PreprintPDF Available

Persistent fontanelles in Chihuahuas and inter- and intra-rater reliability of fontanelle area measurement in computed tomography images

Authors:

Abstract and Figures

Background: The Chihuahua dog breed is known for frequent occurrence of a bregmatic fontanelle on the dorsal skull. A common conception is that this skull defect is clinically irrelevant in Chihuahuas. No studies, however, describe the prevalence of this malformation, whether it is accompanied by fontanelles at other locations on the skull or how to assess the severity of these lesions. Our primary aim was, by using computed tomography imaging, to describe the presence, number, and location of persistent fontanelles (PF) at cranial sutures on dorsal, lateral and caudal cranial surfaces in Chihuahuas. The secondary aim was to develop a method to measure the fontanelle area in computed tomography images by using the closed polygon tool of Osirix Medical Imaging Software. Results: Of the 50 dogs evaluated, 46 (92%) had either one or several PFs. The mean ± SD number of affected cranial sutures per dog was 2.4 ± 2.3 (range 0-10), and mean ± SD number of PFs was 2.8 ± 3.0 (range 0-13). Of the 46 dogs with affected sutures, 7 (15%) had no PF at a location typical for a bregmatic fontanelle. The inter-rater reliability of the fontanelle area measurement was almost “perfect”, and intra-rater reliability reached “excellent” agreement. Conclusions: PFs are almost ubiquitous in the examined group of Chihuahuas. They are located at dorsal, lateral, and caudal surfaces of the cranium, and hence are not all recognized reliably by palpation in adult dogs. Though the pathogenesis of the PFs described here is unknown, bone-deficient lesions may occur due to congenital defects in cranial bone ossification, delayed closure of cranial sutures, or bone resorption, as is observable in children with craniosynostosis (premature cranial suture closure). Because the imaging findings described in the Chihuahuas of this study are similar to findings among children with craniosynostosis/premature cranial base synchondrosis closure, this growth disorder may be a predisposing factor for the PFs described here. Further studies are necessary to evaluate the pathogenesis and clinical relevance of these lesions. Due to high inter- and intra-rater reliability of the method of fontanelle area measurement it may be useful in future studies.
Content may be subject to copyright.
1
Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.
PersistentfontanellesinChihuahuasandinter-and
intra-raterreliabilityoffontanelleareameasurement
incomputedtomographyimages
CURRENTSTATUS:UND ERREVIEW
Anna-MariamKiviranta
HelsinginYliopisto
anna-mariam.kiviranta@helsinki.fiCorrespondingAuthor
ORCiD:https://orcid.org/0000-0002-9542-7247
ClareRusbridge
UniversityofSurrey
AnuK.Lappalainen
HelsinginYliopisto
JouniJ.T.Junnila
4PharmaLtd.
TarjaS.Jokinen
HelsinginYliopisto
DOI:
10.21203/rs.2.22165/v1
SUBJECTAREAS
SmallAnimalMedicine
KEYWORDS
brachycephaly,Chihuahua,craniosynostosis,fontanelle,ossification,syringomyelia
2
Abstract
Background:TheChihuahuadogbreedisknownforfrequentoccurrenceofabregmaticfontanelleon
thedorsalskull.AcommonconceptionisthatthisskulldefectisclinicallyirrelevantinChihuahuas.No
studies,however,describetheprevalenceofthismalformation,whetheritisaccompaniedby
fontanellesatotherlocationsontheskullorhowtoassesstheseverityoftheselesions.Ourprimary
aimwas,byusingcomputedtomographyimaging,todescribethepresence,number,andlocationof
persistentfontanelles(PF)atcranialsuturesondorsal,lateralandcaudalcranialsurfacesin
Chihuahuas.Thesecondaryaimwastodevelopamethodtomeasurethefontanelleareaincomputed
tomographyimagesbyusingtheclosedpolygontoolofOsirixMedicalImagingSoftware.
Results:Ofthe50dogsevaluated,46(92%)hadeitheroneorseveralPFs.Themean±SDnumberof
affectedcranialsuturesperdogwas2.4±2.3(range0-10),andmean±SDnumberofPFswas2.8±
3.0(range0-13).Ofthe46dogswithaffectedsutures,7(15%)hadnoPFatalocationtypicalfora
bregmaticfontanelle.Theinter-raterreliabilityofthefontanelleareameasurementwasalmost
“perfect”,andintra-raterreliabilityreached“excellent”agreement.
Conclusions:PFsarealmostubiquitousintheexaminedgroupofChihuahuas.Theyarelocatedat
dorsal,lateral,andcaudalsurfacesofthecranium,andhencearenotallrecognizedreliablyby
palpationinadultdogs.ThoughthepathogenesisofthePFsdescribedhereisunknown,bone-
deficientlesionsmayoccurduetocongenitaldefectsincranialboneossification,delayedclosureof
cranialsutures,orboneresorption,asisobservableinchildrenwithcraniosynostosis(premature
cranialsutureclosure).BecausetheimagingfindingsdescribedintheChihuahuasofthisstudyare
similartofindingsamongchildrenwithcraniosynostosis/prematurecranialbasesynchondrosis
closure,thisgrowthdisordermaybeapredisposingfactorforthePFsdescribedhere.Furtherstudies
arenecessarytoevaluatethepathogenesisandclinicalrelevanceoftheselesions.Duetohighinter-
andintra-raterreliabilityofthemethodoffontanelleareameasurementitmaybeusefulinfuture
studies.
Background
TheChihuahuaisadogbreedknownforitsverysmallsize,roundhead,andfrequentoccurrenceofa
3
bregmaticfontanelle(ormolera)onthetopoftheskull,betweenthepairedfrontalandparietal
bones.Itisacommonconceptionthatthebregmaticfontanelleisclinicallyirrelevantinsmall-breed
dogs,especiallyinChihuahuas[1].Nostudies,however,describetheprevalenceofthismalformation
orstatewhetheritisaccompaniedbyfontanellesatotherlocationsontheskull.
Theskullconsistsoftheviscerocraniumformingtheskeletonofthefaceandtheneurocranium
formingthecranialbaseandthecranialvault[2].Theneurocraniumdevelopsfrommesodermaland
neuralcrestcellsduringembryonicdevelopment[3].Theskullbase(occipital,sphenoid,andethmoid
bones)developsthroughendochondralossification,whereasthecranialroof(frontal,parietal,
squamouspartofthetemporalbone,andinterparietalpartoftheoccipitalbone)developsthrough
membranousossification[2,4–6].
Fontanellesarefibrous,membrane-coveredgapsthatliebetweenthecranialbonesformedby
intramembranousossificationandattheintersectionofthecranialsutures.Thecranialsuturesare
thejunctionsbetweenmembranousbones,andbetweenmembranousandendochondralbones.They
arethemajorsitesofboneexpansion—duringpost-natalcranialgrowth—ofthecranialvaultthatwill
accommodatetheenlargingbrain.Thisexpansionoccursinresponsetosignalsfromtheexpanding
neurocranium.Bycontrast,theendochondralbones,(i.e.cranialbasebones),areconnectedby
cartilaginoussynchondrosesandexpandthroughchondrocytehypertrophy[7].
Atmaturation,whichdisablesfurthergrowthofthecranium,thecranialsuturesclose.Information
concerningcaninecranialsutureclosuretimesisscarce,butonesuggestionisthattheinterparietal,
i.e.sagittal,sutureclosesattheageof2to3yearsandtheinterfrontal,i.e.metopicsutureatthe
ageof3to4years[8].Inhumans,cranialsuturescloseduringthethirddecadeoflife[7].
Childrenarebornwithsixfontanelles:twoalongthemidline,theanterior(alsocalledasthe
bregmaticfontanelle)andtheposteriorfontanelle,andtwooneachsideoftheskull,theleftandright
sphenoid,andleftandrightmastoidfontanelles[9].Thelargestfontanelleinchildren,theanterior
fontanelle,islocatedatthejunctionofthetwofrontalandparietalbonesandclosesbetween3to27
months,withthemedianageofclosurerangingfrom9to14months[10,11].Theposterior
fontanelleislocatedbetweentheoccipitalandtwoparietalbones,isopeninonly1.5%ofnewborn
4
children,andclosesinthosechildrenby2monthsofage[12].Furthermore,thepairedsphenoid
fontanellesoccurattheintersectionofthefrontal,parietal,sphenoid,andtemporalbonesandclose
ataround3monthsofage.Caudaltothesphenoidfontanelles,andbetweentheparietal,temporal
andoccipitalbones,arethemastoidfontanellesthatcloseduringthesecondyearoflife[13].
Indogs,fewstudiesdescribethefontanelle-closuretimes,andthosethatdo,onlydescribethe
bregmaticandoccipitalfontanelleclosuretimes:Bregmaticfontanelleclosureisassumedtooccurat
birthorwithinamonthafterwards[5,14].Thefontanelleresemblingtheposteriorfontanellein
children,herewecalltheoccipitalfontanelle,closesataround45daysofgestationwhenthe
unpairedinterparietalbonefuseswiththeparietalandsupraoccipitalbones.Insomedogs,the
interparietalbonedoesnotfusewiththesupraoccipitalbone,andremainsasaseparatebone[5].
InChihuahuabreedstandardsofdifferentkennelclubstheoccurrenceofamolera,apersistent
fontanel(PF)attheintersectionofthepairedfrontalandparietalbones,variesfrombeingan
acceptedtraittobeingadisqualifyingfault[15–18].TheexistenceofthisPFiscommonlytestedby
palpatingthehead,whichonlyenablestherecognitionofPFinareasoftheskulllackingathick
musclelayersuchasthemid-dorsalregion(thelocationofthebregmaticfontanelle).Cranial
computedtomography(CT)imagingprovidesmorecompleteassessmentpermittingdeterminationof
howcommonPFsareinChihuahuasandalsoiftheseskulldefectsoccuroncranialsurfacesnot
detectedbypalpation.Developinganobjectivemethodtoevaluatetheseverityoftheselesions
wouldinthefutureallowassessmentoftheclinicalrelevanceandpathogenesisofthesefindingsin
Chihuahuas.Inchildren,suturaldiastasis(delayedclosureofacranialsuture)anddisordersofcranial
ossificationareassociatedwithdevelopmentaldisordersofcranialgrowthduetoprematurecranial
sutureclosure[19].Reliablediagnosticmethodswouldallowcomparisonbetweenthepathogenesis
ofPFsinChihuahuasandbonedeficientskulllesionsinchildren.
Theprimaryobjectiveofourprospectivestudywastodescribethepresence,number,andlocationof
PFsinChihuahuas.Thesecondaryobjectivewastoevaluatetheinter-andintra-raterreliabilityofthe
fontanelleareameasurementmethodinCTimages.OurprimaryhypothesiswasthatPFsare
commoninChihuahuasandoccurnotonlyattheintersectionofthefrontoparietal,sagittal,and
5
interfrontalsutures—henceatthelocationofthebregmaticfontanelle—butatotherlocations,aswell.
Oursecondaryhypothesiswasthatthefontanelle-areameasurementmethodisrepeatablebothby
differentevaluatorsandbetweenseparatemeasurementtimes(inter-andintra-raterreliabilities).
Results
Thestudygroupof50Chihuahuascomprised26(52%)smooth-haired,23(46%)long-haired
Chihuahuas,and1(2%)Chihuahuamix.Thesecomprised27(54%)femalesand23(46%)males
(includingonecastratedmale).Themean±SDageofthese50dogswas58±28months(range7-
139months),andtheirmean±SDweightwas2.8±0.6kg(range,1.4–4.3kg).Ofthe50included
dogs21werenotclinicallyaffectedand29hadclinicalsignsrelatedtoChiari-likemalformationor
syringomyelia(CM/SM).Ofthose29clinicallyaffecteddogs,7dogshadconcurrentdiseasespossibly
causingsimilarclinicalsignsthanCM/SM.
Presence,number,andlocationofpersistentfontanelles
Ofthe50dogsevaluated,46(92%)hadeitheroneorseveralPF.Themean±SDnumberofaffected
suturesperdogwas2.4±2.3(range0-10),andmean±SDnumberofPFswas2.8±3.0(range0-
13).DuetoonedogthathadmissingCTimagesoftheveryrostralskull,thecohortforevaluationof
distributionofaffectedsuturesandPFscomprised49dogs.Atotalof34dogs(69%)had1to3
affectedsutures,7dogs(14%)had4to6suchsutures,and4dogs(8%)had7to10.Similarly,
groupingdogsbytheirnumberofPFsshowedthatof49dogs,32(65%)had1to3PFs,7(14%)had4
to6PFs,and6(12%)had7to13.(Tables1and2).
Atotalof118affectedsuturesoccurredinthese49dogs:57(48%)occurreddorsally,44(37%)
caudally,and17(14%)laterally(7ontheleftside,10ontherightside).Furthermore,ofthetotal138
PFs,72(52%)appeareddorsally,49(36%)caudally,and17(12%)laterally(7ontheleftside,10on
therightside)(Table3).
Ofthe46dogswithaffectedsutures,7(15%)hadnoPFatalocationtypicalofabregmatic
fontanelle.Ofthosedogs,eachdoghad1to7affectedsuturesoneitherdorsal,lateral,orcaudal
surfacesofthecranium.Furthermore,44(32%)ofthe138fontanellesoccurredinotherlocations
6
thanthoseinchildren(theanterior,posterior,sphenoid,ormastoidfontanelles).
ThenumberofthePFsvariedfromsingle(Figure1)tomultiplelesions(Figure2)atonesuture,and
theshapefromsharplyedged(Figure3)tolesionswithnon-distinctmargins(Figure4).Occasionally,
thelesionsappearedtobeconnectedtoradiolucentlinesresemblingvenousstructures(Figure5).
Inter-andintra-raterreliabilityofpersistentfontanelleareameasurementincomputed
tomographyimages
Theinter-raterrepeatabilityofthetotalfontanelleareameasurementsbetweentheassessorswas
99.8%.Whenassessingconsistencybetweenthetwoassessments,Krippendorff’salphaforthetotal
fontanelleareawas0.999(95%CIs0.997-1.000)(Table4).
Theintra-raterrepeatabilityofthetotalfontanelleareameasurementswere99.6%foroneand
99.8%fortheotherassessor.Furthermore,theintra-classcorrelationcoefficient(ICC)forreliability
withinassessorofthetotalfontanellearearangedfrom0.997to0.999,(95%confidenceintervals(CI)
0.994-0.999)(Table5).
Discussion
Ourstudyshowsthataccordingtoourprimaryhypothesiscranialbonelesions,calledherePFs,area
commonfindinginadultChihuahuas.Inadditiontotheirwell-knownlocationonthedorsalsurfaceof
thecranium(i.e.thebregmaticfontanelleattheintersectionofthefrontoparietal,sagittal,and
interfrontalsutures),PFsarecommononothersutureslocatedonthelateralandcaudalsurfacesof
theskullaswell.Similarly,accordingtothesecondaryhypothesis,themethodusedinthecurrent
studyforPFareameasurementwasreliableasitshowedalmost“perfect”inter-raterand“excellent”
intra-raterreliabilityandcanthusbeutilizedinfurtherstudies.
Persistentfontanelles
TheChihuahuasofthisstudyalmostallhadeitheroneorseveralPFs.ThePFoccurredonallcranial
surfaces,withapproximatelyhalfofallPFsoccurringonthedorsalsurfaceandslightlyoverone-third
occurringonthecaudalsurfaceofthecranium(Fig.6).Clinicallythisissignificantas,indogs,other
locationsthanthesiteofthebregmaticfontanelle(mid-sagittal,dorsalsurfaceofthecranium)are
7
coveredwithmusclesthickenoughtopreventreliablerecognitionbypalpation.
Thefrontoparietalsuture,thelocationofthebregmaticfontanelle,wasthesuturemostcommonly
affected.Thebregmaticfontanelle,however,wasnotalwayspresentalthoughthedoghadother
affectedsutures.Thispreventstheuseofthebregmaticfontanelleasamarkerofthesebonylesions
elsewhereonthecranialsurface.Furthermore,becausemagneticresonanceimagingislesssensitive
thanCTindetectingopensutures,thecommonuseofmagneticresonanceimagestoruleout
structuralbraindiseasescouldpredisposesmallPFstobeingoverlooked[20].
Onlythebregmaticandcaudallylocatedfontanelle,resemblingthehumanposteriorfontanelle,and
herecalledtheoccipitalfontanelle,aredescribedindogs,withtheliteraturelackingthedescriptions
ofthesphenoidandmastoidfontanelles.Furthermore,althoughthelesionsareherecalledPFs,one-
thirdofthePFsoccurredatlocationsotherthanthelocationssimilartothoseofthefontanelles
describedinchildren.Hence,additionaletiologiesmayexistthanjustdelayedfontanelleclosure.
Areasdeficientinbonecanoccur,forexampleduetodisordersofossificationofthedevelopingbone,
atrophyofmaturebone,orsuturaldiastasis(delayedclosure).Basedonthecurrentstudydesign,
andwithallbuttwoChihuahuasofthisstudyhavingbeenagedover12months,itisnotpossibleto
evaluatewhetherthePFsdescribedherearecongenitaldefectsofboneformationoracquiredbone
remodelingorboneatrophy.Itisgenerallythoughtthatthebregmaticfontanelleisacommonfinding
inimmatureChihuahuas,onesuggestiveof,butnotconclusivelyconsideredtobeacongenitallesion.
AsthePFsontheremainderoftheskullsurfacearenotrecognizablebypalpation,thenatureofthose
lesionsremainsparticularlyinconclusive.Bothformsofacquiredbonedefects,i.e.,boneremodeling
andboneatrophy,occurindogs:IncavalierKingCharlesspaniels,similarlyaffectedwithCMasare
Chihuahuas,foramenmagnumheightincreasesovertime,suggestingactivesupraoccipitalbone
remodelingduetocerebellarpulsation[21–23].Furthermore,suggestiveofboneatrophy,skullbone
defectscanoccurasaresultofmultiplechoroidplexuscarcinomasleadingtonon-communicating
hydrocephalusandincreasedintracranialpressure[24].
Tobetterevaluateallpossiblecausesbehindthebone-deficientlesionsheredescribed,
understandingskulldevelopment,ossification,andcranialgrowthispivotal:intramembranous
8
ossificationofthebonesofthecranialvaultisinitiatedbycondensationofmesenchymalcells
betweenthedermalepitheliumandtheformingmeninges[2].Themesenchymalcellsdifferentiateto
becomefirstosteoblastsandlaterosteocytesthatproducebone-formingmatrix.Intheendochondral
ossification,themesenchymalcellsdifferentiateintohypertrophicchondrocytesthatforman
avascularanlagen,acartilaginoustemplatethatislaterreplacedbybone[25].
Cranialgrowthoccursatthesynchondrosesandatthecranialsutures:Thesynchondrosesallow
rostrocaudalexpansionofthecranialbase,andthecranialvaultgrowthoccursperpendiculartothe
cranialsutures.Thepaceofthemesenchymalcellsdifferentiatingintoosteoblasts,regulatedbythe
growingbrainviaduramater,affectsbonegrowthatcranialsuturegrowthsites.Inadditiontosutural
bonegrowth,constantmodelingandremodelingofbothattheinner-andoutersurfacesofthebone
occurstofitthesurroundingtissues,suchasthecontoursofthebrain[2,25].Cranialsuturalgrowth
normallycontinuesuntilthebrainhasmatured,andthecranialbasesynchondrosescontinueto
lengthen.Toenablemembranousbonegrowth,thecranialsuturesneedtoremaininanun-ossified
state[7].Abnormalosteoblastapoptosisatthecranialsuturescausesprematurecranialsuture
closure,craniosynostosis[26].Thispreventsfutureboneformation,andhenceexpansionofthe
neurocraniumatthesiteoftheclosedcranialsuture,andleadstoabnormalcompensatorycranial
growth[7].
Inchildren,prematurecranialsutureclosure,craniosynostosis,isararegrowthdisorder,occurringin
approximately3to7ofevery10000livebirthsanddisablingnormalexpansionoftheskull[27–28].
Itpreventsnormalbonegrowthperpendiculartotheaffectedsutureandresultsinacharacteristic
head-shapetypicalofthattypeofcraniosynostosis.Forexample,abilateralcoronalsuturesynostosis
(betweenthefrontalandparietalbones)causesshorteningoftheskullandresultsinbrachycephaly
[29].Ascraniosynostosiscausescertainsuturestocloseprematurely,ascompensation,itmaydelay
orpreventothersfromclosing(suturaldiastasis).Asaresult,childrenwithcraniosynostosisaremore
likelytohavesuturaldiastasis[19].Additionally,inchildren,craniosynostosiscanoccur
simultaneouslywithprematurecranialbasesynchondrosisclosure[30].
Inbrachycephalicdogs,andespeciallyincavalierKingCharlesspaniels,thecranialbasespheno-
9
occipitalsynchondrosisclosesprematurely,restrictingrostocaudalskullexpansion[31].Asasignof
compensatorycranialgrowthduetoprematurecranialsutureandsynchondrosisclosurein
brachycephalicdogs,ahigherproportionofclosedorclosingrostralcranialsuturesorcranialbase
synchondroseswasassociatedwithdorsaldeviationoftheprebasialangle,alsocalledairorynchy
[32].Furthermore,inChihuahuas,ashortskullbaseatthecaudalcranialfossacausesovercrowding
ofthecraniocervicaljunction.SuchovercrowdingpredisposestobothSMandCM/SM-relatedclinical
signs[23,33].Furthermore,incavalierKingCharlesspaniels,brachycephaly,i.e.ashortskullbase
withcompensatorydomingoftheskull,isassociatedwithCM-associatedpain[34].
Differencesinsynchondrosisandincranialsuture-closuretimes,describedinearlymorphometric
studies,couldexplainthelargevarianceinskulldimensionsofdifferentdogbreeds[35].Tosupport
thattheory,arecentstudydescribedtheprematureclosureofthesagittalsutureaspossibly
explainingthetypicallyhighhead-shapeoftheboxers[20].Furthermore,alaterstudy,evaluating
head-shapeinheritance,showedthat,forfacial-lengthvariationbetweendogbreeds,aSMOC2locus
explained36%.Itsuggeststhatthecranialsutureclosuretimesappeargeneticallyregulated[36].
ManyofthePFsintheChihuahuasofthisstudyoccurredatotherthantheexpectedfontanelle
locations.Inchildren,non-fontanellecranialbonedefectsoccur,onessuchaslacunarskulland
diffusecopper-beatenappearance:lacunarskull,alsocalled“Lückenshädelskull”(Germanforholes
intheskull),isadevelopmental,congenitaldefectofboneossification,whereasthecopper-beaten
appearanceisanacquiredremodelingofbone[37].Bothoftheselesionsaffecttheinnertableofthe
cranialvault,causingeitherthinningorlossofbone,withthecopper-beatenpatternappearingwith
indistinctmargins,varieddepth,andfollowingthegyralmargins.Ontheotherhand,lacunarskull
defectshavesharplydemarcatedmarginsandareseparatedbybranchesofbone[19,38–40].A
lacunarskull,whenoccurringwithfull-thicknessdefects,isalsocalledcraniofenestra[41].Boththe
copper-beatenappearanceandlacunarskullareassociatedwithcraniosynostosis,butcanalsooccur
asincidentalfindings[19].
InourChihuahuas,theshapeofPFsvaried;somecomprisedsharplydemarcated,full-thickness
lesionsshowingsimilaritieswithlacunarskulldefects(includingcraniofenestra).Ontheotherhand,
10
sometimesthePFshadindistinctmarginsandweresurroundedbyareasofthinbone,suggestinga
moreactiveboneremodeling,thoughlackingthegyralpatternanddiffusedistributionofthecopper-
beatenappearance.Copper-beatenappearanceispreviouslydescribedinaGriffonBruxelloiswith
clinicallyrelevantCMandSM[42].
SomeofthePFsappearedtooccurincloseproximitytoradiolucentareasresemblingvenous
structures.Thiscouldbeaconsequenceofactiveboneremodelingduetoincreasedvenouspressure.
IncavalierKingCharlesspaniels,cranial-baseshorteningduetoprematuresynchondrosisclosureis
suspectedtocausevenousoutflowobstructionresultingfromnarrowedjugularforamina[43].
Supportingatheoryofdecreasedvenousoutflowthroughthejugularforamina,anotherstudy
describeddecreasedvolumesofcaudalcranialfossavenoussinusesinsyringomyelia-affected
cavalierKingCharlesspaniels[44].Jugularforamenobstructionoccursalsoinachondroplastic
childrenwithprematuresynchondrosisclosure.Inthosechildren,ashortenedskullbaseleadsto
jugularforamenstenosisand,duetoincreasedvenouspressure,maycausecommunicating
hydrocephalus[45].Furthermore,inchildren,craniosynostosismayoccuralongsideenlarged
emissaryveins[46].
Inter-raterandintra-raterreliabilitiesoffontanelleareameasurement
Repeatabilityoftotal,dorsal,leftandrightlateral,andcaudalfontanelle-areameasurementsbetween
theassessors,theinter-raterreliability,wasalmostperfectwhenassessingboththepercentage
agreementandKrippendorff’salpha.Similarly,repeatabilityofthetotal,dorsal,leftandrightlateral,
andcaudalfontanelleareawithinthesameassessor,theintra-raterreliability,reachedexcellent
reliabilitywhenassessingbothpercentageagreementandICC.Hence,theexcellentinter-andintra-
raterreliabilitiesreportedinthisstudysuggestthatthefontanelleareameasurementismethodis
suitableforfurtheruse.
Ourexcellentresultscanbethusexplained:weobtainedallCTimageswiththesamescanner,weset
clearguidelinesforthemeasurementmethodwhileevaluatingthepilotdogs(notincludedinthefinal
analysis),andeachevaluatorusedthesamecomputerscreenwhileanalyzingalltheCTimages
(intra-raterreliability).Furthermore,thoughneitheroftheevaluatorshadpreviousexperiencewith
11
thecurrentmethod,bothwereexperiencedinanalyzingcranialCTimages.Ontheotherhand,
differencesinindex-linepositioningandplacementoftheareabordersoftheclosedpolygontool
explainwhytheevaluatorsdidnotreachaperfectconsensus.
Thoughdescriptionsofsimilarfontanelleareameasurementarelacking,earlierstudiesdescribe
measurementofthecaninecranialcavity,caudalcranialfossa,orforamenmagnumareasusing
eitherCTormagneticresonanceimaging[47–50].Furthermore,severalstudiesdescribevolumetric
measurementsofthecaninecranialcavity[44,51–54].Noneofthesestudiesdescribesintra-orinter-
raterreliabilities,possiblyduetothelaboriousnessofthearea-andvolume-measurementmethods.
Inchildren,onestudydescribesitsanteriorfontanelleareameasurementinCTimages:calculationof
thesurfaceareainvolvedmultiplyingthewidthofthefontanellebyitsanterioposteriorlength,and
dividingitbytwo[55].Duetotheirregularshapeofthefontanellesindogs,wedidnotadoptthat
sameformula.
Limitationsofthisstudywererelatedtoitsimageanalysisandcohortcollection:Evaluationofthe
presenceofPFswasoccasionallydifficultduetoverythinbone,andthelowspatialresolution
providedbytheimagingequipment(2-sliceCT),makingitsometimesdifficulttodifferentiate
betweenthinningofbonefromatrue,full-thicknesslesion.Furthermore,asthecranialsutureswere
difficulttodefine,itwasoccasionallychallengingtodeterminetheexactlocationofthelesion.
However,consensusbetweenourevaluatorsimprovedtheaccuracyoftheclassificationofthe
lesions,bothastotheirpresenceandlocation.Astheaimofthestudywastodescribethe
occurrenceofthesebonylesions,wedidnotattempttogroupthembasedontheirpossibleetiology
(suchascongenitaldefectofossificationorasactiveboneremodeling/atrophy).Furthermore,as
mostofthedogswerealiveattheendofthestudy,theydidnotundergoanautopsytocomparethe
CT-areameasurementfindingswiththeactualPFareasincadavericskulls.Finally,themajorityofthe
Chihuahuaswerefromthesamecountry,makingmulticenterstudiesevaluatinginternationalcohorts
essential.
Conclusions
Inconclusion,thelesionsdescribed,herecalledPFs,are,inthisgroupofChihuahuas,verycommon
12
andalmostubiquitous.ThenumberofPFsvaried,perdog,fromsingletomultiple.Theywerelocated
ondorsal,lateral,andcaudalsurfacesofthecranium,andhencewerenotallreliablyrecognizableby
palpation.ThePFareameasurementmethoddescribedhereappearsreliablebothbetweendifferent
assessorsandatdifferentmeasurementtimes.ThePFsdescribedinthisgroupofChihuahuasshow
somesimilaritieswiththeimagingfindingsofbone-deficientlesionsincraniosynostoticchildren.
ThoughadditionalstudiesarenecessarytoevaluatethepathogenesisofthePFsinChihuahuas,
notablesimilaritieswiththeimagingfindingssuggestthatprematuresynchondrosisclosureor
craniosynostosisorbothmayprovetobepredisposingfactorsalsoinChihuahuas.Understandingthe
mechanismsresponsibleforthePFsinChihuahuasmaythereforeinthefutureprovideadditional
informationforthemechanismsofcraniosynostosisinchildren.
MaterialsAndMethods
Caseselectionandassessmentofclinicalsigns
Ourprospectivedataincluded50Chihuahuas,membersofthesamecohort(comprising53
Chihuahuas)participatinginanother,concurrentstudypublishedearlier:Thestudyincludedclient-
ownedChihuahuaswithorwithoutCM/SM-relatedclinicalsigns.Thedogswererecruitedfromthe
case-loadoftheVeterinaryTeachingHospitaloftheUniversityofHelsinkibetween2012–2015.
Imagingoftheclinicallyaffecteddogswasadiagnosticprocedureandthenon-affecteddogswere
imagedforbreedingselectiontodetectCM,SM,andcraniocervicaljunctionovercrowding[23].Non-
affecteddogshadtobeatleastthreeyearsold,butnoagelimitwassetforclinicallyaffecteddogs.
Allthedogswithapriorhistoryofacentralnervoussystemdisease(otherthanCM,SMor
craniocervicaljunctionovercrowding)orasevereorthopedicproblemwereexcluded.Thestudywas
approvedbytheFinnishNationalAnimalExperimentBoard,participationwasvoluntary,andalldog
ownersprovidedawrittenconsent.Thecurrentstudyincludedallthedogsfromtheearlierstudythat
underwentCTtoevaluatethecraniocervicaljunction.Alltheprocedureswereundertakenduringone
visitattheVeterinaryTeachingHospital.
Twooftheclinicallyaffecteddogswithprevioushistoryofepilepticseizureswereeuthanizeddueto
statusepilepticusduringanesthesiarecoveryandrecurrentepilepticseizuresfor> 48hours.Epileptic
13
seizuresrecurredthoughthedogsweremedicatedfirstwithloadingdosesofphenobarbital
(24mg/kgiv),levetiracetam(60mg/kgiv),andpotassiumbromide(400–600mg/kgp.r.),andthen
withmaintenancedosesofthesamemedications(phenobarbital3mg/kgevery12hoursi.v.,
levetiracetam20mg/kgevery8hoursi.v.,potassiumbromide10mg/kgevery12hoursp.r.)and
continuousrateinfusionsofeitherpropofolordexmedetomidineandmidazolam.Bothdogswere
euthanizedduetohumanereasonsandbyownerrequest.OneofthedogswaseuthanizedatThe
VeterinaryTeachingHospital:aftersedationwithintravenousadministrationofdexmedetomidinand
butorphanol,bolusesofintravenouspropofolandpentobarbitonewereadministereduntilcardiac
arrestoccurred.Theotherdogwaseuthanizedattheirlocalveterinarianafterbeingdischargedat
owner’srequestfromtheintensivecareunitofTheVeterinaryTeachingHospital.Alltheotherdogs
remainedaliveattheendofthestudy.Asthedogswereclient-owned,noneofthedogswere
releasedandtheyreturnedtoliveinhome-environmentwiththeirowners.Theclinicallyaffected
dogscontinuedtohavecontrolvisitsatTheVeterinaryTeachingHospital,atthereferring/local
veterinarianorwerelostfromfollow-up.Nofurthervisitsoccurredintheclinicallynon-affecteddogs,
buttheownerscouldcontactthefirstauthorincasequestionsemerged.
Diagnosticimagingprocedures
AlldogsunderwentCTundergeneralanesthesia.Ananesthesiologistplannedtheanesthesia
individuallyforeachpatient.Duringanesthesia,heartandrespiratoryrate,bloodpressure,andend-
tidalcarbondioxidepartialpressureweremonitored.Toobtainheadandcervicalspine(tothelevel
ofthecaudalC3vertebra)CTimages,weusedahelicaldual-sliceCTscanner(SomatomEmotion
Duo,SiemensAG,Forcheim,Germany),withabonealgorithmandaslicethicknessof1.0mm
(feed/rotation2mm,reconstructionincrement0.5mm).Thedogswerepositionedsothatthebaseof
theskullwasalignedperpendiculartotheventralvertebralcanalinthecranialcervicalspine.Our
previousstudyprovidesfullCTimagingdetails[23].
Imageanalysis
OsiriXMedicalImagingSoftware(PixmeoSARL,Bernex,Switzerland)servedforanalysisoftheCT
imagesofallincludeddogsforpresence,number,andlocationofthePFs,andthefontanelleareasat
14
dorsal,lateral,andcaudalcranialsutures.Additionally,thetotalfontanelleareawascalculatedusing
theclosedpolygontoolofthesoftware.
Presenceofpersistentfontanelles
Apersistentfontanellewasdefinedasfull-thicknesslossofboneatacranialsuture.Itspresencewas
assessedatthecranialsutures,i.e.thejunctionsbetweenthemembrane-derivedbones(nasal,
lacrimal,frontal,parietal,interparietal,squamouspartofthetemporal)andbetweenthemembrane-
andcartilage-derivedbones(maxillary,palatine,sphenoid,temporal,occipital)whichformthedorsal,
lateral,andcaudalsurfacesofthebraincase.Thecranialbase,formedofcartilage-derivedbones
connectedwithsynchondroses,andnaturallyoccurringwithmultipleforamina,wasnotevaluated
(seeTable3,Figs.7–9).Toimprovethemethod’sreliabilityandtoexcludenon-fused,normalcranial
sutures,thefontanelleareahadtobelargeenough,bysubjectiveassessment,tobemeasurable
usingtheclosedpolygontool.ThesmallestPFsmeasuredwereapproximately1mmindiameter.
Asthedistinctionbetweensomedorsalandlateralboneswasdifficult,duetotheirsmallsizeand
irregularshape,wemadenoattempttodistinguishbetweenthem,andthesutureswereclassifiedas
one(Table3,Fig.7,No.1;Fig.8,No.7).Furthermore,asaPFwasoccasionallylocatedbetweenthe
supraoccipitalandinterparietalbones,thoughnotatatruesuture,andasthesetwobones,inadult
dogs,aresuggestedtobefused,thejunctionbetweenthemwasconsideredanadditionallocation
(Table3,Fig.9,No.16)[5].Additionally,theintersectionsofthelateralsutures,onesresembling
sphenoid(Table3,Fig.8,N:o8)andmastoidfontanellesinchildren(Table3,Fig.9,No12and13),
wereclassifiedasadditionallocations[13].
Twoboard-certifiedneurologists(A-M.K.andT.S.J.)evaluatedindependentlytheanonymizedCT
imagesandwerehenceunawareofthedogs’clinicalstatus.Theevaluatorsfirstassessedeach
cranialsuturein3-dimensionalskullmodelsusingvolume-renderingtechniqueimagestorecordthe
presenceandnumberofallpossiblePFs(Fig.1),andthenconfirmedtheirfindingsinthemultiplanar
images(Figs.10a-c).Ifaftertheindividualassessment,theevaluatorsdidnotagreeaboutthe
presenceornumberofPFs,orastothesuturesaffected,theevaluatorsre-assessedtheCTimages
togethertoreachaconsensus.TheevaluatorsagreedthatalltheassessedPFswerelocatedat
15
cranialsutures.
Totalfontanellearea
Aftertheconsensus,theevaluatorsindependentlymeasuredtheareaofeachfontanellefromthe
anonymizedCT-imagesusingtheclosedpolygontool(Fig.11).Becauseindogsnostudiesdescribe
thePFareameasurementmethod,wefirsttesteditbyassessingCTimagesof10pilotdogs,onesnot
includedinthestudy.Thefollowingguidelineswereset:Thefontanelleareameasurementwas
carriedoutbymeansofmultiplanarCTimages(WL500HU,WW3500HU)withoneofthetwoindex
linespositionedtangentialtotheouterskullsurface,andinthemid-thicknessofthebone
surroundingit.Then,theotherindexlinewaspositionedperpendiculartothepreviousindexlineand
inthecenterofthePF(Figs.10a-c).AstheareaofthePFwasoccasionallylargeandextendedover
convexsurfaces,makingitimpossibletomeasureitreliablyinoneplane,weusedamaximum-
intensity–projection-techniqueimage,withslicethicknessof14to16.Thisslicethicknesswas
selectedbyvisuallyoptimizingtheabilitytomeasurealsoconvexsurfacesandwithouttheareatobe
measuredbeingaffected.Whilemeasuringthepilotdogs’fontanelleareas,theevaluatorshadthe
possibilitytodiscussthemeasurementtechniquetooptimizeitsreliabilityandreproducibility.When
measuringtheactualstudydogs,thetwoevaluatorsmeasuredtheareasindependently.
StatisticalAnalysis
First,toevaluatethereliabilityofthemethodforfontanelleareameasurements,theinter-,andintra-
raterreliabilitiesneededevaluation.Weassessedthesumofdorsal,lateral,andcaudalfontanelle
areasbothseparatelyandasthetotalsumofallfontanelles.Weevaluatedtherandomvariation
causedbyassessors(inter-raterreliability)intwodifferentways:First,wecalculatedarepeatability
statisticbetweentheassessorsfromaone-wayanalysisofvariancemodel,wheretheeffectofthe
dogservedasthesolefixedeffect,andthevalueswereconsideredasapercentageofperfect
agreement.Inthesemodels,thewithin-groupvariationdescribesthevariationbetweenthe
assessors.
Second,todetermineinter-raterreliabilityestimatebetweenthetwoassessors,wecalculated
Krippendorff’salphawith95%confidenceintervals(CI)toassessconsistencybetweenthetwo
16
assessmentsofthefontanelleareas[56].Analpha-valueof1describesperfectagreement,avalueof
0.8describessimilarinterpretation,andavalue ≥ 0.67isinterpretedasthelowestconceivablelimit
[57].
Next,weevaluatedtheintra-raterreliability:Thetwoevaluatorsindependentlyre-measured,aftera
fewmonths’interval,arandomlyselected25dogsamong50dogs’fontanelleareas.Duetothe
laboriousnessofthemethod25/50(50%)ofthedogs’CTimageswerere-evaluated.Theintra-rater
reliabilityassessmenttookplacebytwodifferentmethods:first,wecalculatedarepeatabilitystatistic
similartothatforinter-raterreliabilitybetweenthetworepeats(totalfontanellearea)byeach
evaluator.Second,todeterminetheintra-raterreliabilityestimatebetweentherepeats,we
calculatedtheICCwith95%CIstoassessconsistencybetweentherepeats.AnICCof< 0.5indicates
poorreliability,0.5–0.75moderatereliability,0.75–0.9goodreliability,and> 0.9indicatesexcellent
reliability[58].AllstatisticalanalysesusedtheSAS®SystemforWindows,version9.4(SASInstitute
Inc.,Cary,NC,USA).
References
1.  D e LahuntaA,GlassE.De v e l o p m e ntoftheNervousSyste m : M a l f o rmations.In
Veterinaryneuroanat o m y a n d c linicalneurology.St.Lou i s , M i s s o u r i:
Saunders/Elsevier;20 0 9 . p . 2 3 -53.
2.  J i n S ,SimK,KimS.Develo p m e n t a ndGrowthoftheNorm a l C r a n i a l Vault:An
EmbryologicReview. J K o r e a n N eurosurgSoc2016 ; 5 9 ( 3 ) : 1 9 2-196.
3.  C o ulyGF,ColteyPM,LeD o u a r i n N M .Thetripleoriginofsku l l i n h i g h e r v ertebrates:a
studyinquail-chickchim e r a s . D e v elopment1993;117 ( 2 ) : 4 0 9 - 429.
4.  S r iv astavaHC.Ossification o f t h e m e mbranousportionof t h e s q u a m ouspartofthe
occipitalboneinman. J A n a t 1 9 9 2;180:219-224.
5.  E v ansHE.TheFetus.InM i l l e r ' s a n a t omyofthedog.3rd e d . P h i l a d e lp hia:Saunders;
1993.p.48-97.
6.  K n owlerSP,GaleaGL,R u s b r i d g e C .MorphogenesisofC a n i n e C h i a r i Malformationand
17
SecondarySyringom y e l i a : D i s o r dersofCerebrospina l F l u i d C i r c u l a tion.FrontVetSci
2018;10.3389/fvets.2018.00171
7.  O p permanLA.Cranials u t u r e s a s i n tramembranousbo n e g r o w t h sites.DevDyn
2000;219(4):472-485.
8.  T h rallDE,RobertsonID.A t l a s o f N o r malRadiographicAna t o m y a n d Anatomic
VariantsintheDogan d C a t . S t . L ouis,Missourio:Elsevier/ S a u n d e r s ;2011.p.10
9.  K i e slerJ,RicerR.Theabno r m a l f o n ta nel.AmFamPhysicia n 2 0 0 3 ; 6 7(12):2547-2552.
10.  D u c G ,LargoRH.Anteriorf o n t a n e l : s i z e andclosureinterma n d p r e t e r minfants.
Pediatrics1986;78(5 ) : 9 0 4 - 9 0 8.
11.  B o r a nP,OğuzF,Furman A , S a k a r y aS.Evaluationoffonta n e l s i z e v a riationand
closuretimeinchildren f o l l o w e d u pfrombirthto24m o n t h s . J N e u rosurgPediatr
201809;22(3):323-329.
12.  E s m aeiliM,EsmaeiliM,Gha n e S h a r b afF,BokharaieS.Fo n t a n e l S i z e f romBirthto24
MonthsofAgeinIrania n C h i l d r e n . Ir anJChildNeurol2015 ; 9 ( 4 ) : 1 5 - 2 3.
13.  G r a y H,StandringS.editor. S t a n d r i n g S.InGray'sanatomy. 3 9 . e d . , E dinburgh:
Elsevier,ChurchillLivings t o n e ; 2 0 0 6.p.457-458.
14.  H a s s anEA,ToradFA,El-To o k h y O S , ShamaaAA.Caninen e o n a t a l t r a nscranial
ultrasonographyfrom b i r t h u n t i l c losureofbregmaticfo n t a n e l l e . T opCompanion
AnimMed2015;30 ( 1 ) : 5 - 9 .
15.  A m e ricanKennelClub.http:// i m a g e s . a kc.org/pdf/breeds/sta n d a r d s / C h ihuahua.pdf.
AccessedDecembe r 2 0 2 0 1 9
16.  C a n a dianKennelClub.https: / / w w w . c k c.ca/CanadianKennelC l u b / m e d i a /Breed-
Standards/Group%2 0 5 / C h i h u a hua-Long-Short-Coat.p d f . A c c e s s edDecember202 0 1 9
17.  T h e K ennelClub.
https://www.thekenn e l c l u b . o r g . u k/services/public/breed / s t a n d a r d .aspx?id=6150.
18
AccessedDecembe r 2 0 2 0 1 9
18.  F e d e rationCynologicueInter n a t i o n a l e
http://www.fci.be/Nom e n c l a t u r e /Standards/218g09 - e n . p d f . A ccessedDecember2 0
2019
19.  T u i t e G F,EvansonJ,ChongW K , T h o m psonDN,HarknessW F , J o n e s B M,HaywardRD.
Thebeatencopperc r a n i u m : a correlationbetweenin t r a c r a n i a l p ressure,cranial
radiographs,andco m p u t e d t o mographicscansinc h i l d r e n w i t h craniosynostosis.
Neurosurgery1996 ; 3 9 ( 4 ) : 6 9 1-699.
20.  F a r k eD,GuillerB,Oszewsk a A , S c h m idtMJ.Sagittalcraniosy n o s t o s i s a s underlying
causeforunusualbra i n a n d s k ullmorphologyinboxer s . I n 3 2 n d EuropeanCollegeof
VeterinaryNeurology/ E u r o p e a n SocietyofVeterinaryN e u r o l o g y AnnualSymposium;
13.-14.9.2019
21.  D r i v e rCJ,WattsV,BunckAC , V a n H a m LM,VolkHA.Assess m e n t o f c erebellar
pulsationindogswitha n d w i t h o u t Chiari-likemalformation a n d s y r i n gomyeliausing
cardiac-gatedcinem a g n e t i c r e s onanceimaging.Vet J 2 0 1 3 ; 1 9 8(1):88-91.
22.  D r i v e rCJ,DeRisioL,Hamilton S , R u s b r id geC,DennisR,McGo n n e l l I M , e t al.
Changesovertimein c r a n i o c e r e bralmorphologyand s y r i n g o m yeliaincavalierKing
CharlesspanielswithC h i a r i - l i k e m a lformation.BMCVetR e s 2 0 1 2 ;8:215.
23.  K i v i r a n taA-M,RusbridgeC,L a i t i n e n - V a p aavuoriO,Hielm-Björk m a n A , L appalainen
AK,KnowlerSP,etal.S y r i n g o m y eliaandCraniocervica l J u n c t i o n A b normalitiesin
Chihuahuas.JVetIntern M e d 2 0 17;31(6):1771-178 1 .
24.  H u g h esJR,Taylor-BrownF E , G r e v i l l e - H eygateO,Constantino - C a s a s F , W illiamsDL,
GenainM.Multimoda l i t y c h a r a c t eristicsofmultifocalchor o i d p l e x u s carcinomawith
bilateralcalvarialdefec t s i n a d o g .VetRadiolUltrasound 2 0 1 9 ;
https://doi.org/10.111 1 / v r u . 1 2 732
19
25.  F l a h e rtyK,SinghN,Richtsm e i e r J T . U n d erstandingcraniosyno s t o s i s a s a growth
disorder.WileyInterdisc i p R e v D e vBiol201607;5(4):4 2 9 - 4 5 9 .
26.  R i c e D P,KimHJ,ThesleffI.Ap o p t o s i s i n m urinecalvarialbonea n d s u t u r e
development.EurJO r a l S c i 1 9 9 9;107(4):265-275 .
27.  B o u l e tSL,RasmussenSA, H o n e i n M A.Apopulation-baseds t u d y o f c r aniosynostosis
inmetropolitanAtlanta, 1 9 8 9 - 2 0 03.AmJMedGene t A 2 0 0 8 ; 1 46A(8):984-991.
28.  C o r n e lissenM,OttelanderB d , R i z o p o u lo sD,vanderHulstR,M i n k v a n d erMolen,
Aebele,vanderHors t C , D e l y e H ,vanVeelenML,Bo n s e l G , M a thijssenI.Increaseof
prevalenceofcranios y n o s t o s i s . J CraniomaxillofacSurg 2 0 1 6 ; 4 4 (9):1273-1279.
29.  G o v e rnaleLS.Craniosynosto s i s . P e d i a t r Neurol2015;53(5): 3 9 4 - 4 0 1 .
30.  C o l l G , SakkaL,BotellaC,Ph a m - D a n g N,ColletC,ZerahM,A r n a u d E , D iRoccoF.
PatternofClosureofS k u l l B a s e S ynchondrosesinCrou z o n S y n d r ome.World
Neurosurg2018;10 9 : e 4 6 0 - e467.
31.  S c h m idtMJ,VolkH,KlinglerM , F a i l i n g K , KramerM,Ondreka N . C o m p arisonof
closuretimesforcran i a l b a s e s y nchondrosesinmesa t i c e p h a l i c , b rachycephalic,and
CavalierKingCharlesS p a n i e l d o g s.VetRadiolUltrasoun d 2 0 1 3 ; 5 4(5):497-503.
32.  G e i g e rM,HaussmanS.C r a n i a l S u t u reClosureinDomestic D o g B r e e dsandIts
RelationshipstoSkullM o r p h o l o g y .AnatRec(Hoboken) 2 0 1 6 ; 2 9 9(4):412-420.
33.  K n o w lerSP,KivirantaAM,M c F a d y e n A K,JokinenTS,LaRagio n e R M , R usbridgeC.
CraniometricAnalysiso f t h e H i n d brainandCraniocervic a l J u n c t i o n o fChihuahua,
AffenpinscherandCa v a l i e r K i n g CharlesSpanielDogsW i t h a n d W ithout
SyringomyeliaSecon d a r y t o C h ia ri-LikeMalformation.P L o S O n e.
2017;12(1):e0169 8 9 8 . P u b lished2017Jan25.d o i : 1 0 . 1 3 71/journal.pone.0169 8 9 8
34.  K n o w lerSP,CrossC,Griffiths S , M c F a d yenAK,JovanovikJ,Ta u r o A , e t a l. U seof
MorphometricMapp i n g t o C h a racteriseSymptoma t i c C h i a r i - L i k e Malformation,
20
SecondarySyringom y e l i a a n d AssociatedBrachycep h a l y i n t h e CavalierKingCharles
Spaniel.PloSone201 7 ; 1 2 ( 1 ) : e 0170315.
35.  S t o c k ardC,H.TheGenetic a n d E n d o ndocrinicBasisforDiffe r e n c e s i n F ormand
Behavior.Philadelphia: T h e W i s t a rInstituteofanatomya n d B i o l o g y ;1941.
36.  M a r chantTW,JohnsonEJ,M c T e i r L , J o h nsonCI,GowA,LiutiT,e t a l . C a n i n e
BrachycephalyIsAsso c i a t e d w i t h aRetrotransposon-M e d i a t e d M issplicingofSMOC2.
CurrBiol2017;27(11):1573-1584.
37.  C h o u dhriAF.SkullandScalp . I n : P e d i a t r ic neuroradiology:Clinica l P r a c t i c e
Essentials.NewYork: T h i e m e ; 2 017.p.126-134.
38.  L e e u wenKV.Lacunarskull o f t h e n e w borninfant.TheJourna l o f P e d i a t r ic s1946
/02/01;28(2):193-199.
39.  A g r a walD,SteinbokP,Coc h r a n e D D .Significanceofbeaten c o p p e r a ppearanceon
skullradiographsinch i l d r e n w i t h i s olatedsagittalsynostos i s . C h i l d s N e rvSyst
2007;23(12):1467-1470.
40.  P o o n ia A,GiridharaP,Sheora n D . C o p p erBeatenSkull.JPedia t r 2 0 1 9 ; 206:297-297.
41.  B o u r ekasEC,LanzieriCF.Th e c a l v a r i u m.SeminUltrasound C T a n d M R.
1994;15(6):424-453.
42.  R u s b ridgeC,StringerF,Kno w l e r S P . C li n icalApplicationofDiagn o s t i c I m a g in gof
Chiari-LikeMalformatio n a n d S y r in gomyelia.FrontVetS c i . 2 0 1 8 ; 5:280.
43.  S c h m idtMJ,OndrekaN,Sa u e r b r e y M,VolkHA,Rumme l C , K r a m e rM.Volume
reductionofthejugular f o r a m i n a inCavalierKingCharles S p a n i e l s w ith
syringomyelia.BMCV e t R e s . 2 0 12;doi:10.1186/17 4 6 - 6 1 4 8 -8-158
44.  F e n n J,SchmidtMJ,Simpso n H , D r i v e rCJ,VolkHA.Venoussin u s v o l u m e inthecaudal
cranialfossainCavalie r K i n g C h a r le sspanielswithsyringo m y e l i a . V e tJ
2013;197(3):896-897.
21
45.  R e k a teHL.Pathogenesiso f h y d r o c e p halusinachondroplas t i c d w a r f s : areviewand
presentationofacase f o l l o w e d for22years.ChildsN e r v S y s t 2 019;35(8):1295-13 0 1 .
46.  R o b s onCD,MullikenJB,Rob e r t s o n R L , ProctorMR,Steinberg e r D , B a r nesPD,etal.
Prominentbasalemis s a r y f o r a minainsyndromiccra n i o s y n o s t o sis:correlationwith
phenotypicandmole c u l a r d i a g n oses.AJNRAmJNeur o r a d i o l 2 0 00;21(9):1707-171 7 .
47.  G a r c ía -RealI,KassPH,Sturg e s B K , W i s nerER.Morphometr i c a n a l y s i s o fthecranial
cavityandcaudalcra n i a l f o s s a i n thedog:acomputer i z e d t o m o graphicstudy.Vet
RadiolUltrasound20 0 4 ; 4 5 ( 1 ) :3 8-45.
48.  C o u t u rierJ,RaultD,CauzinilleL. C h i a r i - l i k e m alformationandsyrin g o m y e l i a in
normalcavalierKingC h a r l e s s p a niels:amultiplediagno s t i c i m a g i n g approach.J
SmallAnimPract200 8 ; 4 9 ( 9 ) : 438-443.
49.  C a r r e raI,DennisR,MellorD J , P e n d e r i s J,SullivanM.Useofm a g n e t i c r e s onance
imagingformorpho m e t r i c a n a lysisofthecaudalcran i a l f o s s a i n C avalierKing
CharlesSpaniels.Am J V e t R e s 2 009;70(3):340-345 .
50.  C e r d a-GonzalezS,OlbyNJ,M c C u l l o u g h S,PeaseAP,Broadsto n e R , O s b orneJA.
Morphologyoftheca u d a l f o s s a inCavalierKingCharles S p a n i e l s . VetRadiol
Ultrasound2009;50 ( 1 ) : 3 7 - 4 6 .
51.  S c h m idtMJ,BielM,Klumpp S , S c h n e i d erM,KramerM.Ev a l u a t i o n o f thevolumesof
cranialcavitiesinCavalie r K i n g C h a rlesSpanielswithChiari- lik e m a l f o r mationand
otherbrachycephalic d o g s a s m easuredviacompu t e d t o m o g raphy.AmJVetRes
2009;70(4):508-512.
52.  D r i v e rCJ,RusbridgeC,McG o n n e l l I M , V olkHA.Morphometric a s s e s s m entofcranial
volumesinage-matc h e d C a v a li e rKingCharlesspaniels w i t h a n d w ithout
syringomyelia.VetRe c 2 0 1 0 ; 1 67(25):978-979.
53.  S c h m idtMJ,AmortKH,Failin g K , K l i n g l e r M,KramerM,Ondr e k a N . C o mparisonofthe
22
endocranial-andbrain v o l u m e s inbrachycephalicdog s , m e s a t i c ephalicdogsand
CavalierKingCharless p a n i e l s i n r e lationtotheirbodyweig h t . A c t a V e tScand
2014;56:30.
54.  S o k o ło wskiW,CzubajN,Sk i b n i e w s k i M ,BarszczK,Kupczyńs k a M , K i n d aW,etal.
Rostralcranialfossaa s a s i t e f o r cerebrospinalfluiddra i n a g e - v o l u metricstudiesin
dogbreedsofdiffere n t s i z e a n d morphotype.BMCV e t R e s 2 0 18;
doi:10.1186/s12917-018-1483-3
55.  P i n d r i k J,YeX,JiBG,Pendleton C , A h n E S .Anteriorfontanelleclos u r e a n d s i z einfull-
termchildrenbasedo n h e a d c omputedtomograph y . C l i n P e d i a tr(Phila)
2014;53(12):1149-1157.
56.  H a y e sAF,KrippendorffK. A n s w e r i n g theCallforaStandard R e l i a b i l i t y M easurefor
CodingData.Comm u n i c a t i o n M ethodsandMeasure s 2 0 0 7 ; 1 (1):77-89.
57.  K r i p p endorffK.ReliabilityinCo n t e n t A n a l y sis:SomeCommon M i s c o n c e p tionsand
Recommendations. H u m a n C ommunicationResea r c h 2 0 0 4 ;30(3):411-433.
58.  K o o T K,LiMY.AGuidelineofS e l e c t i n g a n dReportingIntraclass C o r r e l a t i o n
CoefficientsforReliability R e s e a r c h .JChiroprMed2016 ; 1 5 : 1 5 5 - 163.
Abbreviations
CI:confidenceinterval
CM:Chiari-likemalformation
CT:computedtomography
ICC:intraclasscorrelationcoefficient
PF:persistentfontanelle
SM:syringomyelia
Declarations
Ethicsapprovalandconsenttoparticipate:Nohumansubjects,humanmaterial,orhumandatawere
involvedinthisresearch.
23
Consentforpublication:Notapplicable.
Availabilityofdataandmaterials:Dataandmaterialsareavailablefromthecorrespondingauthoron
reasonablerequest.
Competinginterests:A-M.K.andT.S.J.arepartoftheFinnishKennelClubNeurologyadvisorygroup.
Funding:TheFinnishVeterinaryFoundationandAgria/SvenskaKennelklubbenForskningsfond(grant
numberN2018-0024)supportedthestudywithgrants.
Authors'contributions:Allauthorscontributedtothestudydesign.A-M.K.examinedallthepatients.
A-M.K.,andT.S.J.analyzedtheCTimages.J.T.J.performedthestatisticalanalysis.A-M.K.draftedthe
manuscriptwiththehelpofalltheco-authors.Allauthorsread,commentedon,andapprovedthe
finalversionofthemanuscript.
Acknowledgements:WewouldliketothanktheFinnishChihuahuaClubandChihuahuaownersfor
theirparticipationinthestudyandTheFinnishVeterinaryFoundation,Agria/SvenskaKennelklubben
Forskningsfond,andTheVeterinaryTeachingHospitalofHelsinkiUniversityforfinancialsupportof
thestudy.Furthermore,wewanttothankalltheVeterinaryTeachingHospital’sradiologytechnicians
fortheirexpertiseinprovidingtheCTimages.
Tables
Table1:suturesaffectedperdog.
Numberofaffectedsutures Numberofdogs Percentagefromalldogs(%)
0 4 8.2
1 21 42.9
2 9 18.4
3 4 8.2
4 3 6.1
5 1 2.0
6 3 6.1
7 2 4.1
8 1 2.0
9 0 0
10 1 2.0
Total 49 100.0
Table2:Fontanellesaffectedperdog
24
Numberoffontanelles Numberofdogs Percentagefromallfontanelles
(%)
0 4 8.2
1 19 38.8
2 11 22.4
3 2 4.1
4 3 6.1
5 2 4.1
6 2 4.1
7 1 2.0
8 2 4.1
9 0 0
10 1 2.0
11 1 2.0
12 0 0
13 1 2.0
Total 49 100.0
25
Table3:Cranialsuturesandfontanellesevaluated
Location Bone Connecting
bone
Suture/intersect
ion
Figure/No: Human/canine
fontanelle
equivalent
Dorsalsutures Frontal Nasal,maxillar,
lacrimal
Frontonasal,
frontomaxillar,
frontolacrimal
Fig7,No.1 NA
Frontal Interfrontal Fig7,No.2 NA
Parietal Frontoparietal Fig.7,No.3 Bregmatic
Parietal Parietal Sagittal Fig.7,No.4 NA
Leftinterparietal Left
parietointerpariet
al
Fig.7,No.5 NA
Rightinterparietal Right
parietointerpariet
al
Fig.7,No.6 NA
Lateralsutures Frontal Palatinal,
sphenoid
Left
frontopalatine,
sphenofrontal,
Fig.8,No.7 NA
Right
frontopalatine,
sphenofrontal
NA NA
Sphenoid,
parietal
Leftintersection Fig.8,No.8 Leftsphenoid
Rightintersection NA Rightsphenoid
Parietal Sphenoid,
temporal
Left
sphenoparietal,
squamous
Fig.8,No.9 NA
Right
sphenoparietal,
squamous
NA NA
Caudalsutures Occipital Parietal Left
occipitoparietal
Fig.9,No.10 NA
Right
occipitoparietal
Fig.9,No.11 NA
Parietal,temporal Leftintersection Fig.9,No.12 Leftmastoid
Rightintersection Fig.9,No.13 Rightmastoid
Temporal Left
occipitosquamous
Fig.9,No.14 NA
Right
occipitosquamous
Fig.9,No.15 NA
Interparietal Notatruesuture Fig.9,No.16 Posterior
Thesuturesaregroupedbydorsal,lateralandcaudalsurfaces,andthebonesthatthesuturesare
connectingarenominated.Incasethesuturalintersectionsformafontanelle,theveterinaryora
humanequivalenttermisgiven.Additionally,thefigureinwhichthesutureisvisualizedandthe
numbermarkingitisprovided.
NA:notapplicable,Fig.:figure,No.:number
26
Table4.
Inter-raterreliability:RepeatabilityandKrippendorff'salphareliabilityestimatesbetween
assessors
Areameasured Repeatability(%) alpha 95%CI numberofpairs
Totalfontanellearea 99.8 0.999 0.997-
1.000
50
Dorsalfontanellearea 99.6 0.997

0.995-
0.999
50
Leftlateralfontanellearea 99.7 0.998

0.995-
1.000
6
Rightlateralfontanellearea 99.5 0.996

0.989-
1.000
9
Caudalfontanellearea 99.6 0.997

0.994-
0.999
50
Inter-raterreliability:RepeatabilityandKrippendorff'salphareliabilityestimatesoftotal,dorsal,left
andrightlateral,andcaudalfontanelleareameasurementsbetweenthetwoassessors.CI:
confidenceinterval.
Table5.
Intra-raterreliability:fontanelleareaintra-classcorrelationcoefficient
Assessor1 Assessor2 Combined
Areameasured ICC 95%CI ICC 95%CI ICC
Totalfontanellearea 0.999 0.997-
0.999
0.997 0.994-
0.999
0.998
Dorsalfontanellearea 0.999 0.998-
1.000
0.998 0.995-
0.999
0.999
Leftlateralfontanellearea 0.996 0.970-
1.000
0.999 0.988-
1.000
0.997
Rightlateralfontanellearea 0.999 0.989-
1.000
1.000 0.996-
1.000
0.999
Caudalfontanellearea 0.993 0.984-
0.997
0.992 0.981-
0.996
0.992
Intra-raterreliability:Fontanelleareaintra-classcorrelationcoefficienttoassesstherepeatabilityof
themeasurementofthetotal,dorsal,leftandrightlateral,andcaudalfontanelleareameasurements.
ICC:intraclasscoefficient,ICC:intraclasscorrelationcoefficient,CI:confidenceinterval.
Figures
27
Figure1
28
Bregmaticfontanelle.Avolume-renderingtechniquecomputedtomographyimageofa
Chihuahuaskullindorsalviewshowingasingle,sharplydemarcatedpersistentbregmatic
fontanelleattheintersectionofthepairedfrontalandparietalcranialbones(the
frontoparietalsuture).
29
Figure2
Multiplebregmaticfontanelles.Avolume-renderingtechniquecomputedtomographyimage
ofaChihuahuaskullindorsalviewshowingmultiple,sharplydemarcatedpersistent
bregmaticfontanellesattheintersectionofthepairedfrontalandparietalcranialbones(the
frontoparietalsuture).
Figure3
Sphenoidalfontanelle.Avolume-renderingtechniquecomputedtomographyimageofa
Chihuahuaskullinrightlateralviewshowingasingle,sharplydemarcatedpersistent
fontanelleattheintersectionofthefrontal,sphenoidal,andparietalbones,resemblingthe
locationoftherightsphenoidalfontanelleinchildren.
30
Figure4
Bregmaticfontanellewithindistinctmargins.Adorsalmaximum-intensityprojection
computedtomographyimage(windowlevel500,windowwidth3500,slicethickness15mm)
ofaChihuahuaskullwithabregmaticfontanellewithindistinctmarginsbetweenthepaired
frontalandparietalbones.
31
Figure5
PersistentfontanelleconnectedtoaradiolucentlineresemblingavenousstructureCaudal
maximum-intensityprojectioncomputedtomographyimage(windowlevel500,window
width3500,slicethickness15mm)ofaChihuahuaskullwithmultiplepersistentfontanelles.
Apersistentfontanelle,locatedbetweentherightinterparietalandparietalbones,is
connectedtoaradiolucentlineresemblingavenousstructure(arrow).Theradiolucentline
32
appearstobeconnectedtoapersistentfontanelleatthelocationoftherightmastoid
fontanelle(star)betweentherightparietal,occipital,andtemporalbones.
Figure6
33
Multiplepersistentfontanellesonacaudalcranialsurface.Volume-renderingtechnique
computedtomographyimageofaChihuahuaskullincaudalviewshowingmultiple,sharply
demarcatedpersistentfontanellesandanenlargedforamenmagnum.Thepersistent
fontanelles(redstar)wereconfirmedinmultiplanarimagestopenetratethroughthebone.
Therestofthelesionsappearingaspersistentfontanelles(withoutaredstar)areareasof
thinbone.
34
Figure7
DorsalcranialsuturesDorsalmaximum-intensityprojectioncomputedtomographyimage
(windowlevel500,windowwidth3500,slicethickness25mm)ofamixed-breeddog’s
(weight5.1kg)skull:Numbers1-6markdorsalcranialsuturesevaluatedinthestudy.(See
Table3forsuturesandconnectingbones.)Tobeabletoshowthedorsalcranialsuturesin
oneplane,weselectedamixed-breeddogwithlessdomingoftheheadthaninChihuahuas.
35
Figure8
LateralcranialsuturesAleftlateralmaximum-intensityprojectioncomputedtomography
image(windowlevel500,windowwidth3500,slicethickness25mm)ofamixed-breed
dog’s(weight,5.1kg)skull:Numbers3and7-9markdorsalandlateralcranialsutures
evaluatedinthestudy.(SeeTable3fordetailsofsuturesandconnectingbones.)Tobeable
toshowthelateralcranialsuturesinoneplane,weselectedamixed-breeddogwithless
domingoftheheadthaninChihuahuas.
36
Figure9
CaudalcranialsuturesCaudalmaximum-intensityprojectioncomputedtomographyimage
(windowlevel500,windowwidth3500,slicethickness25mm)ofamixed-breeddog’s
(weight,5.1kg)skull:Numbers5-6and9-16markdorsal,lateralandcaudalcranialsutures
evaluatedinthestudy.(SeeTable3fordetailsofsuturesandconnectingbones.)Tobeable
toshowthelateralcranialsuturesinoneplane,weselectedamixed-breeddogwithless
domingoftheheadthaninChihuahuas.
37
Figure10
PositioningoftheindexlinesTransverse(a),sagittal(b)anddorsal(c)multiplanar
computedtomographyimages,(windowlevel500,windowwidth3500,slicethickness1
mm)showingthepositionofindexlinespositionedsothatthefirstindexlinewastangential
totheouterskullsurfaceandinthemid-thicknessofthebonesurroundingit(blueindex
line).Thesecondindexlinewaspositionedperpendiculartothepreviousindexlineandin
thecenterofthepersistentfontanelle(yellowindexlineinFig10a,purpleindexlineinFig
10b).Inthedorsalview(Fig10c),theintersectionoftheindexlineswaspositionedatthe
centerofthepersistentfontanelle.
38
Figure11
FontanelleareameasurementDorsalmaximum-intensityprojectioncomputedtomography
image(windowlevel500,windowwidth3500,slicethickness15mm)ofaChihuahuaskull
withabregmaticfontanellebetweenthepairedfrontalandparietalbones.Theareaofthe
bregmaticfontanelle,82.4mm2,ismeasuredbyOsiriXMedicalImagingSoftware’sclosed
polygontool.
SupplementaryFiles
39
Thisisalistofsupplementaryfilesassociatedwiththispreprint.Clicktodownload.
KivirantaNC3RsARRIVEGuidelinesChecklist2014.docx
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Object The purpose of this work is to review the pathogenesis and pathophysiology of hydrocephalus in patients with achondroplasia as a guide to its management throughout life. Methods A review of the literature related to neurosurgical issues in achondroplasia with specific focus on cerebrospinal fluid physics, clinical management, and outcome of affected individuals. Issues involved in this review are highlighted by a case report of a patient shunted for achondroplasia first shunted in infancy and followed for 22 years. Each of the management issues is explored with respect to this patient. Findings Head circumferences in achondroplasia are abnormally large in this condition usually caused by excess cerebrospinal fluid in the cortical subarachnoid space. Increase in ventricular size (hydrocephalus) is not rare but should not be treated unless rapidly progressive or symptomatic. The underlying cause of the abnormalities of cerebrospinal fluid dynamics relates to abnormal venous drainage at the skull base. Patients shunted in infancy for hydrocephalus usually remain dependent on the shunt for life, and crises of high intracranial pressure may occur with no distention of the ventricles. Conclusions In infants with achondroplasia, large heads and enlarged ventricles without symptoms should be watched initially for progression. If hydrocephalus progresses or if symptoms of intracranial hypertension occur, endoscopic third ventriculostomy can be tried. If shunt is necessary, it should have a high opening pressure and a device to retard siphoning. In the case of recurrent ventricular catheter blockage, it may be necessary to create a communication between the ventricles and the cortical subarachnoid space.
Article
Full-text available
Chiari-like malformation (CM) and syringomyelia (SM) is a frequent diagnosis in predisposed brachycephalic toy breeds since increased availability of MRI. However, the relevance of that MRI diagnosis has been questioned as CM, defined as identification of a cerebellar herniation, is ubiquitous in some breeds and SM can be asymptomatic. This article reviews the current knowledge of neuroanatomical changes in symptomatic CM and SM and diagnostic imaging modalities used for the clinical diagnosis of CM-pain or myelopathy related to SM. Although often compared to Chiari type I malformation in humans, canine CM-pain and SM is more comparable to complex craniosynostosis syndromes (i.e., premature fusion of multiple skull sutures) characterized by a short skull (cranial) base, rostrotentorial crowding with rostral forebrain flattening, small, and ventrally orientated olfactory bulbs, displacement of the neural tissue to give increased height of the cranium and further reduction of the functional caudotentorial space with hindbrain herniation. MRI may further reveal changes suggesting raised intracranial pressure such as loss of sulci definition in conjunction with ventriculomegaly. In addition to these brachycephalic changes, dogs with SM are more likely to have craniocervical junction abnormalities including rostral displacement of the axis and atlas with increased odontoid angulation causing craniospinal junction deformation and medulla oblongata elevation. Symptomatic SM is diagnosed on the basis of signs of myelopathy and presence of a large syrinx that is consistent with the neuro-localization. The imaging protocol should establish the longitudinal and transverse extent of the spinal cord involvement by the syrinx. Phantom scratching and cervicotorticollis are associated with large mid-cervical syringes that extend to the superficial dorsal horn. If the cause of CSF channel disruption and syringomyelia is not revealed by anatomical MRI then other imaging modalities may be appropriate with radiography or CT for any associated vertebral abnormalities.
Article
Full-text available
Chiari-like Malformation (CM) and secondary syringomyelia (SM), as well as their analogous human conditions, is a complex developmental condition associated with pain and accompanying welfare concerns. CM/SM is diagnosed ever more frequently, thanks in part to the increased availability of magnetic resonance imaging in veterinary medicine. Research over the last two decades has focused primarily on its pathophysiology relating to overcrowding of the cranial caudal fossa. More recent characterizations of CM/SM include brachycephaly with osseous reduction and neural parenchymal displacement involving the entire brain and craniocervical junction to include rostral flattening, olfactory bulb rotation, increased height of the cranium, reduced cranial base with spheno-occipital synchondrosis angulation, reduced supraoccipital and interparietal crest and rostral displacement of the axis and atlas with increased odontoid angulation. The most shared manifestation of CM is the development of fluid-filled pockets (syrinx, syringes) in the spinal cord that can be readily quantified. Dogs with symptomatic CM without SM have a reduced basioccipital bone, compensatory increased cranial fossa height with displaced parenchyma whereby the cerebellum is invaginated beneath the occipital lobes but without compromising cerebrospinal fluid channels enough to cause SM. Thus, broadly defined, CM might be described as any distortion of the skull and craniocervical junction which compromises the neural parenchyma and cerebrospinal fluid circulation causing pain and/or SM. The etiology of CM is multifactorial, potentially including genetically-influenced, breed-specific abnormalities in both skeletal and neural components. Since causation between specific morphologic changes and SM or clinical signs is unproven, CM might be more appropriately considered as a brachycephalic obstructive CSF channel syndrome (BOCCS) rather than a single malformation. Understanding the normal development of the brain, skull and craniocervical junction is fundamental to identifying deviations which predispose to CM/SM. Here we review its anatomical, embryological, bio-mechanical, and genetic underpinnings to update the profession's understanding of this condition and meaningfully inform future research to diminish its welfare impact.
Article
Full-text available
Background: Hydrocephalus is a multifactorial condition, whose aetiology is not fully understood. Congenital hydrocephalus frequently occurs in small and brachycephalic dog breeds. Although it is widely accepted that the cribriform plate located in the rostral cranial fossa (RCF) is a site of cerebrospinal fluid (CSF) drainage, the RCF has not been studied extensively. Literature reports indicate that a decreased caudal cranial fossa (CCF) volume in the course of the Chiari-like malformation may obstruct CSF circulation. We hypothesised that morphological diversity among different breeds in the volume of the RCF may affect CSF circulation. The aim of the study was to carry out a volumetric analysis of the RCF and the cranial cavity and to determine the ratio between them in dog breeds of different size and morphotype. We performed computed tomography (CT) morphometric analysis of the RCF compartment by obtaining volume measurements from the transverse and reformatted sagittal and dorsal planes. Results: The rostral cranial fossa percentage - volume of the rostral cranial fossa/volume of cranial cavity × 100 (volRCF/volCC × 100) was lower in small and brachycephalic dog breeds than in the other dogs. Conclusions: A reduced RCF volume was detected in small and brachycephalic dog breeds, some of which are predisposed to congenital hydrocephalus. This may lead to overcrowding of brain parenchyma in the RCF and may impede CSF circulation. Our observations may be useful for future studies focusing on the causes and new therapies to treat conditions such as hydrocephalus and syringomyelia.
Article
Full-text available
Background: Chiari-like malformation (CM) and syringomyelia (SM) are widely reported in Cavalier King Charles Spaniels and Griffon Bruxellois dogs. Increasing evidence indicates that CM and SM also occur in other small and toy breed dogs, such as Chihuahuas. Objectives: To describe the presence of SM and craniocervical junction (CCJ) abnormalities in Chihuahuas and to evaluate the possible association of CCJ abnormalities with SM. To describe CM/SM-related clinical signs and neurologic deficits and to investigate the association of CM/SM-related clinical signs with signalment, SM, or CCJ abnormalities. Animals: Fifty-three client-owned Chihuahuas. Methods: Prospective study. Questionnaire analyses and physical and neurologic examinations were obtained before magnetic resonance and computed tomography imaging. Images were evaluated for the presence of SM, CM, and atlantooccipital overlapping. Additionally, medullary kinking, dorsal spinal cord compression, and their sum indices were calculated. Results: Scratching was the most common CM/SM-related clinical sign and decreased postural reaction the most common neurologic deficit in 73 and 87% of dogs, respectively. Chiari-like malformation and SM were present in 100 and 38% of dogs, respectively. Syringomyelia was associated with the presence of CM/SM-related clinical signs (P = 0.034), and medullary kinking and sum indices were higher in dogs with clinical signs (P = 0.016 and P = 0.007, respectively). Conclusions and clinical importance: Syringomyelia and CCJ abnormalities are prevalent in Chihuahuas. Syringomyelia was an important factor for the presence of CM/SM-related clinical signs, but many dogs suffered from similar clinical signs without being affected by SM, highlighting the clinical importance of CCJ abnormalities in Chihuahuas.
Article
Full-text available
In morphological terms, “form” is used to describe an object’s shape and size. In dogs, facial form is stunningly diverse. Facial retrusion, the proximodistal shortening of the snout and widening of the hard palate is common to brachycephalic dogs and is a welfare concern, as the incidence of respiratory distress and ocular trauma observed in this class of dogs is highly correlated with their skull form. Progress to identify the molecular underpinnings of facial retrusion is limited to association of a missense mutation in BMP3 among small brachycephalic dogs. Here, we used morphometrics of skull isosurfaces derived from 374 pedigree and mixed-breed dogs to dissect the genetics of skull form. Through deconvolution of facial forms, we identified quantitative trait loci that are responsible for canine facial shapes and sizes. Our novel insights include recognition that the FGF4 retrogene insertion, previously associated with appendicular chondrodysplasia, also reduces neurocranium size. Focusing on facial shape, we resolved a quantitative trait locus on canine chromosome 1 to a 188-kb critical interval that encompasses SMOC2. An intronic, transposable element within SMOC2 promotes the utilization of cryptic splice sites, causing its incorporation into transcripts, and drastically reduces SMOC2 gene expression in brachycephalic dogs. SMOC2 disruption affects the facial skeleton in a dose-dependent manner. The size effects of the associated SMOC2 haplotype are profound, accounting for 36% of facial length variation in the dogs we tested. Our data bring new focus to SMOC2 by highlighting its clinical implications in both human and veterinary medicine.
Article
An 8‐year‐old male intact miniature poodle presented for blindness, obtundation, tetraparesis, and vestibular signs. Magnetic resonance imaging, radiography, and ultrasound revealed a left piriform lobe lesion, right cerebellar and left brainstem lesions, and hydrocephalus and bilateral calvarial defects. Histopathology confirmed a choroid plexus carcinoma with meningeal and intraventricular metastases. The calvarial defect did not show evidence of necrosis, osteoclastic resorption, inflammation or neoplastic infiltration, reflecting a quiescent calvarial atrophy or dysplasia. These novel findings supported inclusion of bone atrophy secondary to chronic increased intracranial pressure as a differential diagnosis for large calvarial defects in dogs with choroid plexus carcinoma.
Article
OBJECTIVE Anterior fontanel size and closure time can be useful clinical signs for the early diagnosis of diseases. Knowing age-related normal variations is important to decide on further investigations. The authors of this study aimed to describe fontanel size variation according to age, determine fontanel closure time, and identify the optimal method for assessing fontanel size. METHODS For this prospective cohort study, 321 healthy term babies who fulfilled the inclusion criteria were consecutively recruited. Percentile charts for the mean anterior fontanel size and oblique measurements from birth to 24 months of age were created. RESULTS The mean fontanel closure time was 9.7 ± 5.0 months (girls 10.3 ± 4.7 months, boys 9.2 ± 5.1 months). No differences were observed between the traditional method and oblique measurements. Early fontanel closure was not associated with microcephaly. CONCLUSIONS Oblique measurements can be used because they are as accurate as the traditional method. Children with fontanels measuring above the 95th percentile should be monitored closely and investigated further for potentially associated diseases.
Article
Background: The age of closure of skull base synchondroses has never been analyzed in a homogenous population of children with Crouzon syndrome. Method: A retrospective case-control study was performed on 30 Crouzon children (17M, 13F) aged 1 month to 12.48 years with Fibroblast Growth Factor Receptor type 2 mutation. Eleven synchondroses were analyzed on millimetric computed tomodensitometry slices before surgery. Syndromic patients were compared to a series of 235 healthy children previously published. Results: Synchondrosis closure follows a global pattern that occurs earlier in Crouzon syndrome than controls (p≤0.002). Synchondrosis fusion starts at 10 months of age with posterior intra-occipital synchondroses and lambdoid sutures, followed by occipito-mastoid synchondroses between 1.85 (right) and 2.27 years (left) and anterior intra-occipital synchondroses at around 2.80 years. Time to complete fusion varies considerably according to the synchondroses. Spheno-occipital and petro-occipital synchondroses fuse last at around 3 years old. Conclusions: In Crouzon children synchondrosis closure occurs prematurely, with a time course specific to each synchondrosis.
Article
Introduction: Craniosynostosis represents premature closure of cranial sutures. Prevalence is approximately 3.1-6.4 in 10.000 live births, which is reportedly rising. This epidemiologic study aims to provide insight into this rise through an accurate description of the prevalence, exploring regional variation and change over time. Methods: The Dutch Association for Cleft Palate and Craniofacial Anomalies was consulted to identify patients with craniosynostosis born between 2008 and 2013. Data were verified using data provided by all hospitals that treated these patients. The following data were collected: date of birth, gender, diagnosis and postal code. Previously reported data from 1997 until 2007 were included to assess for change in prevalence over the years. Results: Between 2008 and 2013 759 patients with craniosynostosis were born in the Netherlands. Prevalence of craniosynostosis was 7.2 per 10.000 live births. Sagittal synostosis was the most common form (44%). Poisson regression analysis showed a significant mean annual increase of prevalence of total craniosynostosis (+12.5%), sagittal (+11.7%) and metopic (+20.5%) synostosis from 1997 to 2013. Conclusion: The prevalence of craniosynostosis is 7.2 per 10.000 live born children in the Netherlands. Prevalence of total craniosynostosis, sagittal and metopic suture synostosis has risen significantly from 1997 until 2013, without obvious cause.