BookPDF Available

What if the Universe was a lattice and we were its topological singularities? And what if the only fundamental principles of the Universe were Newton's and thermodynamics laws? (1st version of the "popularized" book, freely downloadable)

Authors:

Abstract and Figures

One fundamental problem of modern physics is the search for a theory of everything able to explain the nature of space-time, what matter is and how matter interacts. There are various propositions, as Grand Unified Theory, Quantum Gravity, Supersymmetry, String and Superstring Theories, and M-Theory. However, none of them is able to consistently explain at the present and same time electromagnetism, relativity, gravitation, quantum physics and observed elementary particles. By developing a complete theory of the deformation of solid lattices using Euler’s coordinates, one finds that this one can be used for the description of the spatiotemporal evolution of the Universe instead of the general relativity. In this way, it is suggested that the Universe could be a massive elastic three-dimensional lattice described in the absolute space by using Euler’s coordinates, and that fundamental building blocks of Ordinary Matter could consist of topological singularities of this lattice, namely diverse dislocation loops, disclination loops and dispiration loops. One finds then, for an isotropic elastic lattice obeying Newton’s law, with specific assumptions on its elastic properties, that the behaviors of this lattice and of its topological defects display “all” known physics. Indeed, this theory contains intrinsically and allows one to deduce directly the various formalisms of electromagnetism, special relativity, general relativity, gravitation and quantum physics. It allows also one to give simple answers to some longstanding questions of modern cosmology, as the universe expansion, the big-bang and the dark energy. But it appears above all a completely new scalar charge, the curvature charge, which has no equivalence in the modern physical theories, which creates a very small deviation to the equivalence principle of Einstein between inertial mass and gravitational mass, and which allows one to give very simple explanations of the weak asymmetry observed between matter and anti-matter, the origin of the weak interaction force, the formation of galaxies, the disappearance of antimatter from the universe, the formation of gigantic black holes in the heart of the galaxies and the nature of the famous dark matter. Moreover, studying lattices with axial symmetries, one was able to identify a lattice structure whose topological defect loops coincide exactly with the complex zoology of elementary particles, and which allows one to explain quite simply the asymptotical behavior and the nature of the strong interaction force.
Content may be subject to copyright.
A preview of the PDF is not available
... One also supposes that this lattice is likely to contain topological singularities, i.e. s tructural defects such as dislocations, disclinations and dispirations, which would be the constituent elements of Ordinary Matter. The complete development of this theory can be accessed freely in a downloadable book [1]. ...
Article
Full-text available
In this brief communication, we summarize an original and new approach of the Universe, which considers that the Universe could be a finite, elastic and massive solid that would move and deform in an infinite absolute vacuum. In this a priori strange concept, it is supposed that the Universe is a lattice of simple cubic crystalline structure, whose basic cells have a mass of inertia that satisfies Newtonian dynamics in absolute space, and whose elasticity is controlled by the existence of an internal energy of deformation. One also supposes that this lattice is likely to contain topological singularities, i.e. s tructural defects such as dislocations, disclinations and dispirations, which would be the constituent elements of Ordinary Matter. The complete development of this theory can be accessed freely in downloadable books.
ResearchGate has not been able to resolve any references for this publication.