PreprintPDF Available

Diseño e implementación de una meta-heurística multi-poblacional de optimización combinatoria enfocada a la resolución de problemas de asignación de rutas a vehículos

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract and Figures

Transportation is an essential area in the nowadays society, both for business sector and citizenry. There are different kinds of transportation systems, each one with its own characteristics. In the same way, various areas of knowledge can deal efficiently with the transport planning. The majority of the problems related with the transport and logistics have common characteristics, so they can be modeled as optimization problems, being able to see them as special cases of other generic problems. These problems fit into the combinatorial optimization field. Much of the problems of this type have an exceptional complexity. A great amount of meta-heuristics can be found the literature, each one with its advantages and disadvantages. Due to the high complexity of combinatorial optimization problems, there is no technique able to solve all these problems optimally. This fact makes the fields of combinatorial optimization and vehicle routing problems be a hot topic of research. This doctoral thesis will focus its efforts on developing a new meta-heuristic to solve different kind of vehicle routing problems. The presented technique offers an added value compared to existing methods, either in relation to the performance, and the contribution of conceptual originality. With the aim of validating the proposed model, the results obtained by the developed meta-heuristic have been compared with the ones obtained by other four algorithms of similar philosophy. Four well-known routing problems have been used in this experimentation, as well as two classical combinatorial optimization problems. In addition to the comparisons based on parameters such as the mean, or the standard deviation, two different statistical tests have been carried out. Thanks to these tests it can be affirmed that the proposed meta-heuristic is competitive in terms of performance and conceptual originality.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals. In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization. Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species. These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony. Ant colony optimization exploits a similar mechanism for solving optimization problems. From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available. Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO. The goal of this article is to introduce ant colony optimization and to survey its most notable applications
Article
Particle swarm optimization (PSO) is an alternative population-based evolutionary computation technique. It has been shown to be capable of optimizing hard mathematical problems in continuous or binary space. We present here a parallel version of the particle swarm optimization (PPSO) algorithm together with three communication strategies which can be used according to the independence of the data. The first strategy is designed for solution parameters that are independent or are only loosely correlated, such as the Rosenbrock and Rastrigrin functions. The second communication strategy can be applied to parameters that are more strongly correlated such as the Griewank function. In cases where the properties of the parameters are unknown, a third hybrid communication strategy can be used. Experimental results demonstrate the usefulness of the proposed PPSO algorithm.