasamy,D.Viscusi,E.Vo,andR.Shaffer:Developmentofatestsystemto
applyvirus‐containingparticlestofilteringfacepiecerespiratorsfortheevaluationofdecontamination
procedures.Appl.Environ.Microbiol.75(6):1500‐1507(2009).
93 Higami,M.:Anaerobicbacterialcontaminationofthedustmaskafteruseandits
countermeasures.OccupationalHealthMagazine(inJapanese)58(5):173‐178(2016).
Page30 COVID19Pt1 Rev6,0323020
©2020A.Havics
94 Higami,M.,Y.Shimada,T.Ishida,Y.Fueda,andH.Hori:Bacterialcontaminationofthedust
maskafteruseanditscountermeasures─Evaluaonbyaerobicculture.OccupationalHealthMagazine
(inJapanese)56(6):237‐244(2014).
95 Johnson,B.,D.R.Winters,T.R.Shreeve,andC.C.Coffey:Respiratorfilterreusetestusingthe
laboratorysimulantmycobacteriumtuberculosis(H37RAstrain).JournaloftheAmericanBiological
SafetyAssociation3(3):105‐116(1998).
96 Patterson,B.,andR.Wood:IscoughreallynecessaryforTBtransmission?Tuberculosis
(Edinburgh,Scotland)117:31(2019).
97 Loudon,R.G.,andL.C.Brown:Coughfrequencyinpatientswithrespiratorydisease.American
ReviewofRespiratoryDisease96(6):1137‐1143(1967).
98 Nicas,M.,W.W.Nazaroff,andA.Hubbard:Towardunderstandingtheriskofsecondary
airborneinfection:emissionofrespirablepathogens.Journalofoccupationalandenvironmentalhygiene
2(3):143‐154(2005).
99 Druett,H.,J.Robinson,D.Henderson,L.Packman,andS.Peacock:Studiesonrespiratory
infection:II.Theinfluenceofaerosolparticlesizeoninfectionoftheguinea‐pigwithPasteurellapestis.
Epidemiology&Infection54(1):37‐48(1956).
100 Loudon,R.G.,andR.M.Roberts:Dropletexpulsionfromtherespiratorytract.AmericanReview
ofRespiratoryDisease95(3):435‐442(1967).
101 Papineni,R.S.,andF.S.Rosenthal:Thesizedistributionofdropletsintheexhaledbreathof
healthyhumansubjects.JournalofAerosolMedicine10(2):105‐116(1997).
102 Morawska,L.,G.Johnson,Z.Ristovski,M.Hargreaves,K.Mengersen,S.Corbettetal.:Size
distributionandsitesoforiginofdropletsexpelledfromthehumanrespiratorytractduringexpiratory
activities.Journalofaerosolscience40(3):256‐269(2009).
103 Lee,J.,D.Yoo,S.Ryu,S.Ham,K.Lee,M.Yeoetal.:Quantity,SizeDistribution,and
CharacteristicsofCough‐generatedAerosolProducedbyPatientswithanUpperRespiratoryTract
Infection.AerosolandAirQualityResearch19(4):840‐853(2019).
104 Buckland,F.,andD.Tyrrell:Experimentsonthespreadofcolds:1.Laboratorystudiesonthe
dispersalofnasalsecretion.Epidemiology&Infection62(3):365‐377(1964).
105 Nishimura,H.,S.Sakata,andA.Kaga:Anewmethodologyforstudyingdynamicsofaerosol
particlesinsneezeandcoughusingadigitalhigh‐vision,high‐speedvideosystemandvectoranalyses.
PloSone8(11)(2013).
106 Bourouiba,L.,E.Dehandschoewercker,andJ.W.Bush:Violentexpiratoryevents:oncoughing
andsneezing.JournalofFluidMechanics745:537‐563(2014).
107 Jennison,M.W.:Atomizingofmouthandnosesecretionsintotheairasrevealedbyhigh‐speed
photography.InAerobiology,F.R.Moulton(ed.),pp.106‐128:AmericanAssociationforthe
AdvancementofScience,1942.
108 VanSciver,M.,S.Miller,andJ.Hertzberg:Particleimagevelocimetryofhumancough.Aerosol
ScienceandTechnology45(3):415‐422(2011).
109 Tang,J.W.‐T.,andG.Settles:Coughingandmasks.NewEnglandJournalofMedicine361(26):
e62(2009).
110 Boston,L.N.:TheSpreadofTuberculosisbyCoughing.JournaloftheAmericanMedical
Association37(11):685‐688(1901).
111 Williams,C.M.,M.Abdulwhhab,S.S.Birring,E.deKock,N.J.Garton,A.Stoltzetal.:Twenty‐
fourhourfacemasksamplinginpulmonarytuberculosisrevealsthreedistinctpatternsofbacterial
aerosolproductiondissociatedfromconventionalmarkersoftransmissionrisk.bioRxiv:426825(2018).
112 Williams,C.M.L.,E.S.G.Cheah,J.Malkin,H.Patel,J.Otu,K.Mlagaetal.:FaceMaskSampling
fortheDetectionofMycobacteriumtuberculosisinExpelledAerosols.PloSone9(8):e104921(2014).
Page31 COVID19Pt1 Rev6,0323020
©2020A.Havics
113 Lindsley,W.G.,J.D.Noti,F.M.Blachere,J.V.Szalajda,andD.H.Beezhold:Efficacyofface
shieldsagainstcoughaerosoldropletsfromacoughsimulator.Journalofoccupationaland
environmentalhygiene11(8):509‐518(2014).
114 Wood,M.E.,R.E.Stockwell,G.R.Johnson,K.A.Ramsay,L.J.Sherrard,N.Jabbouretal.:Face
masksandcoughetiquettereducethecoughaerosolconcentrationofPseudomonasaeruginosain
peoplewithcysticfibrosis.Americanjournalofrespiratoryandcriticalcaremedicine197(3):348‐355
(2018).
115 Lai,A.,C.Poon,andA.Cheung:Effectivenessoffacemaskstoreduceexposurehazardsfor
airborneinfectionsamonggeneralpopulations.JournaloftheRoyalSocietyInterface9(70):938‐948
(2012).
116 Milton,D.K.,M.P.Fabian,B.J.Cowling,M.L.Grantham,andJ.J.McDevitt:Influenzavirus
aerosolsinhumanexhaledbreath:particlesize,culturability,andeffectofsurgicalmasks.PLoS
pathogens9(3)(2013).
117 Diaz,K.T.,andG.C.Smaldone:Quantifyingexposurerisk:surgicalmasksandrespirators.
Americanjournalofinfectioncontrol38(7):501‐508(2010).
118 Birkner,J.S.,D.Fung,W.C.Hinds,andN.J.Kennedy:Particlereleasefromrespirators,partI:
Determinationoftheeffectofparticlesize,dropheight,andload.Journalofoccupationaland
environmentalhygiene8(1):1‐9(2011).
119 Birkner,J.S.,S.Kovalchik,D.Fung,W.C.Hinds,andN.J.Kennedy:Particlereleasefrom
respirators,partII:Determinationoftheeffectoftensionappliedinsimulationofremoval.Journalof
occupationalandenvironmentalhygiene8(1):10‐12(2011).
120 Fisher,E.M.,A.W.Richardson,S.D.Harpest,K.C.Hofacre,andR.E.Shaffer:Reaerosolizationof
MS2bacteriophagefromanN95filteringfacepiecerespiratorbysimulatedcoughing.Annalsof
OccupationalHygiene56(3):315‐325(2012).
121 Kennedy,N.J.,andW.C.Hinds:Releaseofsimulatedanthraxparticlesfromdisposable
respirators.Journalofoccupationalandenvironmentalhygiene1(1):7‐10(2004).
122 Qian,Y.,K.Willeke,S.A.Grinshpun,andJ.Donnelly:PerformanceofN95respirators:
reaerosolizationofbacteriaandsolidparticles.AmericanIndustrialHygieneAssociationjournal58(12):
876‐880(1997).
123 Brosseau,L.M.,N.V.McCullough,andD.Vesley:Bacterialsurvivalonrespiratorfiltersand
surgicalmasks.JournaloftheAmericanBiologicalSafetyAssociation2(3):32‐43(1997).
124 Coulliette,A.,K.Perry,E.M.Fisher,J.Edwards,R.Shaffer,andJ.Noble‐Wang:MS2Coliphage
asaSurrogatefor2009PandemicInfluenzaA(H1N1)Virus(pH1N1)inSurfaceSurvivalStudiesonN95
FilteringFacepieceRespirators.JournaloftheInternationalSocietyforRespiratoryProtection32(1):14‐
22(2015).
125 Fisher,E.,andR.Shaffer:SurvivalofbacteriophageMS2onfilteringfacepiecerespirator
coupons.AppliedBiosafety15(2):71‐76(2010).
126 Coulliette,A.,K.Perry,J.Edwards,andJ.Noble‐Wang:Persistenceofthe2009pandemic
influenzaA(H1N1)virusonN95respirators.Appl.Environ.Microbiol.79(7):2148‐2155(2013).
127 Ko,G.,H.A.Burge,M.Muilenberg,S.Rudnick,andM.First:SurvivalofmycobacteriaonHEPA
filtermaterial.JournaloftheAmericanBiologicalSafetyAssociation3(2):65‐78(1998).
128 Miaskiwicz‐Peska,E.,andT.Slomczynski:Survivalofbacteriainrespiratoryprotectivefilters.
Polishjournalofmicrobiology65(4):475‐477(2016).
129 Rengasamy,S.,E.Fisher,andR.E.Shaffer:EvaluationofthesurvivabilityofMS2viralaerosols
depositedonfilteringfacepiecerespiratorsamplesincorporatingantimicrobialtechnologies.American
journalofinfectioncontrol38(1):9‐17(2010).
130 Reponen,T.A.,Z.Wang,K.Willeke,andS.A.Grinshpun:SurvivalofmycobacteriaonN95
personalrespirators.InfectionControl&HospitalEpidemiology20(4):237‐241(1999).
Page32 COVID19Pt1 Rev6,0323020
©2020A.Havics
131 Wang,Z.:Survivalofbacteriaonrespiratorfilters.AerosolScience&Technology30(3):300‐308
(1999).
132 Majchrzycka,K.,M.Okrasa,A.Jachowicz,J.Szulc,andB.Gutarowska:Microbialgrowthon
dust‐loadedfilteringmaterialsusedfortheprotectionofrespiratorytractasafactoraffectingfiltration
efficiency.InternationalJournalofEnvironmentalResearchandPublicHealth15(9):1902(2018).
133 Majchrzycka,K.,M.Okrasa,J.Skóra,andB.Gutarowska:Evaluationofthesurvivabilityof
microorganismsdepositedonfilteringrespiratoryprotectivedevicesundervaryingconditionsof
humidity.InternationalJournalofEnvironmentalResearchandPublicHealth13(1):98(2016).
134 Majchrzycka,K.,M.Okrasa,J.Szulc,A.Jachowicz,andB.Gutarowska:Survivalof
MicroorganismsonNonwovensUsedfortheConstructionofFilteringFacepieceRespirators.
InternationalJournalofEnvironmentalResearchandPublicHealth16(7):1154(2019).
135 Lin,T.‐H.,F.‐C.Tang,C.‐H.Chiang,C.‐P.Chang,andC.‐Y.Lai:Recoveryofbacteriainfiltering
facepiecerespiratorsandeffectsofartificialsaliva/perspirationonbacterialsurvivalandperformanceof
respirators.AerosolAirQual.Res17:187‐197(2017).
136 Casanova,L.,E.Alfano‐Sobsey,W.A.Rutala,D.J.Weber,andM.Sobsey:Virustransferfrom
personalprotectiveequipmenttohealthcareemployees’skinandclothing.Emerginginfectiousdiseases
14(8):1291(2008).
137 Rebmann,T.,R.Carrico,andJ.Wang:Physiologicandothereffectsandcompliancewithlong‐
termrespiratoruseamongmedicalintensivecareunitnurses.Americanjournalofinfectioncontrol
41(12):1218‐1223(2013).
138 Alhmidi,H.,S.Koganti,M.E.Tomas,J.L.Cadnum,A.Jencson,andC.J.Donskey:Apilotstudyto
assessuseoffluorescentlotioninpatientcaresimulationstoillustratepathogendisseminationandtrain
personnelincorrectuseofpersonalprotectiveequipment.AntimicrobialResistance&InfectionControl
5(1):40(2016).
139 Watanabe,T.,T.A.Bartrand,M.H.Weir,T.Omura,andC.N.Haas:Developmentofadose‐
responsemodelforSARScoronavirus.RiskAnalysis:AnInternationalJournal30(7):1129‐1138(2010).
140 Nicas,M.:UseofaProbabilisticInfectiousDoseModelforEstimatingAirbornePathogen
InfectionRisk:ApplicationtoRespiratoryProtection.JournaloftheInternationalSocietyforRespiratory
Protection22(1/2):24‐37(2005).
141 Hines,S.E.,C.Brown,M.Oliver,P.Gucer,M.Frisch,R.Hoganetal.:Useracceptanceof
reusablerespiratorsinhealthcare.Americanjournalofinfectioncontrol47(6):648‐655(2019).
142 Vawter,D.E.,J.E.Garrett,K.G.Gervais,A.W.Prehn,D.A.DeBruin,C.A.Taueretal.:Forthe
goodofusall:EthicallyrationinghealthresourcesinMinnesotainasevereinfluenzapandemic.
Minneapolis,MN:MinnesotaCenterforHealthCareEthicsandUniversityofMinnesotaCenterfor
Bioethics(2010).
143 Food,andH.DrugAdministration:Medicaldevices;generalhospitalandpersonalusedevices;
classificationofthefilteringfacepiecerespiratorforusebythegeneralpublicinpublichealthmedical
emergencies.Finalrule.Federalregister72(127):36360(2007).
144 Janssen,L.,andL.Brosseau:LettertotheEditorandAuthor'sReply.Journalofoccupationaland
environmentalhygiene8(2):D15‐D17(2011).
145 Brosseau,L.M.:Fittestingrespiratorsforpublichealthmedicalemergencies.Journalof
occupationalandenvironmentalhygiene7(11):628‐632(2010).
146 Lam,S.C.,A.K.Lui,L.Y.Lee,J.K.Lee,K.Wong,andC.N.Lee:Evaluationoftheusersealcheckon
grossleakagedetectionof3differentdesignsofN95filteringfacepiecerespirators.Americanjournalof
infectioncontrol44(5):579‐586(2016).
147 Frost,S.,R.Mogridge,andM.Roff:FitofFilteringFacepieceClass3(FFP3)RespiratorsPart2,
TheValueofFit‐CheckingandSimpleSubjectiveAssessofFitasanAlternativetoaFitTest.Journalof
theInternationalSocietyforRespiratoryProtection31(2):79‐88(2014).
Page33 COVID19Pt1 Rev6,0323020
©2020A.Havics
148 Mogridge,R.,A.Bowry,andM.Clayton:EvaluationofaShortenedQualitativeFitTestMethod
forFilteringFacpieceRespirators.JournaloftheInternationalSocietyforRespiratoryProtection35(1):
47‐64(2018).
149 Myong,J.‐P.,J.Byun,Y.Cho,H.‐K.Seo,J.‐E.Baek,J.‐W.Kooetal.:Theeducationandpractice
programformedicalstudentswithquantitativeandqualitativefittestforrespiratoryprotective
equipment.IndustrialHealth54(2):177‐182(2016).
150 CDC:"RecommendedguidanceforextendeduseandlimitedreuseofN95filteringfacepiece
respiratorsinhealthcaresettings."[Online]Availableat
https://www.cdc.gov/niosh/topics/hcwcontrols/recommendedguidanceextuse.html,2020).
151 Roberge,R.J.,J.‐H.Kim,andS.M.Benson:Absenceofconsequentialchangesinphysiological,
thermalandsubjectiveresponsesfromwearingasurgicalmask.Respiratoryphysiology&neurobiology
181(1):29‐35(2012).
152 Roberge,R.J.,A.Coca,W.J.Williams,J.B.Powell,andA.J.Palmiero:Reusableelastomericair‐
purifyingrespirators:Physiologicimpactonhealthcareworkers.Americanjournalofinfectioncontrol
38(5):381‐386(2010).
153 Bergman,M.S.,D.J.Viscusi,Z.Zhuang,A.J.Palmiero,J.B.Powell,andR.E.Shaffer:Impactof
multipleconsecutivedonningsonfilteringfacepiecerespiratorfit.Americanjournalofinfectioncontrol
40(4):375‐380(2012).
154 Vuma,C.D.,J.Manganyi,K.Wilson,andD.Rees:TheEffectonFitofMultipleConsecutive
DonningandDoffingofN95FilteringFacepieceRespirators.Annalsofworkexposuresandhealth63(8):
930‐936(2019).
155 Suen,L.K.,L.Yang,S.S.Ho,K.H.Fung,M.V.Boost,C.S.Wuetal.:ReliabilityofN95respirators
forrespiratoryprotectionbefore,during,andafternursingprocedures.Americanjournalofinfection
control45(9):974‐978(2017).
156 Kim,H.,J.‐E.Baek,H.‐K.Seo,J.‐E.Lee,J.‐P.Myong,S.‐J.Leeetal.:Assessingreal‐time
performancesofN95respiratorsforhealthcareworkersbysimulatedworkplaceprotectionfactors.
IndustrialHealth53(6):553‐561(2015).
157 Sietsema,M.,andL.M.Brosseau:Arequantitativefitfactorspredictiveofrespiratorfitduring
simulatedhealthcareactivities?Journalofoccupationalandenvironmentalhygiene15(12):803‐809
(2018).
158 Zhuang,Z.,M.Bergman,E.Brochu,A.Palmiero,G.Niezgoda,X.Heetal.:Temporalchangesin
filtering‐facepiecerespiratorfit.Journalofoccupationalandenvironmentalhygiene13(4):265‐274
(2016).
159 Bessesen,M.T.,J.C.Adams,L.Radonovich,andJ.Anderson:Disinfectionofreusable
elastomericrespiratorsbyhealthcareworkers:afeasibilitystudyanddevelopmentofstandard
operatingprocedures.Americanjournalofinfectioncontrol43(6):629‐634(2015).
160 Bergman,M.S.,D.J.Viscusi,B.K.Heimbuch,J.D.Wander,A.R.Sambol,andR.E.Shaffer:
Evaluationofmultiple(3‐cycle)decontaminationprocessingforfilteringfacepiecerespirators.Journalof
EngineeredFibersandFabrics5(4):155892501000500405(2010).
161 Bergman,M.S.,D.J.Viscusi,A.J.Palmiero,J.B.Powell,andR.E.Shaffer:Impactofthreecycles
ofdecontaminationtreatmentsonfilteringfacepiecerespiratorfit.JournaloftheInternationalSociety
ofRespiratoryProtection28(1):48(2011).
162 Fisher,E.M.,andR.E.Shaffer:AmethodtodeterminetheavailableUV‐Cdoseforthe
decontaminationoffilteringfacepiecerespirators.Journalofappliedmicrobiology110(1):287‐295
(2011).
163 Fisher,E.M.,J.L.Williams,andR.E.Shaffer:Evaluationofmicrowavesteambagsforthe
decontaminationoffilteringfacepiecerespirators.PloSone6(4)(2011).
Page34 COVID19Pt1 Rev6,0323020
©2020A.Havics
164 Fisher,E.,J.Williams,andR.Shaffer:Theeffectofsoilaccumulationonmultiple
decontaminationprocessingofN95filteringfacepiecerespiratorcouponsusingphysicalmethods.JInt
SocRespirProt27(1):16‐26(2010).
165 Heimbuch,B.K.,K.Kinney,A.E.Lumley,D.A.Harnish,M.Bergman,andJ.D.Wander:Cleaning
offilteringfacepiecerespiratorscontaminatedwithmucinandStaphylococcusaureus.Americanjournal
ofinfectioncontrol42(3):265‐270(2014).
166 Lin,T.‐H.,C.‐C.Chen,S.‐H.Huang,C.‐W.Kuo,C.‐Y.Lai,andW.‐Y.Lin:Filterqualityofelectret
masksinfiltering14.6–594nmaerosolparticles:Effectsoffivedecontaminationmethods.PloSone
12(10):e0186217(2017).
167 Lin,T.H.,F.C.Tang,P.C.Hung,Z.C.Hua,andC.Y.Lai:RelativesurvivalofBacillussubtilisspores
loadedonfilteringfacepiecerespiratorsafterfivedecontaminationmethods.Indoorair28(5):754‐762
(2018).
168 Lindsley,W.G.,S.B.MartinJr,R.E.Thewlis,K.Sarkisian,J.O.Nwoko,K.R.Meadetal.:Effectsof
ultravioletgermicidalirradiation(UVGI)onN95respiratorfiltrationperformanceandstructural
integrity.Journalofoccupationalandenvironmentalhygiene12(8):509‐517(2015).
169 Lore,M.B.,B.K.Heimbuch,T.L.Brown,J.D.Wander,andS.H.Hinrichs:Effectivenessofthree
decontaminationtreatmentsagainstinfluenzavirusappliedtofilteringfacepiecerespirators.Annalsof
OccupationalHygiene56(1):92‐101(2012).
170 Mills,D.,D.A.Harnish,C.Lawrence,M.Sandoval‐Powers,andB.K.Heimbuch:Ultraviolet
germicidalirradiationofinfluenza‐contaminatedN95filteringfacepiecerespirators.Americanjournalof
infectioncontrol46(7):e49‐e55(2018).
171 Salter,W.,K.Kinney,W.Wallace,A.Lumley,B.Heimbuch,andJ.Wander:Analysisofresidual
chemicalsonfilteringfacepiecerespiratorsafterdecontamination.Journalofoccupationaland
environmentalhygiene7(8):437‐445(2010).
172 Salter,W.,K.Kinney,W.Wallace,A.Lumley,B.Heimbuch,andJ.Wander:"Analysisofresidual
chemicalsonfilteringfacepiecerespiratorsafterdecontamination":AirForceResearchLab,2009.
173 Viscusi,D.J.,W.P.King,andR.Shaffer:EffectofDecontaminationontheFiltrationEfficiencyof
TwoFilteringFacepieceRespiratorModels.JournaloftheInternationalSocietyforRespiratory
Protection24(3‐4):93‐103(2007).
174 Viscusi,D.J.,M.S.Bergman,B.C.Eimer,andR.E.Shaffer:Evaluationoffivedecontamination
methodsforfilteringfacepiecerespirators.AnnalsofOccupationalHygiene53(8):815‐827(2009).
175 Viscusi,D.J.,M.S.Bergman,D.A.Novak,K.A.Faulkner,A.Palmiero,J.Powelletal.:Impactof
ThreeBiologicalDecontaminationMethodsonFilteringFacepieceRespiratorFit,Odor,Comfort,and
DonningEase.Journalofoccupationalandenvironmentalhygiene8(7):426‐436(2011).
176 Moyer,E.S.,andM.S.Bergman:ElectrostaticN‐95RespiratorFilterMediaEfficiency
DegradationResultingfromIntermittentSodiumChlorideAerosolExposure.AppliedOccupationaland
EnvironmentalHygiene15(8):600‐608(2000).
177 Banovic,F.,T.Olivry,W.Bäumer,J.Paps,J.Stahl,A.Rogersetal.:Dilutedsodiumhypochlorite
(bleach)indogs:antisepticefficacy,localtolerabilityandinvitroeffectonskinbarrierfunctionand
inflammation.Veterinarydermatology29(1):6‐e5(2018).
178 Basketter,D.,E.Whittle,H.Griffiths,andM.York:Theidentificationandclassificationofskin
irritationhazardbyahumanpatchtest.Foodandchemicaltoxicology32(8):769‐775(1994).
179 Bruch,M.K.:Toxicityandsafetyoftopicalsodiumhypochlorite.InDisinfectionbySodium
Hypochlorite:DialysisApplications,pp.24‐38:KargerPublishers,2007.
180 Brooks,C.D.,A.Kujawska,andD.Patel:Cutaneousallergicreactionsinducedbysporting
activities.SportsMedicine33(9):699‐708(2003).
181 Habets,J.,A.Geursen‐Reitsma,E.Stolz,andT.VanJoost:Sensitizationtosodiumhypochlorite
causinghanddermatitis.ContactDermatitis15(3):140‐142(1986).
Page35 COVID19Pt1 Rev6,0323020
©2020A.Havics
182 Zhe,G.C.S.,A.Green,Y.T.Fong,H.Y.Lee,andS.F.Ho:RarecaseoftypeIhypersensitivity
reactiontosodiumhypochloritesolutioninahealthcaresetting.CaseReports2016:bcr2016217228
(2016).
183 Hostynek,J.J.,K.P.Wilhelm,A.Cua,andH.I.Maibach:Irritationfactorsofsodiumhypochlorite
solutionsinhumanskin.ContactDermatitis23(5):316‐324(1990).
Page36 COVID19Pt1 Rev6,0323020
©2020A.Havics
AppendixA
AppendixA.N95FFandSurgicalMaskRPDCleaningProcesses
(recommendlimitingto5decontaminationcycles)
SodiumHypochloriteProcess
1. Preparea0.06%to0.1%solutionofsodiumhypochlorite;placeinContainerB.
[sizesufficienttosubmergetheRPD]
2. Prepareapan/container[ContainerA]with1%Alconoxsolution*inroomtemperaturewater.
[sizesufficienttosubmergetheRPD]
3. Prepareapan/container[ContainerC]withroomtemperaturewater.
[sizesufficienttosubmergetheRPD]
3. Useanon‐alcoholwetwipeandwipeoffstrapsandanyvisibledebrisfromRPD.
4. PlacetheRPDinpan/containerwith1%Alconoxsolution[ContainerA].
5. GentlyagitatetheRPD.
6. RemoveRPDfromContainerA.
7. RinseRPDonceinContainerC.
8. RemoveRPDanddrainexcesswater.
9. PlaceRPDinContainerB.Soaksubmergedfor10minutes.
10. WhileRPDissoakingchangewaterinContainerC.
11. After10minsoak,removeRPD.
12. PlaceRPDinContainerC.
13. GentlyagitatetheRPDfor30sec.
14. RemoveRPDanddrainexcesswater.[Ifskinsensitive,repeatsteps12&13twomoretimes
withfreshwatereachtime]
15. RemoveRPDanddryinanareawithreasonablecleanairflow(e.g.,hood,sterileopenchamber,
etc.).
16. ExamineRPDfordegradationofstraps,edges,fraying,etc.beforereusing.Donotreuseif
damaged.
Page37 COVID19Pt1 Rev6,0323020
©2020A.Havics
UltravioletGermicidalIrradiation(UVGI)Process
1. DoffRPD.
[Wearlatexornitrileglovestominimizehandcontactduringthisprocess]
2. Useanon‐alcoholwetwipeandwipeoffstrapsandanyvisibledebrisfromRPD.
3. PlaceRPDfaceupindrychamberwithUVshieldingcapacity(oruseproperPPE,e.g.,goggles).
4. ApplyUV‐Cat25W/m2totheoutersurfacefor10min.
5. TurnRPDoverandplacefacedown.
6. ApplyUV‐Cat25W/m2totheinnersurfacefor5min.
7. RemoveRPDanddryinanareawithreasonablecleanairflow(e.g.,hood,sterileopenchamber,
etc.).
8. ExamineRPDfordegradationofstraps,edges,fraying,etc.beforereusing.Donotreuseif
damaged.
CheckefficacyofUV‐C(254nm)sourcedailytoensure25W/m2acrossareatheRPDwillbeplaced.
MoistHeat(MH)Process
1. DoffRPD.
[Wearlatexornitrileglovestominimizehandcontactduringthisprocess]
2. Useanon‐alcoholwetwipeandwipeoffstrapsandanyvisibledebrisfromRPD.
3. PlaceRPDfaceupincubatororsteamingdevice.
4. Appl60‐65⁰C(uppertemp.limit),80‐85%RHfor30min.
5. Removeanddryinanareawithreasonablecleanairflow(e.g.,hood,sterileopenchamber,
etc.).
6. ExamineRPDfordegradationofstraps,edges,fraying,etc.beforereusing.Donotreuseif
damaged.
*Onecansubstituteamilddetergentatlowconcentrationifnecessary.