Conference Paper

Daisy Chain MIMO Antenna: A Big Challenge to Full-azimuth 100 Gbps Capacity

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... In Figure 2 an illustrated overview of our ongoing project, conducting research and development work toward a full-azimuth beam steering MIMO array, is shown [18]. We have taken on the big challenge of achieving a 100 Gbps channel capacity on a moving vehicle for the forthcoming sixth-generation (6G) mobile communications. ...
... In Figure 2 an illustrated overview of our ongoing project, conducting research and development work toward a full-azimuth beam steering MIMO array, is shown [18]. We have taken on the big challenge of achieving a 100 Gbps channel capacity on a moving vehicle for the forthcoming sixthgeneration (6G) mobile communications. ...
... When the length of the parasitic element is set to 6.2 cm (0.41 λ), the average radiation gain of Elements #1 and #2 at 0 • is at its maximum value. The excitation conditions for Subarrays 1-4 are summarized in Table 1, which is obtained by searching for the optimum amplitude and phase from among the possible weight functions of each element using Equation (18). Furthermore, Element #9 is used as a parasitic or non-exciting element to enhance the directivity. ...
Article
Full-text available
This paper presents a multiple-input, multiple-output (MIMO) antenna system with the ability to perform full-azimuth beam steering, and with the aim of realizing greater than 20 Gbps vehicular communications. The MIMO antenna described in this paper comprises 64 elements arranged in a daisy chain array structure, where 32 subarrays are formed by pairing elements in each subarray; the antenna yields 32 independent subchannels for MIMO transmission, and covers all communication targets regardless of their position relative to the array. Analytical results reveal that the proposed antenna system can provide a channel capacity of more than 200 bits/s/Hz at a signal-to-noise power ratio (SNR) of 30 dB over the whole azimuth, which is equivalent to 20 Gbps for a bandwidth of 100 MHz. This remarkably high channel capacity is shown to be due to two significant factors; the improved directivity created by the optimum in-phase excitation and the low correlation between the subarrays due to the orthogonal alignment of the array with respect to the incident waves. Over-the-air (OTA) experiments confirm the increase in channel capacity; the proposed antenna can maintain a constant transmission rate over all azimuth angles.
Article
Full-text available
Diverse applications in vehicular network present specific requirements and challenges on wireless access technology. Although considered as the first standard, IEEE 802.11p shows the obvious drawbacks and is still in the field-trial stage. In this article, we propose LTE-V as a systematic and integrated V2X solution based on time-division long term evolution (TD-LTE) 4G. LTE-V includes two modes: LTE-V-Direct and LTE-V-Cell. Comparing to IEEE 802.11p, LTE-V-Direct is a new decentralized architecture which modifies TD-LTE physical layer and try to keep commonality as possible to provide short range direct communication, low latency and high reliability improvements. By leveraging the centralized architecture with native features of TD-LTE, LTE-V-Cell optimizes radio resource management (RRM) for better supporting V2I. LTE-V-Direct and LTE-V-Cell coordinate with each other to provide an integrated V2X solution. Performance simulations based on sufficient scenarios and the prototype system with typical cases are presented. Finally, future works of LTE-V are envisioned.
Article
Full-text available
Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.
Article
Full-text available
This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.
Article
As we edge closer to the broad implementation of intelligent transportation systems, the need to extend the perceptual bounds of sensor-equipped vehicles beyond the individual vehicle is more pressing than ever. Research and standardization efforts toward V2X, or vehicle to everything, technology is intended to enable the communication of individual vehicles with both one another and supporting road infrastructure. The topic has drawn interest from a large number of stakeholders, from governmental authorities to automotive manufacturers and mobile network operators. With interest sourced from many disparate parties and a wealth of research on a large number of topics, trying to grasp the bigger picture of V2X development can be a daunting task. In this tutorial survey, to the best of our knowledge, we collate research across a number of topics in V2X, from historical developments to standardization activities and a high-level view of research in a number of important fields. In so doing we hope to provide a useful reference for the state of V2X research and development for newcomers and veterans alike.
Article
A novel method of achieving low-profile, broadband microstrip array antennas with high antenna gain is proposed for millimeter-wave (mm-wave) applications. The element employs a novel 3rd-order vertically coupled resonant structure that a U-slot resonator in the ground is used to couple with the feeding resonator and the radiating patch, simultaneously. This proposed structure can significantly improve the bandwidth and frequency selectivity without increasing the thickness of the antenna. Then, to achieve the subarray, a new wideband power divider with loaded resonators is employed, which can be used to further improve the bandwidth. To demonstrate the working schemes of broadside radiation and scanned beam, two 4 × 4 array antennas are implemented on the same board. Measured results agree well with the simulations, showing a wide bandwidth from 22 to 32 GHz (FBW = 37%) with the gain of around 19 dBi. The beam scanning array can realize a scanning angle of over 25 degrees over a broadband. In addition, due to the filtering features are integrated in the design, the proposed antenna could also reduce the complexity and potential cost of the frontends.
Article
The concept of massive multiple input multiple output (MIMO) has recently been proposed. It has been reported that using linear or planar arrays to implement massive MIMO yields narrow beams that can mitigate the interference signal even if interference cancellation techniques such as zero forcing (ZF) are not employed. In this work, we investigate the interference reduction performance achieved by circular array implemented massive MIMO in a real micro cell environment. The channel state information (CSI) is obtained by using a wideband channel sounder with cylindrical 96-element array in the 2-GHz band in an urban area. Circular arrays have much larger beamwidth and sidelobe level than linear arrays. In this paper, when considering the cylindrical array, the interference reduction performance between ZF and maximum ratio combining is compared when one desired user exists in the micro cell while the interference user moves around the adjacent cell. We show that ZF is essential for reducing the interference from the adjacent cell in the circular array based massive MIMO. The required number of antennas in the vertical and horizontal planes for the interference reduction is evaluated, in order to simplify the burden of signal processing for the ZF algorithm in massive MIMO. Because there are elements with low signal to noise power ratio (SNR) when considering cylindrical 96-element array, it is shown that the degradation of the signal to noise plus interference power ratio (SINR) when the number of antennas is reduced is smaller than that by ideal antenna gain reduction with a linear array. Moreover, we show that the appropriate antennas should be selected when a limited number of antennas is assumed, because the dominant waves arrive from certain specific directions.
Conference Paper
This contribution studies the channel capacity of higher order MIMO configurations. The results are based on wide band channel measurements at 2.53 GHz for a representative urban macro cell in Ilmenau, Germany. for single and dual polarized antenna elements configurations from 2×2 up to 16×16 sub channels. Furthermore the analysis is performed for two different base stations heights. Only the 2×2 dual polarized MIMO setup matches the corresponding Rayleigh results. Between the same but increasing numbers of MIMO antennas, an almost constant gap between single and dual polarized setups was found. It was also found out that the results depend on the base station height, the differences in MIMO capacity results increase while the number of antennas is increasing.
Article
This paper describes an evolution and standardization trends of the wireless channel modeling activities towards IMT-Advanced. After a background survey on various channel modeling approaches is introduced, two well-known multiple-input-multiple-output (MIMO) channel models for cellular systems, namely, the 3GPP/3GPP2 Spatial Channel Model (SCM) and the IMT-Advanced MIMO Channel Model (IMT-Adv MCM) are compared, and their main similarities are pointed out. The performance of MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. Here, we investigate the spatial-temporal correlation characteristics of the 3GPP/3GPP2 SCM and the IMT-Adv MCM in term of their spatial multiplexing and spatial diversity gains. The main goals of this paper are to summarize the current state of the art, as well as to point out the gaps in the wireless channel modeling works, and thus hopefully to stimulate research in these areas.