PreprintPDF Available

An observational study of recess quality and physical activity in urban primary schools

Authors:

Abstract and Figures

Background To date, there is scant literature that examines the recess context concurrent with, but separate from, levels of physical activity. The primary purpose of the current study was to examine how recess quality impacted physical activity levels, and how this was moderated by gender. A secondary purpose was to examine if differences in children’s engagement in activities occurred between recess sessions scored as low- or high- quality. Methods This was an observational study of children at 13 urban elementary schools in the U.S. Across the 13 schools, data were collected at 55 recess sessions, with 3,419 child-level observations ( n= 1,696 boys; n= 1,723 girls). Physical activity data were collected using Fitbit accelerometers, recess quality data were collected using the Great Recess Framework – Observational Tool (GRF-OT), recess engagement data were collected using the Observation of Playground Play (OPP), and basic psychological need satisfaction (BPNS) data were collected using a modified version of the BPNS for recess physical activity survey. Primary analyses were conducted using Hierarchical Linear Modeling (HLM) with children nested within recess sessions. Results Gender moderated the relationship between adult engagement and moderate-to-vigorous physical activity (MVPA) (b= .012; 95% CI .001, .024), student behavior and MVPA (b= -.014; 95% CI -.021, -.007), and student behaviors and light physical activity (b= .009, 95% CI .003, .015). Both boys and girls engaged in more play during recess sessions scored as high quality on the GRF-OT. Children reported higher levels of basic psychological need satisfaction at recesses sessions scored as high quality on the GRF-OT. Conclusions Results of the current study showed that the quality of the recess environment, and the interactions of both adults and students in that environment, need to be taken into consideration in future school-based recess studies.
Content may be subject to copyright.
1
Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.
Anobservationalstudyofrecessqualityandphysical
activityinurbanprimaryschools
CURRENTSTATUS:UNDERREVIEW
WilliamVincentMassey
OregonStateUniversity
william.massey@oregonstate.eduCorrespondingAuthor
ORCiD:https://orcid.org/0000-0002-4002-3720
MeganBStellino
UniversityofNorthernColorado
JohnGeldhof
OregonStateUniversity
DOI:
10.21203/rs.2.24385/v1
SUBJECTAREAS
HealthPolicy HealthEconomics&OutcomesResearch
KEYWORDS
Schoolhealth,Adultengagement,Play,Obesity
2
Abstract
Background
Todate,thereisscantliteraturethatexaminestherecesscontextconcurrentwith,butseparate
from,levelsofphysicalactivity.Theprimarypurposeofthecurrentstudywastoexaminehowrecess
qualityimpactedphysicalactivitylevels,andhowthiswasmoderatedbygender.Asecondary
purposewastoexamineifdifferencesinchildren’sengagementinactivitiesoccurredbetweenrecess
sessionsscoredaslow-orhigh-quality.
Methods
Thiswasanobservationalstudyofchildrenat13urbanelementaryschoolsintheU.S.Acrossthe13
schools,datawerecollectedat55recesssessions,with3,419child-levelobservations(n=1,696
boys;n=1,723girls).PhysicalactivitydatawerecollectedusingFitbitaccelerometers,recessquality
datawerecollectedusingtheGreatRecessFramework–ObservationalTool(GRF-OT),recess
engagementdatawerecollectedusingtheObservationofPlaygroundPlay(OPP),andbasic
psychologicalneedsatisfaction(BPNS)datawerecollectedusingamodifiedversionoftheBPNSfor
recessphysicalactivitysurvey.PrimaryanalyseswereconductedusingHierarchicalLinearModeling
(HLM)withchildrennestedwithinrecesssessions.
Results
Gendermoderatedtherelationshipbetweenadultengagementandmoderate-to-vigorousphysical
activity(MVPA)(b=.012;95%CI.001,.024),studentbehaviorandMVPA(b=-.014;95%CI-.021,
-.007),andstudentbehaviorsandlightphysicalactivity(b=.009,95%CI.003,.015).Bothboysand
girlsengagedinmoreplayduringrecesssessionsscoredashighqualityontheGRF-OT.Children
reportedhigherlevelsofbasicpsychologicalneedsatisfactionatrecessessessionsscoredashigh
qualityontheGRF-OT.
Conclusions
Resultsofthecurrentstudyshowedthatthequalityoftherecessenvironment,andtheinteractions
ofbothadultsandstudentsinthatenvironment,needtobetakenintoconsiderationinfutureschool-
basedrecessstudies.
3
Background
Lowlevelsofphysicalactivity(PA)remainaproblemthatcontributetothehighobesityratesseenin
children.Increasingly,schoolshavebecomeafocusforphysicalactivityinterventionsamongst
researchers(1)particularlygiventheamountoftimechildrenspendinthisenvironment.
Unfortunately,childrenintheUnitedStates(U.S.)continuetolackmeaningfulopportunitiesfor
physicalactivityatschool,despiteresearchthatshowstimespentengaginginphysicalactivity
makespositivecontributionstoacademics(2).AsidefromPE,school-basedrecessisalsoaprime
opportunityforphysicalactivitywithintheschoolday.Specifically,recesshasbeenshowntoaccount
for42%ofchildren’sopportunitiestobephysicallyactiveinschool(3),andupto44%ofstepcounts
duringtheschoolday(4).Despitethis,datafromthe2012–2013academicyearintheUnitedStates
(U.S.)suggestthat60%ofschooldistrictshavenoformalpolicyregardingdailyrecess.Ofschool-
districtsthathavearecesspolicy,only22%requiredailyrecessforelementaryschoolstudents,with
lessthanhalfoftheserequiringatleast20minutesofrecessperday(5).Whilerecentlegislative
effortshavebeenmadetopromoterecessatthestatelevel,onlysevenoutof50U.S.statesrequire
dailyrecessforchildrenduringtheschoolday(6).
Perhapsmoreconcerningisthetrendsdescribedabovedisproportionallyaffectchildrenfrom
disadvantagedbackgrounds.Datashowthatchildrenwhogotolarge,urbanschools;schoolswitha
highminoritypopulation;andschoolswithlow-incomelevelsaretheleastlikelytogetaccessto
recess,andoftenreporttheshortestamountoftimededicatedtorecess(7,8).Itisplausiblethat
environmentalfactorsaffectchildren’saccesstophysicalactivityopportunitiesinurbanandlow-
incomeschoolsystems.Notably,bullyingandaggressivebehaviorhavebeenreportedonthe
playgroundaturbanelementaryschools(9,10),whichcouldresultinfeweropportunitiesforstudents.
Furthermore,accesstospaceandequipmentarethoughttobecentraltorecessfacilitation(11),
whichcouldbelackingatlow-income,and/orurbanschools.Forexample,asystematicreview
conductedbyErwinetal.(4)suggeststhataddingmoreplaygroundequipmentandprovidinga
structuredrecessyieldsthelargesteffectonphysicalactivityduringrecess.Yet,budgetaryrestraints
couldlimitthepurchaseofequipmentinlow-incomeschooldistricts.Thus,thereisaneedtoconsider
4
bothaccesstorecess,andthequalityoftherecessenvironmentforpromotingphysicalactivity
throughouttheschoolday,particularlyinlow-incomeandurbanenvironments.
Asidefromaddressingdisparitiestophysicalactivityopportunitiessuchasrecess,aneedalsoexists
toexaminebarriersto,andfacilitatorsfor,physicalactivitywhenchildrendohaveaccessto
discretionarytimeduringtheschoolday.Onecommonareaoffocushasbeenondifferencesbetween
activitylevelsforboysandgirls,giventhatdatahasconsistentlyshownthatgirlsarelessactive
duringrecessperiods(12–14).Thesedatasuggestthatsocialdeterminantsmightplayarolein
children’sbehaviorontheplayground.Inexaminingbarrierstophysicalactivity,Pawlowskiand
colleagues(15,16)reportedseveralgenderedissuesthatmaylimitphysicalactivityduringrecess.
Forexample,elementaryschoolgirlsreportedwantingtoplaysports(i.e.,ballgames),butthose
wereusuallydominatedbytheboysontheplayground(15).Moreover,activitiesatrecesscanbe
labeledalonggenderlines,withgirlsbeingexpectedtoconformtomoresedentaryactivities(16).
Whilegirlsseemmoreinterestedincrossinggenderbordersatrecess(17),boysinthePawlowskiet
al.study(16)dominatedthelargerplaygroundspaces(i.e.,footballpitch)oftenexcludinggirlsduring
thegame.Thus,itappearsthatthereisaneedforbothvarietyofgamesandplayspaces,aswellas
inclusivebehaviorontheplayground,inanefforttomoreeffectivelypromotephysicalactivityat
recess.Indeed,researchershavereportedgirlsengageinsimilarlevelsofmoderate-to-vigorous
physicalactivity(MVPA)asboyswhenplayingteamsports(14)andthatprovidinganactivityofthe
weekinterventioncanyieldgainsinphysicalactivity(18).
Anotherimportantconsiderationforexaminingbehavioratrecessishowperceptionsofphysicaland
emotionalsafetymightimpactphysicalactivitybehaviorduringrecess.Previousresearchwithchild
participantshassuggestedthatconflictisaregularpartoftheplaygroundexperience(19,20).
Similarly,behavioralobservationshavesuggestedthatbullyingregularlytakesplaceduringrecess
periods(10).Intermsofphysicalactivityduringrecess,childrenhavespecificallydiscussedconflict
asabarriertoplayforboysandgirlsalike.Moreover,childrenhavereportedthatastrongerpresence
byadultsatrecessmighthelptofacilitatehigherlevelsofplay,astherewouldbeamoreneutral
mediatortoweighinongames(16).Thisnotionwassupportedbyarecentstudythatshowedadult
5
engagementandsupervisionasasignificantpredictorofplayforboysandgirlsduringrecess(21).
Additionalworkhasshownthatthepresenceofrecessinterventionschangesplaypatterns,
specificallyreducingnon-engagementandincreasingengagementinmoretraditionalgamessuchas
four-square,hopscotch,anduseoflooseequipment(22)
Inconsideringthepotentialbarrierstophysicalactivityatrecess,multipleinteractingfactorsareat
play.Accesstoresources,schoolpolicies,thephysicalenvironment,varioussocialdeterminants,and
studentbehaviorsallplayvariousrolesinfacilitating,orimpeding,physicalactivityatrecess.
Understandingoptimalstandardsforfacilitatingphysicalactivityduringrecessiscurrentlyneeded,
especiallyforthoseinurbanand/orlow-incomeschoolswhomayhavelimitedopportunities.Todate,
thereisscantliteraturethatexaminestherecesscontextconcurrentwith,butseparatefrom,levels
ofphysicalactivity.Recently,Masseyandcolleagues(23)developedanobservationaltooltomeasure
environmentalandsocialdeterminantsofelementaryschoolrecess.Specifically,theGreatRecess
Framework–ObservationalTool(GRF-OT)measuresthesafetyandstructureoftheplayground,adult
engagementandsupervision,aswellasstudentbehaviors.GiventheoverlapbetweentheGRF-OT
andresearchingexaminingpotentialbarriersandfacilitatorstorecessphysicalactivity,thereisa
needtoexaminehowtheabove-mentionedcontextualfactors,asmeasuredbytheGRF-OT,impact
physicalactivitylevels.Assuch,theprimarypurposeofthecurrentstudywastoexaminehowrecess
qualityimpactedphysicalactivitylevels,andhowthiswasmoderatedbygender.Asecondary
purposewastoexamineifdifferencesinchildren’sengagementinactivitiesoccurredbetweenrecess
sessionsscoredaslow-orhigh-quality.
Methods
InstitutionalReviewBoardapprovalwasobtainedpriortothestartofanystudyprocedures
(ConcordiaUniversityWisconsinID:932380-3;926512-1).Additionally,allprotocolsandprocedures
wereapprovedbytheresearchboardattheschooldistrictlevel,aswellastheprincipalateach
school.Inanefforttoensurewecouldincludeamaximumnumberofchildrenontheplayground,a
passiveconsentprotocolwasfollowed.Consentformsweresenthometoeachstudentandparents
andstudentsweregiventheopportunitytooptoutofthecurrentstudy.Inaccordancewithschool
6
districtpolicyonpassiveconsentprotocols,personallyidentifyinginformationwasnotcollectedon
participants.
Participants
Participantsincludedchildrenat13urbanelementaryschoolsintheU.S.Acrossthe13schools,
accelerometerdatawerecollectedat55recesssessions,with3,419child-levelobservations(n = 
1,696boys;n = 1,723girls).Observationsofengagementinrecessactivitieswerecollectedat61
recesssessionswith4,528child-levelobservations(n = 2243boys;n = 2285girls).Thenumberof
childrenwithineachrecesssessionrangedfrom12to117withanaverageof62.16(SD = 26.34)
childrenperrecess.Allschoolsenrolledinthisstudyservedchildreninlow-incomeareas,with
publiclyavailabledatashowingthat78.8%ofthestudentpopulationiseconomicallydisadvantaged
(12-out-of-13schools > 50%ofeconomicallydisadvantagedstudents;range = 22.5%− 99.6%).Ofthe
13schools,10wereinthepublic-schoolsystem,withthreeofthese10schoolsbeinglanguage
immersionschools.Twelveofthe13schoolswereexclusivelyelementaryschools(i.e.,grades1–5),
andoneschoolalsoservedmiddleschoolstudents(i.e.,grades4–8).Enrollmentateachschool
rangedfrom253studentsto690students,withanaverageof436studentsperschool.
Measures
Physicalactivity.TheFitbitFlex™isawristworntriaxialaccelerometerthatusesproprietary
algorithmstoestimatestepscountsandtimespentinvariousactivitylevels.TheFitbitFlexprovides
themostsimplisticuserdisplayofallFitbitproducts,withonlyLEDlightstorepresentprogress
towardsdailygoals(thedefaultsettingis10,000steps;2000stepsperdotshown).Thiswasthought
tobeadvantageous,asparticipantswouldnotbeabletodirectlymonitortheirstepcountsofphysical
activitylevelsduringrecess.TheFitbitFlexcanbysynchedwirelesslytoasmartphoneortablet,and
providesinformationonstepscountsandtimespendinvariousactivitylevels(i.e.,sedentary,light,
moderate,vigorous).Forthepurposesofthecurrentstudy,theresearchteamcreatedanonymous
accountsforeachdevicethatcouldonlybeaccessedbytheresearchteam.Eachaccountwas
assignedtoeitheramaleorfemaleuser,withnationalaveragesforheightandweightbeingusedfor
userdemographicinformation.Fitbitswereplacedonstudentsintheirclassroom,orinthelunch
7
room,approximately30minutespriortothestartofrecess.Dataassessorsrecordedtheexactstart
andstoptimesofrecesssothatdatacouldbeextractedtomatchthetimestamp.Datawerehoused
byathird-partyvendor(FitabaseLLC,SanDiego,California)andprocessedusing60secondepochs
withinthenotedtimestamp,themostsensitivesettingavailableforthisdevice.Inchild-based
studies,bothwaist-worn(24)andwristworn(25)Fitbitdevices(FitbitOneandFitbitCharge,
respectively)havebeenshowntohaveconsistentlevelsofstepcountswithActigraph
accelerometers,yetmayover-estimateabsolutenumberofsteps,aswellastimespentinMVPA.
Additionalresearchinyoungadultpopulationshasshownmoderatevaliditybetweenthewrist-worn
FitbitFlexandthewrist-wornActigraphGT3X + infree-livingconditions(26),yettheFitbitflex
showedhigherlevelsofvariability,andwasmorelikelytounder-estimatedactivitylevels.
Recessquality.TheGreatRecessFramework–ObservationalTool(GRF-OT)wasusedasameasureof
recessqualityinthecurrentstudy.TheGRF-OTrepresentsfourdomainsofrecessthatincludesafety
andstructureoftheplayground,adultsupervisionandengagement,studentbehaviors,and
transitionstoandfromtherecessspace(23).Inthecurrentstudydatawascollectedonthreeofthe
foursub-scales(transitionswereexcluded,astheyaccountforthetimesimmediatelybeforeand
afterrecessandthefocusofthecurrentstudywasPAduringrecess).Itemsarescoredona4-point
scalebyaliveobserverwhowaspresentatrecess(4 = highestquality;1 = lowestquality).Thesafety
andstructuresub-scaleexaminesthephysicalenvironmentandaccesstoequipment;theadult
engagementandsupervisionsub-scaleexaminesthenumberofadultspresent,theirproximityto
students,andwhetherornottheyengagewithstudentsontheplayground;andthestudent
behaviorssub-scalesexaminesstudentengagement,initiationofplay,conflict,andconflict
resolution.EachitemanditsassociatedscoringprocedurecanbefoundinMasseyetal.2018(20).A
completescoringmanualwithdetailedinstructionsisavailableatwww.greatrecessframework.org.
Datainthecurrentstudysuggestacceptablelevelsofinternalconsistentforthesafetyandstructure
sub-scale(α = .806),adultengagementandsupervisionsub-scale(α = .736),andstudentbehavior
sub-scale(α = .788).Previousresearchhasshownsupportfortheinter-raterreliabilityandfactorial
validityoftheGRF-OT(23).
8
Engagementinrecessactivities.Thedifferenttypesofactivitieschildrenengagedinduringrecess
weremeasuredusingtheObservationsofPlaygroundPlay(OPP)(22).TheOPPallowsobservesto
codeengagementin32commonrecessactivitiesacrosseightdifferentplaydomains.Observersare
alsoabletowriteinobservedbehaviorswithineachoftheeightdomainstoensureallrecess
activitiesarecaptured.Previousresearchhasbeenreportedonthereliabilityofthisassessmenttool
(22).
Basicpsychologicalneedssatisfaction(BPNS).Asub-sampleoffourthandfifthgradestudents(n =
820)completedamodifiedversionofthebasicpsychologicalneedsatisfactionscale(27).Theoriginal
21-itemquestionnairedesignedtoassessindividualperceptionsofautonomy(7items),competence
(6items),andrelatedness(8items)needsatisfactionatworkwasmodifiedtospecificallyexamine
children’sneedsatisfactionduringrecessandreducedtotwo-itemsperscaletoensure
comprehensionforayoungerpopulation.Additionally,twoitemsrelatedtophysicalandemotional
safetyatrecesswereaddedtothescale.Allresponsescorrespondedtoa5-pointLikertscale(5 = 
highneedsatisfaction)onitemssuchas“IfeellikeIcansaymyideasaboutwhatIwanttodoat
recess”(autonomy),“KidstellmeIamgoodatthingsIdoatrecess”(competence),“Ireallylikethe
kidsIplaywithatrecess”(relatedness),and“IamsafewhenIamplayingatrecess”(safety).
Procedures
Withtheexceptionofoneschoolthatconductedconcurrentindoorandoutdoorrecessperiods,all
recessdatacollectionperiodswereconductedoutside.DatacollectiontookplacebetweenFebruary
andMayinalargecityintheMidwesternregionoftheUnitedStates.Recessperiodsrangedfrom12
minutesto40minutesinlength(M = 21.12minutes;SD = 5.83minutes)andprimarilyincluded
traditionallunchrecessperiods.Schoolsmaintainedvariableschedules,withsomeschoolssending
groupsofstudentsoutsideallatonce,whileothersrotatedthesessionswithdifferentchildrenand
differentsupervisors(e.g.,onlyfirstthroughthirdgradersatrecessone,followedbyonlyfourthand
fifthgradersatrecesstwo).
Outcomeassessorsarrivedtotheschoolapproximately60minutesbeforethescheduledrecess
sessiontoensurestudentswereproperlyfittedwithactivitymonitoringdevices.Eachdatacollection
9
periodcontainedfourstudyteammembers.Twomembersoftheteamwereassignedtoensure
complianceintermsofproperlywearingtheactivitymonitoringdevices.Theothertwoteam
memberscollectedobservationaldatathroughouttheentirerecesssession.DatausingtheGRF-OT
werecollectedbythePIoratrainedgraduatestudent.Inallcases,therecessenvironmentwas
completelyvisibletotheoutcomeassessor,andtheoutcomeassessormovedthroughoutthe
playgroundinadiscreetmannerinanefforttoobservepatternsofinteractionandbehavior.Final
scoringofeachitemwascompletedimmediatelyaftertherecesssessionandtookintoaccountthe
aggregatepatternsofbehaviorthroughoutthedurationoftherecesssession.DatausingtheOPP
werecollectedatfive-minuteintervalsacrosseachrecessperiod.OPPdatawerethenaveragedto
createacompositelevelofstudentengagementindifferentactivitiesforeachrecesssession.
DataAnalysis
Priortodataanalysis,FitbitFlexdatawerescreenedanddevicesregistering0stepcountsinthe
recesstimerecordingwereeliminatedfromthedataset.Timerecordingsofthebeginningandending
ofeachrecesssessionwerekepttoallowforspecificityindataextractionwhenexaminingrecess-
basedphysicalactivity.Furthermore,Fitbitnumberswereloggedandtrackedforeachrecesssession
toensurewhichdeviceswereinuseforeachsession,andwhichdeviceswerereturnedattheendof
eachrecesssession.Giventhevaryingtimesandnumberofstudentsacrossrecesssessions,we
convertedphysicalactivitydatatothepercentoftimespentinMVPAorlightphysicalactivity(LPA)
duringrecessandusedthesepercentagesasthedependentvariableinprimaryanalyses.
PrimaryanalyseswereconductedusingHierarchicalLinearModeling(HLM)withchildrennested
withinrecesssessions.Interceptsfreelyvariedacrossrecesssessions,whileallprimarypredictors
wereenteredasfixedeffects.Anunconditionalnestedmodelwasfirsttestedtoexaminepossible
recess-leveleffectsforalldependentvariables(i.e.,physicalactivitylevels).Next,modelswerefitted
inwhichrecessqualityscoreindicators(i.e.,adultengagementandsupervision,studentbehaviors,
safetyandstructure)wereenteredaspredictorsofphysicalactivitylevelswhilecontrollingforschool
asafixedeffect.Moderationwasalsotestedbyexaminingtheinteractionbetweengender(alevel
onepredictor)andrecessqualityindicators(aleveltwopredictor)onlevelsofphysicalactivityduring
10
recess.Significantinteractionswereprobedtoexaminethesimpleslopesandinterceptsasafunction
ofgenderusingtheformuladepictedbelowandasdescribedbyPreacherandcolleagues(28),where
ý00representstheintercept,ý01,ý10andý11aretheregressioncoefficients,xrepresentsthefocal
predictor,andwrepresentsthemoderatorvariable.
yij=ý00+ý10x1+ý01w1+ý11w1x1
Finally,trendsacrossrecessqualitywereexaminedrelativetohigh-andlow-qualityrecesssessions
(i.e.,oneSDaboveandoneSDbelowthesamplemean).Ingeneral,high-qualityrecesssessionswere
characterizedbysafephysicalenvironments(e.g.,lackofhazardousmaterials),abroadrangeof
equipmentandactivitiestoengageinplay,prosocialstudentbehaviors(e.g.,initiatinggames,
positivecommunication,lackofphysicalviolence)andpresentandengagedadults.Incontrast,low-
qualityrecesssessionswereoftencharacterizedasunsafeenvironments(e.g.,glassandhazardous
debris),limitedornoequipmenttouseforgameplay,verbalandphysicalconflicts,anddisengaged
adults.AggregateprofilesofrecesssessionsintheupperandlowerquartileforGRF-OTscoreswere
createdtoexaminedifferentialpatternsinthegamesandactivitiesinwhichchildrenparticipatein,
andthepsychologicalneedsatisfactionofchildrenduringrecess.
Results
DescriptivestatisticswerecalculatedforallvariablesunderstudyandcanbefoundinTable1.
ResultsofthenullmodelscanbefoundinTable2(MVPA)andTable3(LPA).
11
Table1
Descriptivestatistics.
Variable Mean SD Range(possiblerange)
TotalRecessQualityScore 41.15 7.44 19–54(14–56)
SafetyandStructureof
Environment 14.96 3.49 6–20(5–20)
AdultEngagementand
Supervision 10.61 2.49 5–16(4–16)
StudentBehaviors 15.58 3.37 5–20(5–20)
  
PhysicalActivity 
Percentoftimespentin
MVPA 50.54% 35.96% 0-100%
Percentoftimespentin
LPA 36.42% 29.20% 0-100%
  
PsychologicalNeed
Satisfaction
34.34 4.74 12–40(10–40)
Autonomy 7.94 1.91 2–10(2–10)
Competence 6.77 1.84 2–10(2–10)
Relatedness 8.23 1.68 2–10(2–10)
Safety 8.41 1.67 2–10(2–10)
EngagementinRecess
Activities(percentof
students)

Equipment 0% 1% 0–8%
Organizedactivities 30% 24% 0–92%
Anti-socialbehavior 1% 3% 0–22%
Non-engagedinplay 30% 22% 0–84%
Nature 2% 6% 0–34%
Running/chasinggames 17% 15% 0–76%
Traditionalplayground
games 16% 14% 0–68%
Roughandtumbleplay 2% 7% 0–52%
  
Table2
UnconditionalnestedmodelforpercentoftimespentinMVPAduringrecess
Estimationofcovarianceparameters
Parameter Estimate s.e.WaldZ p-value 95%CIof
the
estimate
ICC
Residual .122 .003 40.99 < .001 0.116,
0.128
InterceptVariance
(RecessSession) .009 .002 3.97 < .001 .005,.014 0.066
 
Table3
UnconditionalnestedmodelforpercentoftimespentinLPAduringrecess
Estimationofcovarianceparameters
Parameter Estimate s.e.WaldZ p-value 95%CIof
the
estimate
ICC
Residual .082 .002 41.00 < .001 .078,.086
InterceptVariance
(RecessSession) .003 .001 3.59 < .001 .002,.006 0.041
 
AnexaminationofpredictorsofthepercentoftimespentinMVPAatrecessshowedgenderasthe
onlysignificantpredictorinthecurrentstudy(p = .001).However,moderationanalysesrevealedthat
gendermoderatedtherelationshipbetweenadultengagementandMVPA(p = .046),andstudent
12
behaviorandMVPA(p = < .001).ResultscanbefoundinTable4.Simpleslopesanalysesindicated
thatgenderwasnotasignificantpredictorofpercentoftimespentinMVPAatlow(M-1SD;b = 
− .116;p = .107),moderate(M;b = − .085;p = .287)orhigh(M + 1SD;b = − .055,p = .542)levelsof
adultengagementandsupervision.However,ascanbeseeninFig.1,thedifferencebetweenboys
andgirls’percentoftimeinMVPAwasminimizedashigherlevelsofadultengagementand
supervisionwereobserved.Inexaminingstudentbehaviors,simpleslopesanalysesrevealedthat
genderwasasignificantpredictorofpercenttimeinMVPAatlow(M-1SD;b = − .381;p = < .001),
moderate(M;b = − .429;p = < .001)andhigh(M + 1SD;b = − .477,p = < .001)levelsofprosocial
studentbehavior.AscanbeseeninFig.2,boys’percentoftimeinMVPAwashigheratrecess
sessionsinwhichmoreprosocialstudentbehaviorswereobserved;whereasgirls’percentoftimein
MVPAwasloweratrecesssessionsinwhichmoreprosocialstudentbehaviorswereobserved.
Table4
EstimatesofeffectsonpercentofMVPAduringrecess
Estimationofcovarianceparameters
Parameter Estimate s.e.WaldZ p-value 95%CIoftheestimate
Residual .110 .003 40.99 < .001 .105,.115
Intercept
Variance
(recess)
.009 .002 4.12 < .001 .006,.014
Estimationoffixedeffects
Parameter Estimate s.e.Ttest
statistic
p-value 95%CIoftheestimate
Intercept .641 .093 6.87 < .001 .454,.827
Gender − .215 .065 -3.32 .001 − .341,− .088
School − .002 .005 − .365 .717 − .012,.008
Safetyand
Structureof
Environment
− .002 .006 − .380 .705 − .014,.010
Adult
Engagement
and
Supervision
− .003 .008 − .354 .724 − .018,.013
Student
behaviors .003 .006 .519 .605 − .009,.015
Gender*
Safetyand
Structureof
Environment
.006 .004 1.32 .186 − .003,.014
Gender*
Adult
Engagement
and
Supervision
.012 .006 1.99 .046 .001,.024
Gender*
Student
behaviors
− .014 .004 -3.725 < .001 − .021,− .007
 
InexaminingLPA,genderwasonceagaintheonlysignificantpredictorofLPA(p = .004).Genderalso
moderatedtherelationshipbetweenstudentbehaviorsandLPA(p = .005).Resultscanbefoundin
13
Table5.Simpleslopesanalysesrevealedthatgenderwasasignificantpredictorofpercenttimein
LPAatlow(M-1SD;b = .256;p = < .001),moderate(M;b = .286;p = < .001)andhigh(M + 1SD;b 
= .317,p = < .001)levelsofprosocialstudentbehavior.Specifically,girlsrecordedhigherlevelsof
LPAduringrecesssessionswithhighlevelsofprosocialstudentbehavior;whereasboysrecorded
lowerlevelsofLPAduringrecesssessionswithhighlevelsofprosocialstudentbehavior(seeFig.3).
Table5
EstimatesofeffectsonpercentofLPAduringrecess
Estimationofcovarianceparameters
Parameter Estimate s.e.WaldZ p-value 95%CIoftheestimate
Residual .074 .002 41.00 < .001 .071,.078
Intercept
Variance
(recess)
.003 .001 3.60 < .001 .002,.006
Estimationoffixedeffects
Parameter Estimate s.e.Ttest
statistic
p-value 95%CIoftheestimate
Intercept .201 .063 3.21 .002 .076,.326
Gender .152 .053 2.86 .004 .048,.257
School .004 .003 1.18 .241 − .003,.010
Safetyand
Structureof
Environment
.004 .005 .885 .379 − .004,.012
Adult
Engagement
and
Supervision
.008 .005 1.52 .133 − .003,.019
Student
behaviors − .006 .004 -1.41 .163 − .014,.002
Gender*
Safetyand
Structureof
Environment
− .002 004 − .679 .497 − .009,.005
Gender*
Adult
Engagement
and
Supervision
− .008 .005 -1.50 .133 − .017,.002
Gender*
Student
behaviors
.009 .003 2.83 .005 .003,.015
 
EngagementInRecessActivities
Followinganalysesofphysicalactivityatrecess,patternsofplaywerecomparedforrecesssessions
atleastonestandarddeviationabovethemeanrecessqualityscoreandatleastonestandard
deviationbelowthemeanrecessqualityscore(n = 952boys;n = 952girls).AscanbeseeninFig.4,
thelargestdifferenceswereseeninnon-engagementinplay(e.g.,talkingwithfriends,watching
others),with61percentofgirlsatlow-qualityrecesssessionsnon-engagedinplayascomparedto22
percentofgirlsathighqualityrecesssessions.Girlsathighqualityrecesssessionsalsoparticipated
inmoreorganizedgamesthangirlsatlow-qualityrecesssessions(e.g.,dance,kickball,soccer;23%
14
vs.9%),andmoretraditionalplaygroundactivities(e.g.,four-square,jumpropes;21%vs.9%).As
seeninFig.5,asimilarpatternwasobservedforboysasitrelatedtonon-engagement(10%athigh
qualityrecesssessionsvs.36%atlowqualityrecesses),participationinorganizedactivities(52%at
highqualityrecesssessionsvs.37%atlowqualityrecesses),andparticipationintraditional
playgroundactivities(15%athighqualityrecesssessionsvs.5%atlowqualityrecesses).
Finally,basicpsychologicalneedsatisfactionscoreswerecomparedforthoseattendinghigh-quality
recesssessions(i.e.,atleastoneSDabovethemean)andthoseattendinglow-qualityrecesssessions
(i.e.,atleastoneSDbelowthemean).Resultsindicatethatchildrenatahigh-qualityrecesssession
reporthigherlevelsofbasicpsychologicalneedsatisfactionatrecessthanchildrenatalow-quality
recesssession(t(324) = 2.65;p = .004).Anexaminationoftheindividualsub-scalesrevealedno
groupdifferencesincompetenceorrelatedness,howeverthoseatahigh-qualityrecessreported
higherlevelsofperceivedautonomyatrecesst(333) = 1.79;p = .037)andhigherlevelsofperceived
safetyatrecess(t(306) = 4.52;p < .001).
Discussion
Theprimarypurposeofthecurrentstudywastoexaminehowcontextualfeaturesoftheplayground
impactedphysicalactivitylevels,andhowthiswasmoderatedbygender.Asecondarypurposewas
toexaminepatternsofengagementatrecesstobetterunderstandhowthequalityofthe
environmentshapesphysicallyactivebehaviorduringthisdiscretionarytimeperiod.Resultsofthe
currentstudyshowedthatthequalityoftherecessenvironment,andtheinteractionsofbothadults
andstudentsinthatenvironment,needtobetakenintoconsiderationinfutureschool-basedrecess
studies.InexaminingpatternsofMVPA,resultsshowedthathigherlevelsofadultengagementand
supervisionreducedthedisparitybetweenboys’andgirls’physicalactivitylevelsatrecess.This
findingissupportedbypreviousresearchthatshowshigherlevelsofadultengagementpredicthigher
levelsofstudentengagementatrecess(21),thatchildrenreportteacherengagementasapositive
influenceonrecess(29),andthatteachersupportisafacilitatorofactivityatrecess(30).Moreover,
givenpreviousreportsofsocialbarriersgirlsfaceinbeingphysicallyactiveatrecess(e.g.,boys
dominatingequipmentandspace;15,16),itislikelythatengagedadultsontheplaygroundhelpto
15
facilitateequityinaccesstoplaygroundresourcesduringrecess.
Anexaminationofphysicalactivitylevelsatvariouslevelsofprosocialstudentbehaviorsshowedthat
boysparticipatedinhigherlevelsofMVPAduringrecesssessionswithhighpro-socialbehaviors.For
boys,atahigh-qualityrecesssession,higherlevelsoforganizedgames(i.e.,soccer,basketball,
football)likelyaccountedforhigherlevelsofMVPA.Notably,whenprosocialbehaviorswerehigh(i.e.,
limitedfighting,limitedarguments,highlevelsofgameinitiation,highlevelsofconflictresolution)
gameswentonuninterrupted,allowingboystofurtherengageinMVPAduringrecess.Incontrast,
girlsparticipatedinhigherlevelsofMVPAduringrecesssessionswithlowpro-socialbehaviors.While
contrarytoexpectations,thefindingsrelatedtogirlsincreasedratesofMVPAatrecesssessionswith
lowpro-socialbehaviorscanpartiallybeexplainedbyactivitypatternsatrecess.Popularactivitiesfor
girlsathighqualityrecesssessionsincludedtraditionalplaygroundgames(e.g.,4-square,hopscotch)
aswellasorganizedactivities(e.g.,dance),whicharegenerallyalignedwithLPA,asopposedto
MVPA.AsshowninFig.3,LPAwashigherforgirlsatrecesssessionswithhighlevelsofpro-social
behavior.Thus,whenprosocialbehaviorswerehigh,gamesandactivitiesinwhichgirlswere
participatinginhadfewerinterruptions.However,atlow-qualityrecesssessions,orrecesssessions
characterizedashavinglowlevelsofprosocialbehavior(i.e.,higherratesoffightingandarguing,low
levelsofconflictresolution),itispossiblethatotherwiseunengagedgirlsengagedinintermittent
boutsofMVPA.Thesedataareconsistentwithpreviousdataofboysandgirlsplaypatternsatrecess
(15,16,21,22),yetalsounderscoretheimportanceofexaminingthecontextinwhichphysicalactivity
occurs.Notably,whileincreaselevelsofPAremainsagoalofmanyresearchers,datafromthe
currentstudyunderscorestheneedtounderstandthequalityofthePAenvironmentasitrelatesto
children’sholisticdevelopment.
Previousresearchhasalsoexaminedpsychologicalneedsatisfactionandmotivationforphysical
activityatrecess.Notably,StellinoandSinclair(27)reportedthatpsychologicalneedsatisfactionwas
predictiveofphysicalactivitymotivationatrecess,andthatautonomywaspredictiveofphysical
activityduringrecess.Resultsofthecurrentstudysupportthesedata,andfurthersuggestthata
high-qualityrecessenvironmentcanhelpfacilitatebasicpsychologicalneedsatisfaction.Notably,
16
childrenathigh-qualityrecesssessionsreportedhigheroverallpsychologicalneedsatisfaction,higher
autonomyforrecessphysicalactivity,andhigherlevelsofperceivedsafetythanthoseatlow-quality
recesssessions.Thesefindingssuggestthatstructuringtherecessenvironmenttoincludeavariety
ofplayopportunitiesandtrainingadultstobeactivelyengagedinrecessareautonomysupportive,as
opposedtocontrollingstrategies.Whilerecessremainsoneoffewdiscretionarytimeperiodsduring
theschoolday,datasuggeststhatimplementingevidence-basedpracticesduringrecesscanhelpto
enhancethisdiscretionarytimeandsatisfystudent’sbasicpsychologicalneedsofautonomy,
competence,andrelatedness.
StrengthsAndLimitations
Takentogether,themajorstrengthsofthisstudyincludeamultifacetedexaminationofrecesswithin
anunder-researchedpopulation–urbanelementaryschoolstudentsinlowincomeschools.Further,
theresultsofthisstudyshedimportantlightonfuturerecessresearch.Notably,theequivocal
findingsofvariousinterventionsonphysicalactivitypromotionandsocialbehaviors(31–33)warranta
morenuancedunderstandingofrecess,particularlyinunder-resourcedcommunities.Thecurrent
studysuggeststheneedformulti-facetedinterventionsthatconcurrentlyfocusonincreasedaccess
torecess,increasedaccesstoequipmentandplayspaces,positiveandencouragingadultbehavior,
andpro-socialstudentbehavior.Indeed,perhapstheshort-comingsinpreviousinterventionstudies
relytosingularordual-purposeinterventions,ratherthanafocusonmultipleinterventionstaking
placesimultaneously.
Themajorlimitationsinthecurrentstudyarethereducedsamplesizeduetoanalysistakingplaceat
thegrouplevel,thecross-sectionalnatureofthedatacollection,andlimitationswiththeuseofFitbits
tocaptureobjectivephysicalactivityinchildpopulations.Becausechildrenengageinmore
intermittentboutsofPA,particularlyduringrecess,shortermeasurementintervalsarethoughtto
providemoreaccurateestimatesoftimespentinvariousPAintensities.Inastudyexamining
differencesinMVPAforchildrenduringphysicaleducationclasses,McClainandcolleagues(34)
compareddirectobservationandaccelerometryatvariousepochlengths.Resultsshowedthat
estimatesofMVPAwerelowerwhenusingaccelerometry,ascomparedtodirectobservation
17
regardlessofepochlength.However,longerepochlengthswereassociatedwithlowerMVPAcounts.
Similarly,morerecentresearchhasshownlowerestimatesofMVPAinchildrenwhenusinga60
secondepochasopposedtoa15-or5-secondmeasurementperiod(35).Moreover,Bandaand
colleagues(35)reportedthatincreasedepochlengthmayover-estimateLPAinchildrenasincreased
epochtimewasassociatewithsedentarybehaviorbeingreclassifiedasLPA.Giventhis,itispossible
thatMVPAwasunder-estimatedbasedonthedurationandintensityofvariousactivitiesengagedin
duringrecess;whereasLPAmayhavebeenover-estimated.However,concurrentobservationaldata
ofengagementinrecessactivitiessupportstheoverallpatternofresults;specifically,higherlevelsof
engagementinactivitiesassociatedwithincreasedPAduringhigh-asopposedtolow-qualityrecess
sessions.
Conclusions
Recessremainsacriticalopportunityforchildrentobephysicalactiveduringtheschoolday.Results
ofthecurrentstudysuggestthatincreasingadultengagementandfacilitatinghigherlevelsofpro-
socialbehaviorareimportanttonotonlyphysicalactivitypromotionatrecess,butalsochildren’s
psychologicalneedsatisfaction.
Abbreviations
PA
PhysicalActivity
US
UnitedStates
PE
PhysicalEducation
MVPA
Moderate-to-VigorousPhysicalActivity
GRF-OT
GreatRecessFramework–ObservationalTool
LPA
LightPhysicalActivity
OPP
ObservationsofPlaygroundPlay
BPNS
18
BasicPsychologicalNeedSatisfaction
HLM
HierarchicalLinearModeling
SD
StandardDeviation
Declarations
EthicsApproval.EthicsapprovalwasprovidedbytheinstitutionalreviewboardatConcordia
UniversityWisconsin(ID:932380-3;926512-1).Theneedforconsentwaswaivedasnoindividual
leveldatawerecollected.ThePI(WVM)waspreviouslyfacultyatConcordiaUniversityWisconsin.
ConsentforPublication.Notapplicable.
AvailabilityofDataandMaterials.Thedatasetsusedand/oranalysedduringthecurrentstudy
areavailablefromthecorrespondingauthoronreasonablerequest.
CompetingInterests.Theauthorsdeclarethattheyhavenocompetinginterests
Funding.FundingforthisstudywasprovidedbyPlayworksEducationEnergized.Thefundingagency
wasnotinvolvedindatacollection,analysis,orinterpretation.
AuthorContributions.WVMdesignedthestudy,trainedalldataassessors,assistedwithdata
collectionanalyzedthedata,interpretedthedata,anddraftedthemanuscript.MBSassistedwith
studydesign,interpretation,andwritingofthemanuscript.JGassistedindataanalysis,data
interpretation,andeditingofthemanuscript.Allauthorshavegiventheirfinalapprovalforthework
tobepublishedandhaveagreedtotakeaccountabilityforallaspectsofthework.
Acknowledgments.NotApplicable.
References
1.  D o bb i n s M , H us s o n H , D eC o r by K , La R o cc a R L. S c ho o l - b as e d ph y s i c al a c t iv i t y
programsforpromo t i n g p h y s ic a l a c ti v i t y a n d f i t n e ss i n ch i l d r e n a n d a d o le s c e n ts
aged6to18.Cochra n e D a t a b as e Sy s t R ev . 2 01 3 F e b 28 ; ( 2 ): C D 0 07 6 51 .
2.  R a sb e r ry C N , L e e SM , R ob i n L, L a r is B A , R u s s el l L A , C oy l e K K, e t a l. T h e a s s o ci a t i o n
betweenschool-based p h y s i c a l ac t i v i t y , i n c l u d in g p h ys i c a l e d u c at i o n , an d a ca d e mi c
performance:asyste m a t i c r e v ie w o f t h e li t e r a t u re . P r e v M e d. 2 01 1 Ju n ; 5 2 S u p pl
19
1:S10-20.
3.  R o be r t Wo o d J o h n s on F o un d a ti o n . R ec e s s r u l e s : W h y t h e u nd e r va l u e d p l a y ti m e m ay
beAmericasbestinve s t m e n t f o r h e a lt h y k id s a n d h e a lt h y s c ho o l s r e p o rt [ I n t e rn e t ] .
2007.Availablefrom:
http://www.rwjf.org/co n t e n t / d a m /f a r m/ r e po r t s / re p o r ts / 2 0 07 / r w jf 1 8 06 0
4.  E r wi n H , A b e l M , B ei g h l e A , N o la n d M P, W or l e y B , R i g gs R . T h e Co n t r i b ut i o n of R e ce s s
toChildrensSchool-Day P h y s i c a l A ct i v i t y . J P h y s Ac t H ea l t h . 20 1 2 M a r 1 ; 9 (3 ) : 4 4 2– 8 .
5.  U S C e n te r s f o r D i s e as e C on t r o l. S t r a te g i e s f o r s u pp o r ti n g r e ce s s in e l e m en t a ry
schools,updateforthe 2 0 1 2 13 s c ho o l y ea r [ I n te r n e t] . A v a il a b l e fr o m :
https://www.cdc.gov/h e a l t h y s c h oo l s / n pa o / p df / L W P_ R ec e s s _B r i e f_ 2 0 12 _ 1 3. p d f.
6.  S h af e r M, W hi t e h o us e E . S t a t e p o l i c i e s o n ph y s i c al a c t iv i t y i n s ch o o l s [ I n t e r ne t ] .
CouncilofStateGovernm e n t s ; 2 01 8 [ c i t e d 20 2 0 J a n 20 ] . A va i l a b le f r o m:
http://knowledgecenter . c s g . o r g /k c / s y st e m /f i l e s / C R _a c t iv i t y _ s c ho o l . p df
7.  B a rr o s RM , Si l v e r E J, S t e i n R E . Sc h o o l r e c e ss a n d g r o up c l a ss r o o m b eh a v io r .
Pediatrics[Internet].200 9 [ c i t e d 2 01 9 J u n 2 5] ; 1 2 3( 2 ) :4 3 1 –6 . A va i l a b le f r o m :
http://pediatrics.aappub l i c a t i o n s . o rg / c g i / do i / 1 0 .1 5 4 2/ p e ds . 2 00 7 - 28 2 5
8.  M on n a t S M , L o u n s be r y M A F , M c K en z i e TL , C h an d l e r R F . As s o c ia t i o n s b e t w ee n
demographiccharac t e r i s t i c s a n d p h y si c a l a ct i v i t y p ra c t i c es i n N ev a d a s c ho o l s . Pr e v
Med[Internet].2017F e b [ c i t e d 2 0 2 0 J a n 2 0 ] ; 9 5: S 4 –9 . A va i l a b le f r o m:
https://linkinghub.elsevier . c o m / r e t r ie v e / p ii / S 0 0 91 7 43 5 1 63 0 23 6 5
9.  A n de r s o n- B u t ch e r D , N e ws o m e W S, N a y S . S oc i a l Sk i l l s I n t er v e n ti o n d ur i n g
ElementarySchoolRe c e s s : A V i s ua l A n al y s i s . C h i l d S ch . 2 00 3 ;2 5 ( 3 ): 1 3 5– 4 6 .
10.  M a s se y W V, S t e ll i n o M B, H ol l i d a y M, G o db e r se n T , R o d ia R , K uc h e r G , e t a l . T h e
impactofamulti-comp o n e n t p h ys i c a l a c t i v i t y p r o g ra m me i n l o w - i n co m e e l e m en t a ry
schools.HealthEducJ.2 0 1 7 ; 7 6 (5 ) : 5 17 53 0 .
20
11.  H u b e rt y J L , B e e t s M W , B e i g hl e A , W e l k G . E n vi r o n m en t a l m o di f i c a t i o ns t o in c r e a se
physicalactivityduringre c e s s : p r e li m i n a ry f i n d in g s f ro m r e a d y f o r r ec e s s. J P h y s A c t
Health.2011Sep;8S u p p l 2 : S 24 9 -2 5 6 .
12.  V i c i a n a J , M ay o r g a- V e g a D , M a r t ín e z - B a en a A. M o de r a te - t o - V ig o r o u s P h y si c a l A ct i v i t y
LevelsinPhysicalEduca t i o n , S c h o ol R e c es s , a nd A ft e r - S c ho o l T im e : In f l u e n ce o f
Gender,Age,andWe i g h t S t a t u s. J P h y s A c t He a l t h . 2 0 1 6; 1 3( 1 0 ): 1 1 1 7– 2 3 .
13.  S a i n t - M au r ic e P F , W e l k G J , S il v a P , S ia h p u sh M , H u b er t y J . A s s e ss i n g c hi l d r e n’ s
physicalactivitybehavior s a t r e c e ss : a mu l t i - m et h o d a p p ro a c h. P e d ia t r E xe r c Sc i .
2011Nov;23(4):585–99.
14.  B a q u et G , R i d g e rs N D , B l a e s A , A uc o u tu r i e r J , V a n Pr a a g h E , Be r t h oi n S . Ob j e c ti v e l y
assessedrecessphys i c a l a c t i v i t y in g i r l s an d b oy s f ro m hi g h a nd l o w s o c io e c o n om i c
backgrounds.BMCP u b l i c H e a lt h . 2 0 14 F eb 2 1; 1 4 :1 9 2 .
15.  P a w lo w s k i C S , T r n h ø j- T h o m se n T, S c h ip p e r ij n J , T r o el s e n J . B a r ri e r s f or r e c es s
physicalactivity:agende r s p e c i f i c q u a l i t a ti v e f o cu s g ro u p e x p l o ra t i o n . B M C P u b li c
Health.2014Jun23;1 4 ( 1 ) : 6 3 9.
16.  P a w lo w s k i C S , E rg l e r C, T j ø r nh ø j - T h om s en T , Sc h i p pe r i j n J , T r o e ls e n J . Li k e a S o c c er
CampforBoys:AQu a l i t a t i v e E x pl o r a ti o n o f G e n d er e d A c t i v i t y P a t t e rn s i n Ch i l d r e n’ s
Self-OrganizedPlaydur i n g S c h o o l R e c e ss . E ur P h y s E d uc R e v. 2 0 15 A ug ; 2 1 (3 ) : 2 75
91.
17.  B o y l e D E , M ar s ha l l N L , R o b es o n WW . G e n d er a t P l a y : F ou r t h -G r a d e G i r l s a n d Bo y s on
thePlayground.AmB e h a v S c i . 2 0 0 3 J u n 1; 4 6 (1 0 ) : 1 32 6 –4 5 .
18.  S t e l l i n o M B , S i n c l a ir C D , Pa r t r i d ge J A , K i n g KM . D if f e r e nc e s in c h i l d r en s r ec e s s
physicalactivity:recessa c t i v i t y o f t h e w e ek i n t e rv e n ti o n . J S ch H ea l t h . 20 1 0
Sep;80(9):43644.
19.  R i d g e rs N D , S t r a tt o n G , M c Ke n z i e T L . R el i a b i l i t y an d v al i d i t y of t h e S y s t e m f o r
21
ObservingChildrensAc t i v i t y a n d R el a t i o ns h i p s d u r i n g P l a y ( S O C AR P ) . J P h y s A c t
Health.2010Jan;7(1) : 1 7 2 5 .
20.  P a w lo w s k i C S , S ch i p p er i j n J , T r n h ø j- T h o m se n T , T r o el s e n J . G i v i n g c h i l d re n a v o i c e :
Exploringqualitativeper s p e c t i v e s on f a ct o r s i n fl u e n ci n g r e ce s s p h y s ic a l a c ti v i t y . E u r
PhysEducRev.2018 F e b 1 ; 2 4( 1 ) :3 9 5 5.
21.  M a s se y W V, S t e ll i n o M B, F r as e r M. I n d iv i d u a l a n d en v i r o nm e nt a l c o rr e l a t es o f sc h o o l-
basedrecessengage m e n t . P re v M ed R ep . 2 01 8 S e p 1; 1 1 :2 4 7 –5 3 .
22.  M a s se y W V, K u B , S t el l i n o M B. O bs e r v at i o n s o f p l a yg r o un d p la y d u ri n g e le m e nt a r y
schoolrecess.BMCRe s N o t e s [ In t e r n e t] . 2 0 18 O ct 2 3 [ c i t e d 2 0 1 9 A u g 2 0 ]; 1 1 .
Availablefrom:https://w w w . n c b i. n l m . ni h . g o v/ p m c/ a r t i c le s / P M C6 1 99 6 97 /
23.  M a s se y W V, S t e ll i n o M B, M ul l e n S P, C l a as s e n J , W i l k is o n M . D e v el o p m en t of t h e g r e a t
recessframework o b s e r v a ti o n a l t o ol t o m ea s ur e c on t e x tu a l a n d b e ha v i o ra l
componentsofeleme n t a r y s c h oo l r e ce s s . B M C P u b l i c H e a lt h . 2 0 18 M ar 2 2; 1 8 (1 ) : 3 94 .
24.  H a m ar i L , K u l l b e rg T , Ru o h on e n J, H e i n on e n OJ , D í a z- R o d g u e z N , L i l i u s J , e t a l.
Physicalactivityamong c h i l d r e n : o bj e c t i v e m e as u r em e n ts u s i n g F i t b it O n e ® a n d
ActiGraph.BMCResN o t e s [ I n t e r ne t ] . 2 01 7 A p r 2 0 [ c i t ed 2 0 19 A ug 2 0] ; 1 0 . A v a il a b l e
from:https://www.ncb i . n l m . n i h . go v / p mc / a rt i c l e s / PM C 5 39 7 82 8 /
25.  V o s s C, G a rd n e r R F , D ea n P H , H ar r i s K C . V a li d i t y o f C o m me rc i a l A c ti v i t y T r ac k e rs i n
ChildrenWithCongenital H e a r t D i s ea s e . C a n J C a r d io l . 2 0 17 ; 3 3( 6 ) : 79 9 80 5 .
26.  S u s h am e s A , E dw a r ds A , T h o m ps o n F , M cD e r mo t t R, G e be l K . Va l i d i t y a n d Re l i a b il i t y
ofFitbitFlexforStepCou n t , M o d e ra t e to V i g o ro u s Ph y s i c al A c t i v it y a n d A c t i v it y
EnergyExpenditure.Plo S O n e . 2 01 6 ;1 1 ( 9) : e 0 16 1 2 24 .
27.  S t e l l i n o M B , S i n c l a ir C D . Ps y c h ol o g i c a l P r e d ic t o r s o f C h il d r e n s R e c es s P hy s i c a l
ActivityMotivationandBe h a v i o r . R es Q E x e r c S p o rt . 2 0 13 J u n 1 ; 8 4( 2 ) : 16 7 76 .
28.  P r e a ch e r K J, C u r r an P J , B a u e r D J . C om p ut a t i o na l T o ol s f o r P r o b in g I n t e ra c t i o ns i n
22
MultipleLinearRegress io n , M u l t i l e v el M o de l i n g , a n d L a t e n t C u r v e A n a ly s i s . J E d u c
BehavStat.2006De c 1 ; 3 1 ( 4 ): 4 3 7– 4 8 .
29.  P a r r i s h A - M , Y e a tm a n H , I v e rs o n D , R u ss e l l K . U s i n g i n t e r vi e w s a n d pe e r pa i r s to
betterunderstandhow s c h o o l e nv i r o n me n ts a f f ec t y o un g c hi l d r e n ’s p l a yg r o u nd
physicalactivitylevels:aq u a l i t a t i v e s tu d y . H e a lt h E d u c R e s . 2 0 1 2 A p r; 2 7 (2 ) : 2 6 9– 8 0.
30.  S t a n l e y R M , B o s ho f f K , D o l l m an J. V o i c e s i n t h e p l a y gr o u n d: A q ua l i t a ti v e e x pl o r a ti o n
ofthebarriersandfac i l i t a t o r s o f l u nc h t i m e p l a y. J S ci M e d S p o rt . 2 0 12 J a n
1;15(1):44–51.
31.  B u n d y A , E ng e l e n L , W yv e r S , T r an t e r P , R a ge n J , B a u m an A, e t a l. S y d ne y P la y g r o un d
Project:ACluster-Rando m i z e d T r i a l t o I n c re a s e P h y s ic a l A c ti v i t y , P la y , a nd S o ci a l
Skills.JSchHealth.2017 O c t 1 ; 8 7( 1 0 ): 7 5 1– 9 .
32.  M a y fi e l d C A , C h i l d S , W ea v e r R G , Z a r r e tt N , B ee t s M W , M o o re J B . Ef f e c ti v e n e ss o f a
PlaygroundIntervention f o r A n t i s o ci a l , P r os o c i a l, a n d P h y s ic a l A c ti v i t y B e ha v i o rs . J
SchHealth.2017Ma y 1 ; 8 7 ( 5 ): 3 3 8– 4 5 .
33.  F a r m er V L, W i l l i a ms S M, M an n JI , S c h o fi e l d G , M c P he e J C , T a y lo r R W . T h e e f f e ct o f
increasingriskandcha l l e n g e i n t h e s c h oo l p l a yg r o un d o n p h y si c a l a ct i v i t y a nd
weightinchildren:aclus t e r r a n d o mi s e d c o n tr o l l e d t r i a l ( P L AY ) . I n t J O b e s 2 0 05 .
2017;41(5):793–800.
34.  M c c l a in J J , A b ra h a m T L , B r u ss e a u T A , T ud o r - Lo c k e C . E p oc h L en g t h a n d
AccelerometerOutputs i n C h i l d r e n : C o m pa r is o n t o D i r e c t O b s er v a t i o n. M ed S c i S p o r ts
Exerc[Internet].2008 D e c [ c i t e d 2 0 2 0 J a n 2 1 ] ; 40 ( 1 2) : 2 0 80 7. A v a il a b l e fr o m :
https://insights.ovid.com/ c r o s s r e f ? an = 00 0 0 57 6 8- 2 0 08 1 20 0 0- 0 0 0 10
35.  B a n d a J A , Ha y d el K F , D a v i l a T , D e sa i M , B r y so n S , H a s ke l l W L, e t a l. E f f e ct s o f
VaryingEpochLengths , W e a r T im e A lg o r i t h ms , a nd A ct i v i t y C ut - P o i n ts o n E st i m a te s
ofChildSedentaryBeh a v i o r a n d P h y s ic a l A c ti v i t y f r o m A cc e l e r om e te r D a ta .
23
PappalardoF,editor.P L O S O N E [ I n t e r ne t ] . 2 01 6 M a r 3 [ c i t e d 2 0 20 J a n
21];11(3):e015053 4 . A v a i l a b le f r o m:
https://dx.plos.org/10.1 3 7 1 / j o u rn a l . p on e . 0 15 0 53 4
Figures
Figure1
GenderxAdultengagementandsupervisioninteractionforpercentageoftimeinMVPA
duringrecess.
24
Figure2
GenderxStudentbehaviorinteractionforpercentageoftimeinMVPAduringrecess.
Figure3
GenderxStudentbehaviorinteractionforpercentageoftimeinlightphysicalactivityduring
recess.
25
Figure4
Differencesingirls'engagementinplayathigh-versuslow-qualityrecesssessions
Figure5
Differencesinboys’engagementinplayathigh-versuslow-qualityrecesssessions
SupplementaryFiles
Thisisalistofsupplementaryfilesassociatedwiththispreprint.Clicktodownload.
26
PsychNeedSatisfactionQuestionnaire_Short.docx
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Objective The purpose of the current study was to examine reliability and validity evidence for an observational measure of playground play during recess. Observational data of what children played at recess were collected at 236 recess sessions across 26 urban elementary schools. An inductive content analysis of children’s type of play and activity engagement during recess was conducted to categorize activities. Inter-rater reliability of observations was assessed at 49 points that spanned 22 unique recess periods at four different schools. Reliability data were collected during the winter and spring seasons. A multivariate analysis of variance was conducted to examine differences in play and activity patterns between genders, and between schools implementing recess interventions (e.g., structured play environment) and schools with no recess intervention. Results Results of the content analysis yielded eight playground play and activity categories, all with high levels of inter-rater reliability (ICCs > .90). Significant differences in children’s play and activity patterns emerged between genders and across recess intervention conditions. Engagement in ‘sports and organized activities’ and ‘non-engagement in play’ contributed most to the separation between boys and girls, while ‘non-engagement in play’ contributed most to the separation between recess intervention and non-intervention schools.
Article
Full-text available
The purpose of this study was to examine individual variables associated with children's levels of recess physical activity (PA), as well as environmental influences that influence children's engagement during recess. Participants (n = 146) were 4–6th grade students across seven schools. PA data were collected using the Fitbit Flex. Psychological need satisfaction at recess data were collected with a basic psychological need satisfaction for recess PA survey. Observations of recess activity engagement and the quality of the recess environment were also collected at 134 recess periods (n = 8340 children) across nine schools. Results of multi-level regression analyses indicated that gender and recess time were significant predictors of physical activity during recess. In examination of the environmental level factors, multi-level regression analyses revealed that ‘adult engagement and supervision’ was the only significant predictor for recess engagement in boys and girls. These findings suggest the amount of time allocated, and the quality of the recess environment must be included in evaluation of the critical factors relevant to engagement of students in physically active recesses.
Article
Full-text available
Background: Physical activity (PA) remains the primary behavioral outcome associated with school recess, while many other potentially relevant indicators of recess remain unexamined. Few studies have assessed observations of teacher/student interactions, peer conflict, social interactions, or safety within the recess environment. Furthermore, a psychometrically-sound instrument does not exist to examine safety, resources, student engagement, adult engagement, pro-social/anti-social behavior, and student empowerment on the playground. The purpose of the current study was to develop a valid, and reliable, assessment tool intended for use in measurement of the contextual factors associated with recess. Methods: An iterative and multi-step process was used to develop a tool that measures safety and structure, adult engagement and supervision, student behaviors, and transitions at recess. Exploratory structural equation modeling (Mplus v. 7.4) was used to examine the underlying measurement model with observational data of the recess environment collected at 649 school-based recess periods that spanned across 22 urban/metropolitan areas in the USA. Data were also collected by two researchers at 162 recess sessions across 9 schools to examine reliability. Results: A 17-item observation instrument, the Great Recess Framework - Observational Tool (GRF-OT), was created. Findings of exploratory structural equation modeling (ESEM) analyses supported factorial validity for a 4-factor solution and linear regressions established convergent validity where 'structure and safety', 'adult engagement and supervision', and 'student behaviors' were all significantly related to observed activity levels. Each sub-scale of the GRF-OT showed adequate levels of inter-rater reliability and test-retest reliability analysis indicated a higher level of stability for the GRF-OT when using a three-day average across two time points as compared to a two-day average. Conclusions: Initial evidence for a valid, and reliable, assessment tool to observationally measure the recess environment with a specific focus on safety, resources, student engagement, adult engagement, pro-social/anti-social behavior, and student empowerment was established in this study. Use of the GRF-OT can inspire evaluation, and subsequent intervention, to strategically create consistent, appropriate, and engaging school recess that impact children's physical, cognitive, social and emotional development.
Article
Full-text available
Background Self-quantification of health parameters is becoming more popular; thus, the validity of the devices requires assessments. The aim of this study was to evaluate the validity of Fitbit One step counts (Fitbit Inc., San Francisco, CA, USA) against Actigraph wActisleep-BT step counts (ActiGraph, LLC, Pensacola, FL, USA) for measuring habitual physical activity among children. DesignThe study was implemented as a cross-sectional experimental design in which participants carried two waist-worn activity monitors for five consecutive days. Methods The participants were chosen with a purposive sampling from three fourth grade classes (9–10 year olds) in two comprehensive schools. Altogether, there were 34 participants in the study. From these, eight participants were excluded from the analysis due to erroneous data. Primary outcome measures for step counts were Fitbit One and Actigraph wActisleep-BT. The supporting outcome measures were based on activity diaries and initial information sheets. Classical Bland–Altman plots were used for reporting the results. ResultsThe average per-participant daily difference between the step counts from the two devices was 1937. The range was [116, 5052]. Fitbit One gave higher step counts for all but the least active participant. According to a Bland–Altman plot, the hourly step counts had a relative large mean bias across participants (161 step counts). The differences were partially explained by activity intensity: higher intensity denoted higher differences, and light intensity denoted lower differences. Conclusions Fitbit One step counts are comparable to Actigraph step counts in a sample of 9–10-year-old children engaged in habitual physical activity in sedentary and light physical activity intensities. However, in moderate-to-vigorous physical activity, Fitbit One gives higher step counts when compared to Actigraph.
Article
Background: We assessed the effectiveness of a simple intervention for increasing children's physical activity, play, perceived competence/social acceptance, and social skills. Methods: A cluster-randomized controlled trial was conducted, in which schools were the clusters. Twelve Sydney (Australia) primary schools were randomly allocated to intervention or control conditions, with 226 children (5-7 years old) selected randomly to participate. Data were collected at baseline and after 13 weeks. The intervention consisted of introducing recycled materials without an obvious play purpose into school playgrounds and a risk-reframing workshop for parents and teachers. Results: Children from the intervention schools increased physical activity and reduced sedentary time while control schools decreased physical activity and increased sedentary time. The intervention yielded increases in total accelerometer counts (β = 9350 counts, 95% CI 3490-1522, p = .002), minutes of moderate/vigorous physical activity (MVPA) (β = 1.8 min, 95% CI 0.52-3.12, p = .006), and reductions in sedentary time (β = -2.1 min, 95% CI -3.77-(-0.51), p = .01). Although the changes in time spent in play and nonplay were not statistically different (p = .08) the effect size (d = .27) indicates clinical significance. Conclusions: This intervention was effective for increasing MVPA during recess and demonstrated capacity to improve play opportunities in school playgrounds.
Article
Objective To identify the effects of a structured and multifaceted physical activity and recess intervention on student and adult behaviour in school. Design Mixed-methods and community-based participatory approach. Setting Large, urban, low-income school district in the USA. Methods Data were collected at three time points over a 1-year period. Sources included recess observations at four elementary schools, in-class behavioural observations of fifth-grade students ( n = 21) and focus groups with fourth- and fifth-grade students ( n = 75). Results Results suggested an increased amount of positive interactions between adults and students and a decreased amount of conflict in the playground post intervention. Results also suggested that a peer-leadership training programme had beneficial effects on students’ classroom behaviour. Conclusion Results from this study provide evidence that school recess can be used to teach social–emotional competencies that can impact student behaviour during recess and in the classroom.
Article
Background: We examined the effectiveness of Peaceful Playgrounds™ (P2) to decrease antisocial behaviors (ASB) while increasing physical activity (PA) and prosocial behaviors (PSB) in elementary school children. Methods: A longitudinal, cluster-randomized design was employed in 4 elementary school playgrounds where students (third to fifth) from 2 intervention and 2 control schools were observed during recess periods. The intervention included environmental changes (eg, marked surfaces) and student education. Data were collected using systematic observations of youth behavior and semistructured interviews conducted with key informants. Mixed-effects regression models controlling for scans nested within days nested within schools estimated the interaction of measurement period and treatment condition on children's PA, PSB, and ASB. It was hypothesized that children in intervention, but not control schools, would demonstrate increased PA/PSB and decreased ASB. Results: Contrary to the hypotheses, intervention and control schools showed favorable changes for all dependent variables except for PSB, but 1 intervention and 1 control school drove these effects. Follow-up interviews indicated variability in implementation and lack of adherence to the control condition. Conclusions: P2 may promote increased PA during recess, but these results demonstrate the complexity of intervention implementation and the need for rigor when measuring intervention fidelity in real-world settings.
Article
Background: To investigate whether changing the play environment in primary schools to one that includes greater risk and challenge increases physical activity and reduces body mass index (BMI). Subjects/methods: A two-year cluster randomised controlled trial was undertaken in 16 New Zealand schools (Years 1-8). Intervention schools (n=8) redesigned their play environments to encourage imaginative and independent free play by increasing opportunities for risk and challenge (e.g. rough-and-tumble play), reducing rules, and adding new playground components (e.g. loose parts). Control schools (n=8) were asked to not change their play environment. A qualified playworker rated all school play environments at baseline and 1 year. Primary outcomes were moderate-to-vigorous physical activity (7-day accelerometry) and BMI z-score, collected in 840 children at baseline, one and two years. Data were analysed using generalised estimating equations. Results: Multiple changes were made to the school play environments resulting in a significant difference in overall play evaluation score between intervention and control schools of 4.50 (95% CI: 1.82 to 7.18, P=0.005), which represents a substantial improvement from baseline values of 19.0 (s.d. 3.2). Overall, schools liked the intervention and reported many benefits, including increased physical activity. However, these beliefs did not translate into significant differences in objectively-measured physical activity, either as counts per minute (e.g. 35 (-51 to 120) during lunch break) or as minutes of moderate-to-vigorous physical activity (0.4, -1.1 to 2.0). Similarly, no significant differences were observed for BMI, BMI z-score, or waist circumference at one or two years (all P>0.321). Conclusions: Altering the school play environment to one that promoted greater risk and challenge for children did not increase physical activity, nor subsequently alter body weight. While schools embraced the concept of adding risk and challenge in the playground, our findings suggest that children may have been involved in different, rather than additional activities. Trial registration: Retrospectively registered with the Australia New Zealand Clinical Trial registry ID: ACTRN12612000675820.International Journal of Obesity accepted article preview online, 10 February 2017. doi:10.1038/ijo.2017.41.
Article
Background: Increasing physical activity levels is a high priority to optimize long-term health in children with congenital heart disease (CHD). Commercial activity trackers have been validated in adults and are increasingly used to measure and promote physical activity in pediatric populations, but they have not been validated in children. Methods: In 30 children with CHD aged 10-18 years, we assessed the validity of physical activity form the wrist-based Fitbit Charge HR (Fitbit, San Francisco, CA) against hip-based ActiGraph (ActiGraph LLC, Pensacola, FL) accelerometers under free living conditions for 7 days. We assessed the association between devices using intraclass correlation coefficients (ICCs) and Bland-Altman plots. Receiver operating curves were used to identify Fitbit step cut points. Results: There was a strong association between the 2 devices for daily steps across 138 analyzed person-days (ICC?= 0.855; P < 0.001), but poorer agreement for time spent in physical activity intensities (ICCs < 0.7). Daily Fitbit steps of ? 12,500 identified meeting physical activity guidelines defined as ? 60 minutes of moderate-to-vigorous physical activity per day. Fitbit devices recorded more steps than accelerometers (-2242 steps per day, 95% limits of agreement of?-7738 to 3253). Between-device differences were greater in boys vs girls. Fitbit devices were worn for longer than accelerometers (-36?minutes per day, 95% limits of agreement,?-334 to 261), but overall differences in wear time explained little of the variance in step differences (7%, P?= 0.048). Conclusions: Commercial activity trackers provide opportunities to remotely monitor physical activity in children with CHD, but absolute values might differ from accelerometers. These findings are important because of the increasing emphasis on physical activity promotion and monitoring in children with cardiovascular risk factors.